COSPAR ASSEMBLY PASSADENA 2018

An approach for parameter decorrelation in precise dynamic orbit determination

Junping CHEN, Xiuqiang GONG, Qian CHEN, Bin WANG www.shao.ac.cn/shao_gnss_ac junping@shao.ac.cn

Shanghai Astronomical Observatory

Contents

Precise GNSS Products

□ Final satellite orbits: a combination of orbits from

different analysis centers

- □ Accuracy [1]:
- ✓ 2.5 cm for GPS
- ✓ 3 cm for GLONASS

1: http://www.igs.org/products

Precise GNSS Products

□ Final satellite clocks: a combination of orbits from

different analysis centers

- **Accuracy** [1]:
- ✓ 75 ps (2.25 cm) for GPS

1: http://www.igs.org/products

Precise GNSS Products

Orbit combination strategy[2]:

✓ L1-norm with different weighting

Clock combination strategy[3]:

✓ Radial orbit difference corrected

$$\ddot{x}_{i}(t) = \frac{\partial}{\partial x} V(x) |_{x_{i}},$$

and that the weighted average orbit is:

$$x_0(t) = \sum_{i=1}^n k_i x_i(t),$$

where k_i denotes the weight coefficients of the average and t is time. Differentiating $x_0(t)$ twice with respect to time, while assuming that the coefficients k_i are constant during the considered period, gives:

$$\ddot{x}_0(t) = \sum_{i=1}^n k_i \ddot{x}_i(t) = \sum_{i=1}^n k_i \frac{\partial}{\partial x} V(x) \Big|_{x_i}.$$

Bulletin Géodésique (1995) 69:200-222

Combining the orbits of the IGS Analysis Centers

Gerhard Beutler¹, Jan Kouba², and Tim Springer³

¹ Astronomical Institute, University of Bern, Bern, Switzerland ² Geodetic Survey of Canada, SMRRS, NRCan, Ottawa, Canada ³ Delft University of Technology, Delft, The Netherlands

Received 29 April 1994; Accepted 17 October 1994

Abstract. Currently seven Analysis Centers of the International GPS Service for Geodynamics (IGS) are producing daily precise orbits and the corresponding Earth Orientation Parameters (GOP). These individual products are available at several IGS bata Centers (e.g. CDDIS, IGN, SIO, etc.). During 1993 no official IGS orbits were produced, but the routine orbit comparisons by IGS indicated that, after small orientation and scale alignments, the critic consistency was approaching the 20 cm level (a coordinate RMS), and that some orbit combination should be possible and feasible. An IGS combined orbit could provide a precise and efficient extension of the IERS Terrestrial Reference Frame (ITRF). Another advantage of such a combined orbit would be reliability and precision.

different and independent techniques, into a single EOP series and the corresponding station coordinate sets in the IERS Terrestrial Reference Frame (TTRF). During 1993 no Official product was issued by the IGS. The IGS could, however, provide a logical and efficient extension of the ITRF through the definition of IGS orbits plus the timely approximation and resolution enhancements of the IERS EOP series (e.g. the IERS Rapid Service). It is clear that orbits, station positions and EOP must be made as compatible as possible. This is the main reason why there is such close cooperation with IERS both at the operational and management levels (observation and processing standards, governing boards, terms of references, etc.).

Orbit combination by itself and as such would not be

$$\frac{\partial}{\partial x} V(x) \Big|_{x_i} = \frac{\partial}{\partial x} V(x) \Big|_{x_0} + (x_i - x_0) \frac{\partial^2}{\partial x^2} (V(x)) \Big|_{x_0} + \dots$$

and

$$\sum_{i=1}^{n} k_i = 1.$$

2: Beutler, G.et al. (1995), *Bulletin Geodesique*, *69*(4), 200--222. 3:T.A. Springer et al. presentation at the IGS Analysis Center Workshop, 1998

Contents

Orbit/clock Correlations

- □ Satellite clock characteristics[4]
- ✓ Linear and quadratic trend in general
- ✓ Remaining periodical residuals coming from satellite orbit errors

4:Kenneth L. Senior et al. GPS Solut 2008, (12):211–225

Orbit/clock differences

- Satellite orbits and clock differences among different ACs [5]
- ✓ 1 reference satellite
- ✓ 2 steps difference (between satellites and ACs)
- Orbit differences(blue) vs. Clock
 differences(red):Negative linear
 correlation

Correlation issue limits accuracy!!

5:Junping Chen et al. GEOMATICS AND INFORMATION SCIENCE OF WUHAN UNIVERS),2017,42(11):1649-1657

Parameter Correlation problems

Scaled Sensitivity Matrix approach[6,7] quantitative assessing the influences of unresolved parameters

	SOPAC, mm	JPL
Mean amplitude without	5.47 (5.49) mm	_
Mean amplitude after pole tide correction	4.19 (4.19) mm	3.49 (3.44) mm
Mean amplitude after mass loading correction	3.19 (3.08) mm	2.89 (2.74) mm
Ratio of site numbers ^b	90/128 (90/123)	81/121 (79/116)
Power explained (pole tide and mass loading together) ^c	66% (67%)	-
Power explained (mass loading only) ^c	42% (46%)	31% (37%)

rable 4. mean minute vertical miniplicate and rower Explained	Table 4.	Mean Annual	Vertical Am	plitude and	Power Ex	plained ^a
---	----------	-------------	-------------	-------------	----------	----------------------

$$y = A_1 \cdot X_1 + A_2 \cdot X_2 \tag{12}$$

where X_2 is defined as the ISB parameter and could be removed from (12), X_1 includes the other parameters; A_1 , A_2 are design matrices for corresponding parameters. The corresponding normal equation is,

$$\begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix} \cdot \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
(13)

6: Dong, D. et al., 2002. J. Geophys. Res.107 (B4), 2075.
7: Junping Chen et al. (2015): Advances in Space Research, 55 (2015) 125–134

Contents

Satellite clock modelling

Modelling satellite clock as quadratic terms for satellitedepended periods

D Modelling period from minutes to hours!

Satellite clock modelling in POD

Using precise TWTT Satellite clocks as constrains [8]

$$\mathbf{L}_{i}^{j} = \rho(\mathbf{r}_{i}, \mathbf{r}^{j}) + \mathbf{c} \cdot dt_{i} - c \cdot (\mathbf{a}_{0} + \mathbf{a}_{j} \cdot \Delta \tau + b_{j} \cdot \Delta \tau^{2}) + N_{i}^{j} + T_{i}^{j} + \varepsilon_{i}^{j}$$

$$\frac{\partial \mathbf{L}}{\partial par} = \left(\frac{\partial \mathbf{L}}{\partial a_0}, \frac{\partial \mathbf{L}}{\partial a_j}, \frac{\partial \mathbf{L}}{\partial b_j}\right)^T = \left(-c, -c \cdot \Delta \tau, -c \cdot \Delta \tau^2\right)^T$$

□ Advantages:

- ✓ None effects from orbit errors
- ✓ Better modelling and more stable solutions

8:Qian Chen et al. China Satellite Navigation Conference (CSNC) 2018 Proceedings, Lecture Notes in Electrical Engineering 498,2018,399-407 Data of 7 tracking stations in Mainland China are used. Three periods where BDS GEO satellites experienced maneuver in October 2017 are selected

Satellite maneuver information

SatID	Start time	End time	Available time
C01	2017-10-31	2017-10-31	4h after
	8:55	10:15	maneuver
C02	2017-10-19	2017-10-19	4h after
	8:59	11:15	maneuver
C03	2017-10-23	2017-10-23	4h after
	8:46	11:15	maneuver

Results

- □ Satellite clock modelling accuracy secured
- **Orbit accuracy with new and traditional approach**
- ✓ Much more stable and higher accuracy for the NEW

SatID	Accuracy	1 h Prediction		
C01	0.11	0.81		
C02	0.09	0.80		
C03	0.06	0.78		
C04	0.11	1.14		
C05	0.07	0.93		
C06	0.24	1.23		
C07	0.23	1.30		
C08	0.17	1.33		
C09	0.21	1.41		
C10	0.26	1.44		

Satellite clock modelling and prediction

Orbit accuracy with old and new approach

UERE for orbit determination

Results

			OBSERV. UERE			1 h Prediction		
SatID	DAIA	Improvement				Improvement		
	SPAN	OLD	NEW	(%)	OLD	NEW	(%)	
C01	3h	0.856	0.378	55.848	3.982	0.717	81.996	
	4h	0.476	0.354	25.672	1.997	0.341	82.919	
	5h	0.341	0.326	4.368	0.367	0.435	-18.484	
	6h	0.331	0.352	-6.377	0.400	0.486	-21.600	
	7h	0.402	0.323	19.497	0.697	0.376	46.114	
	8h	0.336	0.320	4.911	0.744	0.819	-10.052	
C02	3h	0.505	0.423	16.261	2.308	0.338	85.369	
	4h	0.436	0.394	9.529	0.889	0.632	28.941	
	5h	0.502	0.483	3.845	1.733	1.130	34.785	
	6h	0.600	0.628	-4.600	1.251	1.163	7.049	
	7h	0.750	0.679	9.433	1.415	0.564	60.158	
	8h	0.647	0.650	-0.526	0.502	0.501	0.179	
C03	3h	0.801	0.673	15.980	1.929	0.568	70.561	
	4h	0.670	0.680	-1.462	0.503	0.502	0.219	
	5h	0.683	0.643	5.801	0.842	0.546	35.139	
	6h	0.645	0.672	-4.169	0.506	0.476	5.873	
	7h	0.638	0.638	-0.063	0.494	0.513	-3.742	
	8h	0.611	0.614	-0.541	0.461	0.463	-0.456	
mean		0.568	0.513	8.523	1.168	0.587	26.943	

Results

		OBSERV. UERE			1 h Prediction		
SatID	DATA SPAN	Improvement					Improvement
		OLD	NEW	(%)	OLD	NEW	(%)
C01	3h	0.856	0.378	55.848	3.982	0.717	81.996
	4h	0.476	0.354	25.672	1.997	0.341	82.919
	5h	0.341	0.326	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.367	0.435	-18.484
CUI	бh					0.486	-21.600
	7h					376	46.114
	8h	Satell	ite <mark>clock</mark> n	nodelling (contrib	utes 🤉	-10.052
C02	21	the m	nost for th	ne first fer	w hour	s of	85.369
					i iiui		<mark>-8.941</mark>
		satelli	te maneu	ver, where	e very	few	34.785
	6 ¹	data a	are availal	ble. It imp	roves o	rbit	7.049
		deteri	mination	accuracy	hv n	IORA	60.158
		ucicii		accuracy	, by h		0.179
	3h	than	15% and	over 70%	o on o	rbit	70.561
	4h	predi	ction accu	racv		J2	0.219
C 02	5h	I		J		.546	35.139
C03	бh					0.476	5.873
	7h	0.638	0.638		0.494	0.513	-3.742
	8h	0.611	0.614	-0.541	0.461	0.463	-0.456
n	nean	0.568	0.513	8.523	1.168	0.587	26.943

□IGS orbit and clock accuracy is limited by parameter correlations

New strategy with satellite clock modelling is proposed and validated for the precise orbit determination process, especially for satellite in maneuver period

□With the new approach, orbit determination accuracy improved by more than 15% and orbit prediction accuracy improved by over 70%

Thank you !

www.shao.ac.cn/shao_gnss_ac junping@shao.ac.cn

Shanghai Astronomical Ob