Real-time Time and Frequency Transfer based on GNSS Network Solution

Yize Zhang^{1,2}, Junping Chen¹, Sainan Yang¹, Bin Wu¹

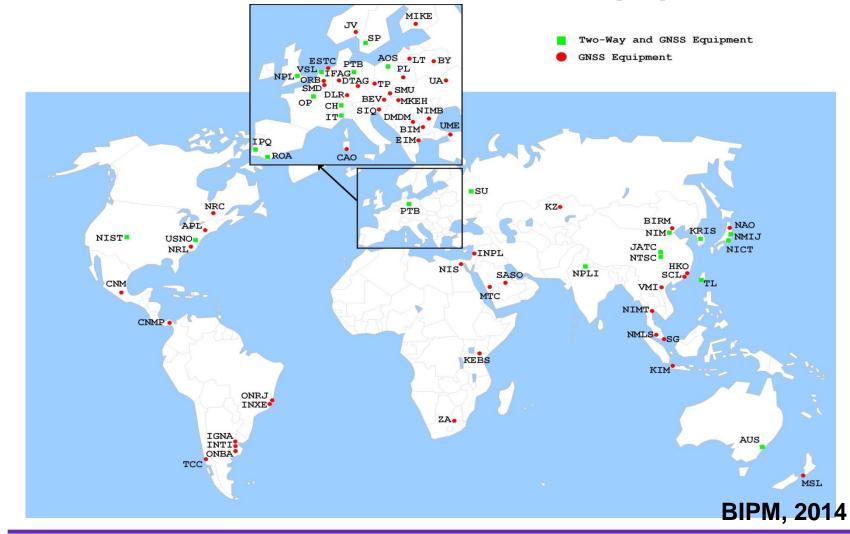
1 Shanghai Astronomical Observatory, Shanghai, China 2 College of Surveying and Geo-Informatics, Shanghai, China

> junping@shao.ac.cn http://www.shao.ac.cn/shao_gnss_ac

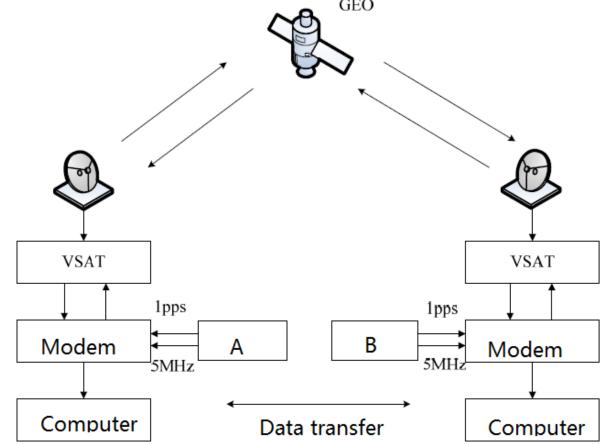
Content

Background

New development in Time and Frequency Transfer(TFT)

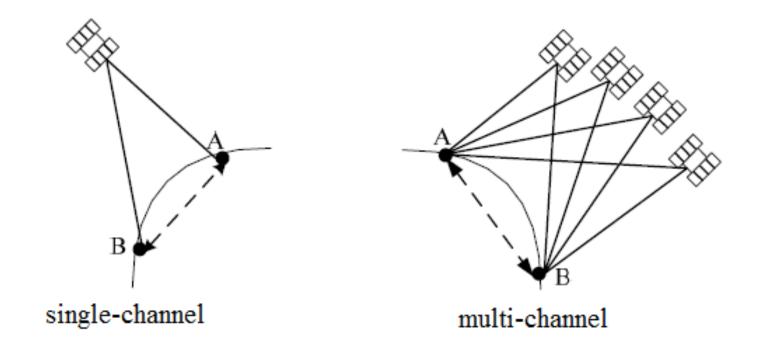

Multi-GNSS PPP and GNSS Network Solution for TFT

TFT Experiment

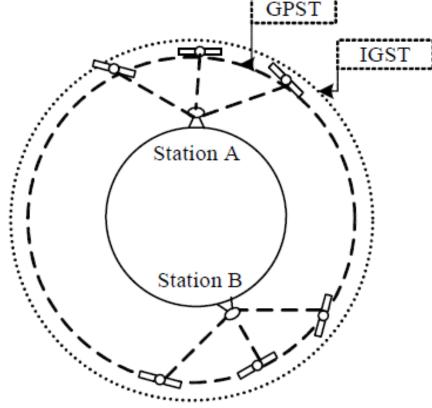

≻Summary

World wide TAI TFT network

Geographical distribution of the laboratories that contribute to TAI and time transfer equipment



➤ Two Way Satellite Time and Frequency Transfer(TWSTFT): Similar paths of two signals; making difference between two records, thus eliminating common satellite errors.


➢GPS Common View (CV) : Making satellite-differences between two stations, Satellite related error removed.

Valid only for stations have common satellites observed Range data are used, common satellites are used

➢GPS All in View (AV) : Clock estimation using all satellites observed.

No need for common satellites; Range data are used, Satellite related errors affect results; Could use precise satellite orbit/clock from e.g. the IGS.

Precise Point Positioning : Clock estimation using all satellite observed.

No need for common satellites; Range+Phase data are used, Satellite related errors affect results; Use precise satellite orbit/clock from e.g. the IGS. $(P^k - Q + Q + Q + Q)$

$$\begin{cases} P_i^{\kappa} = \rho + c\delta_i - c\delta^{\kappa} + \delta_{trop} - \varepsilon_i \\ L_i^{k} = \rho + c\delta_i - c\delta^{k} + \delta_{trop} + \lambda N_i - \varepsilon_i \end{cases}$$

Precise Point Positioning : Clock estimation using all satellite observed.

No need for common satellites; Range+Phase data are used, Satellite related errors affect results ; Use precise satellite orbit/clock from e.g. the IGS.

$$\begin{cases} P_i^{\kappa} = \rho + c\delta_i - c\delta^{\kappa} + \delta_{trop} - \varepsilon_i \\ L_i^{k} = \rho + c\delta_i - c\delta^{k} + \delta_{trop} + \lambda N_i - \varepsilon_i \end{cases}$$

Precise Point Positioning : Clock estimation using all satellite observed.

No need for common satellites; Range+Phase data are used, Satellite related errors affect results ; Use precise satellite orbit/clock from e.g. the IGS. $(P^k - Q + Q + Q + Q)$

$$\begin{cases} P_i^{\kappa} = \rho + c \delta_i - c \delta^{\kappa} + \delta_{trop} - \varepsilon_i \\ L_i^{k} = \rho + c \delta_i - c \delta^{k} + \delta_{trop} + \lambda N_i - \varepsilon_i \end{cases}$$

IGS Precise satellite orbit/clock used

 $\delta_i = IGST - UTC(i)$

Precise Point Positioning : Clock estimation using all satellite observed.

No need for common satellites; Range+Phase data are used, Satellite related errors affect results ; Use precise satellite orbit/clock from e.g. the IGS. $(P^k - Q + Q^k) = Q + Q^k$

$$\begin{cases} P_i^{\kappa} = \rho + c \delta_i - c \delta^{\kappa} + \delta_{trop} - \varepsilon_i \\ L_i^{k} = \rho + c \delta_i - c \delta^{k} + \delta_{trop} + \lambda N_i - \varepsilon_i \end{cases}$$

➤IGS Precise satellite orbit/clock used

 $\delta_i = IGST - UTC(i)$

FTT obtained through clock comparison

$$\Delta T = \delta_i - \delta_j$$

= [IGST - UTC(i)] - [IGST - UTC(j)]
= UTC(j) - UTC(i)

Precise Point Positioning : For real-time or quasi-realtime application, IGS Ultra-Rapid product (IGU) used, and PPP based TFT are affected.

Accuracy of IGS product

Product	Orbits	Clocks
IGS Final	<2.5cm	<75ps
IGU(observed)	<3cm	<150ps
IGU(predicted)	<5cm	<3ns

Precise Point Positioning : For real-time or quasi-realtime application, IGS Ultra-Rapid product (IGU) used, and PPP based TFT are affected

Accuracy of IGS product

Product	Orbits	Clocks
IGS Final	<2.5cm	<75ps
IGU(observed)	<3cm	<150ps
IGU(predicted)	<5cm	<3ns

TFT using different IGS products (baseline:TWFT-IENG)

Product	IGS	IGR	IGU(O)	IGU(P)
RMS(ns)	0.13	0.16	0.23	1.39

New development using current techniques

Multi-GNSS constellation: Not GPS

constellation only, receivers capable of tracking other constellations. More satellites to improve accuracy.

Real-time: When TFT goes into real-time, accuracy/precision will much **decrease** using current techniques.

Combination: Results from different techniques could be combined to generate better results.

>New Application: system time offset between GNSS satellite systems to improve interoperability.

➢GPS observation: Clocks mitigate instrument delay errors.

$$P_{i}^{j} = \rho_{i}^{j} + c \cdot (dt_{i} - dt^{j}) + DCB_{i}^{j} - I_{i}^{j} + T_{i}^{j} + \zeta_{i}^{j}$$
$$L_{i}^{j} = \rho_{i}^{j} + c \cdot (dt_{i} - dt^{j}) + DPB_{i}^{j} + \lambda \cdot N_{i}^{j} - I_{i}^{j} + T_{i}^{j} + \varepsilon_{i}^{j}$$

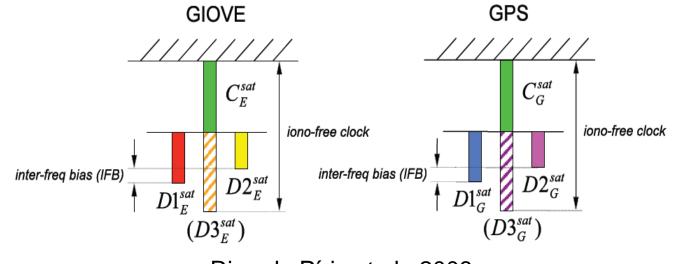
➢GPS observation: Clocks mitigate instrument delay errors.

$$P_{i}^{j} = \rho_{i}^{j} + c \cdot (dt_{i} - dt^{j}) + DCB_{i}^{j} - I_{i}^{j} + T_{i}^{j} + \zeta_{i}^{j}$$

$$L_{i}^{j} = \rho_{i}^{j} + c \cdot (dt_{i} - dt^{j}) + DPB_{i}^{j} + \lambda \cdot N_{i}^{j} - I_{i}^{j} + T_{i}^{j} + \varepsilon_{i}^{j}$$

➢GPS observation: Clocks mitigate instrument delay errors.

$$P_{i}^{j} = \rho_{i}^{j} + c \cdot (dt_{i} - dt^{j}) + DCB_{i}^{j} - I_{i}^{j} + T_{i}^{j} + \zeta_{i}^{j}$$


$$L_{i}^{j} = \rho_{i}^{j} + c \cdot (dt_{i} - dt^{j}) + DPB_{i}^{j} + \lambda \cdot N_{i}^{j} - I_{i}^{j} + T_{i}^{j} + \varepsilon_{i}^{j}$$

$$P_{i}^{j} = \rho_{i}^{j} + c \cdot (dt_{i} - dt^{j}) - I_{i}^{j} + T_{i}^{j} + \zeta_{i}^{j}$$

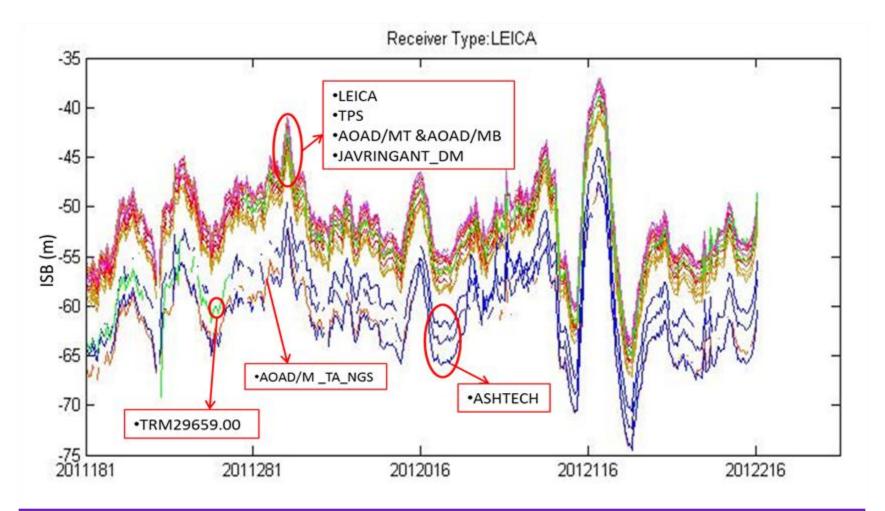
$$L_{i}^{j} = \rho_{i}^{j} + c \cdot (dt_{i} - dt^{j}) + \lambda \cdot \overline{N}_{i}^{j} - I_{i}^{j} + T_{i}^{j} + \varepsilon_{i}^{j}$$

Multi-GNSS observation: Same clocks could be set

up, relative instrument delay (inter-system bias) removed or estimated.

Ricardo Píriz et al., 2008

➢ Multi-GNSS observation: Same clocks could be set up, relative instrument delay (includes GNSS Time Offset and receiver inter-system bias, inter-frequency bias) removed or estimated.

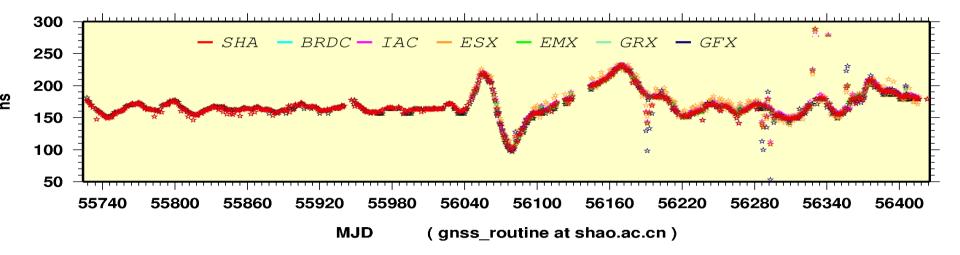

$$L_{i}^{kG} = \rho_{i}^{kG} + c \cdot (\overline{dt}_{i} - \overline{dt}^{k})^{G} - I_{i}^{kG} + T_{i}^{kG} + \lambda^{G} \cdot \overline{N}_{i}^{kG} + \zeta_{i}^{k}$$
$$L_{i}^{jR} = \rho_{i}^{jR} + c \cdot (\overline{dt}_{i} - \overline{dt}^{j})^{G} + ISB_{i}^{jk} + \lambda^{R} \cdot \overline{N}_{i}^{jR} - I_{i}^{jR} + T_{i}^{jR} + \varepsilon_{i}^{jR}$$

> Multi-GNSS observation: Same clocks could be set up, relative instrument delay (includes GNSS Time Offset and receiver inter-system bias, inter-frequency bias) removed or estimated.

$$L_{i}^{kG} = \rho_{i}^{kG} + c \cdot (\overline{dt}_{i} - \overline{dt}^{k})^{G} - I_{i}^{kG} + T_{i}^{kG} + \lambda^{G} \cdot \overline{N}_{i}^{kG} + \zeta_{i}^{k}$$
$$L_{i}^{jR} = \rho_{i}^{jR} + c \cdot (\overline{dt}_{i} - \overline{dt}^{j})^{G} + ISB_{i}^{jk} + \lambda^{R} \cdot \overline{N}_{i}^{jR} - I_{i}^{jR} + T_{i}^{jR} + \varepsilon_{i}^{jR}$$

$$ISB_{i}^{jk} = \mathbf{c} \cdot (\overline{dt}_{i} - \overline{dt}^{j})^{R} - \mathbf{c} \cdot (\overline{dt}_{i} - \overline{dt}^{k})^{G}$$
$$= TO + \Delta DCB_{i}^{j,k}$$

Relative instrument delay: different for each receiver/antenna pair. Values are provided by SHAO (www.shao.ac.cn/shao_gnss_ac)



Multi-GNSS analysis model: GNSS Time Offset

➤GPS/GLONASS Time Offset: provided by SHAO

(www.shao.ac.cn/shao_gnss_ac)

SHA Results compared to IGS ACs'

GNSS network solution for TFT

Network solution: Satellite clock estimated together with station clock.

$$\begin{cases} P_i^k = \rho + c\delta_i - c\delta^k + \delta_{trop} - \varepsilon_i \\ L_i^k = \rho + c\delta_i - c\delta^k + \delta_{trop} + \lambda N_i - \varepsilon_i \end{cases}$$

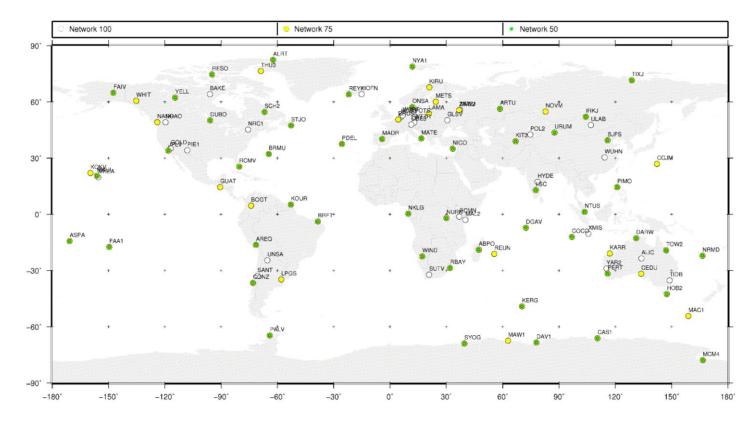
GNSS network solution for TFT

Network solution: Satellite clock estimated together with station clock.

$$\begin{cases} P_i^k = \rho + c\delta_i - c\delta^k + \delta_{trop} - \varepsilon_i \\ L_i^k = \rho + c\delta_i - c\delta^k + \delta_{trop} + \lambda N_i - \varepsilon_i \end{cases}$$

GNSS network solution for TFT

Network solution: Satellite clock estimated together with station clock.


$$\begin{cases} P_i^k = \rho + c\delta_i - c\delta^k + \delta_{trop} - \varepsilon_i \\ L_i^k = \rho + c\delta_i - c\delta^k + \delta_{trop} + \lambda N_i - \varepsilon_i \end{cases}$$

One reference clock selected: Remove rankdeficiency and relative station/satellite clocks derived.

Satellite orbits fixed to IGS predicted.

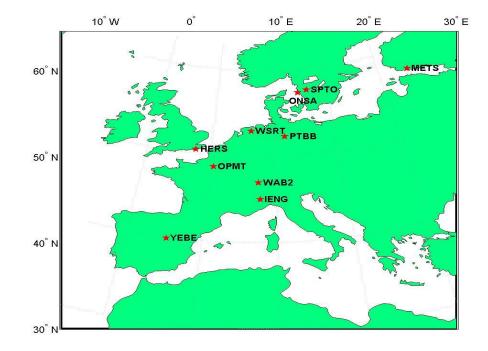
GNSS network solution: Global solution

➢Global Network solution: with 50,75,100 real-time GNSS stations


GNSS network solution: Global solution

➢Global Network solution: with 50,75,100 real-time GNSS stations, Satellite clock accuracy in ns.

Number. of	Epoch-Diff.		Mixed	Mixed-Diff.		Zero-Diff.	
Stations	BIAS	STD	BIAS	STD	BIAS	STD	
50	3.94	0.09	0.26	0.10	0.17	0.11	
75	3.94	0.09	0.29	0.10	0.17	0.10	
100	3.94	0.08	0.28	0.09	0.16	0.09	


GNSS network solution: Global solution

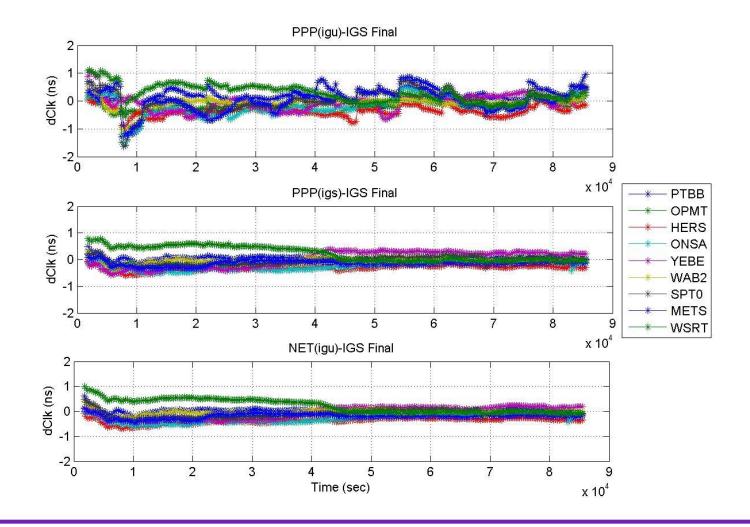
➢Global Network solution: with 50,75,100 real-time

Regional Experiment setup

- DATA: 10 regional IGS stations in Europe are selected, they all contributed to BIPM TAI computations. DOY 295 to 301 in the year of 2012.
- > Input: IGU and IGS final products are used for comparison.
- **Results:** *PPP and Network; Real-time and Post-processing*

Regional Experiment setup

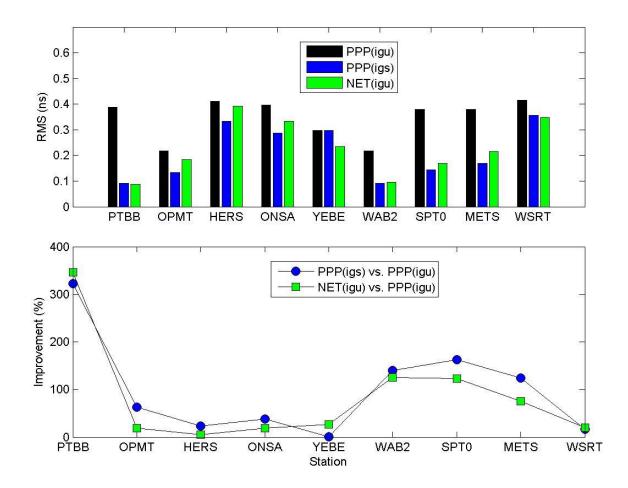
Software LTW_BS: developed at SHAO


(www.shao.ac.cn/shao_gnss_ac)

Model	
Ionosphere-free combination	
Saastmoinen+GMF	
PPP: IGS/IGU product	
Network solution: estimated	
estimated	
IGS absolute phase center model	
IERS 2010 correction model	
IGS recommended model	

Time transfer results

> Time transfer result for different approaches:


epoch-wise clock compared with IGS final clocks.

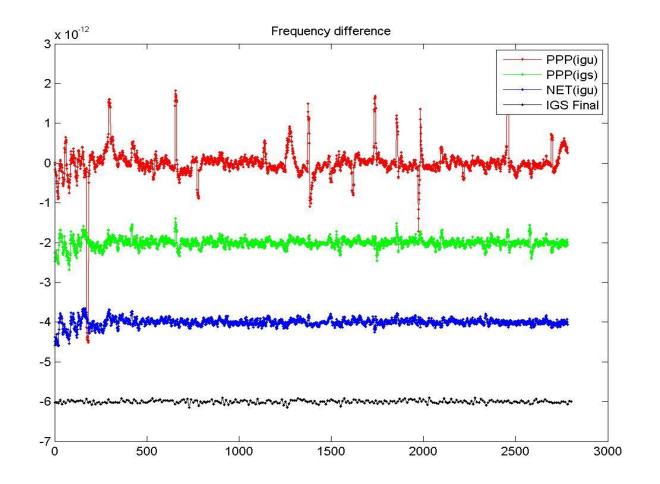
Time transfer results

> Time transfer result for different approaches:

accuracy and improvement against real-time PPP.

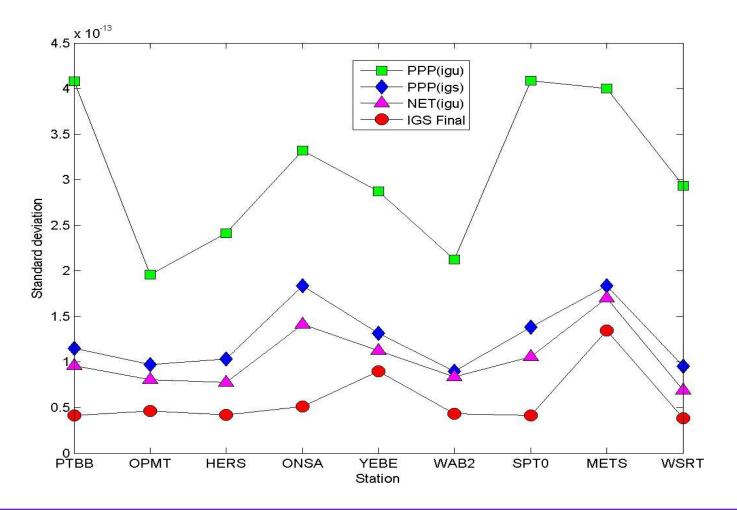
Time transfer results

- Time transfer result for different approaches: accuracy and improvement against real-time PPP.
- Mean improvement: 99% for post-processing PPP and 84% for real-time network solution.


Station	Improvemen	Improvement over PPP(igu)		
Station	PPP (igs)	Network		
PTBB	322.2%	345.9%		
OPMT	62.7%	19.0%		
HERS	23.2%	4.8%		
ONSA	37.5%	18.6%		
YEBE	0.5%	27.6%		
WAB2	139.5%	125.7%		
SPT0	163.0%	123.1%		
METS	123.8%	75.8%		
WSRT	16.9%	19.5%		

>Frequency transfer result:

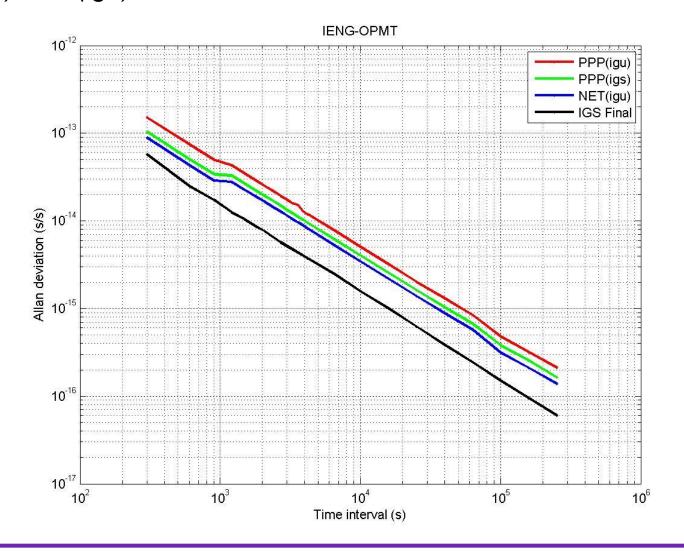
 $y(t) = [\delta_{ck}(t) - \delta_{ck}(t - T)]/T$


Frequency transfer result: Frequency difference for

baseline IENG-PTBB (T=300s), the PPP (igs), Network solution, IGS Final are moved by 2e-12, 4e-12, 6e-12 respectively

Frequency transfer result: Standard deviation of

baseline frequency difference (reference station: IENG,T=300s), for PPP (igs), PPP(igu), Network solution, and IGS Final.



Frequency transfer result: Standard deviation of baseline frequency difference (reference station: IENG,T=300s, unit 1.0e-13), for PPP (igs), Net (igu), and IGS Final.

Station	PPP(igu)	PPP(igs)	Network	IGS Final
PTBB	4.081	1.149	0.962	0.415
OPMT	1.958	0.974	0.804	0.465
HERS	2.411	1.034	0.776	0.422
ONSA	3.320	1.834	1.411	0.514
YEBE	2.875	1.315	1.123	0.899
WAB2	2.124	0.898	0.838	0.429
SPT0	4.086	1.383	1.055	0.414
METS	3.999	1.837	1.698	1.349
WSRT	2.934	0.953	0.689	0.383
Mean	3.087	1.264	1.039	0.587

Frequency stability results

➢ Frequency stability result: Baseline: IENG-OPMT for PPP (igs), Net (igu), and IGS Final

Conclusion

- Multi-GNSS PPP provides an enhanced TFT solution with more satellites included.
- GNSS network solution for TFT eliminate the effect of satellite clocks error and is feasible for real-time time and frequency transfer. Allows for global and regional TFT
- Experiments show that the strategy is effective for real-time TFT and it can achieve the same precision as post-processed PPP.
- It could be implemented for global GNSS network of timing laboratories.

Acknowledgment:

National High Technology Research and Development Program (No. 2013AA122402,2014AA123102)

National Natural Science Foundation (No. 11273046)

http://www.shao.ac.cn/shao_gnss_ac Thank you!