Recent GNSS Results of the CMONOC Network and Application in Natural Hazards Monitoring

Junping Chen, Yize Zhang, Jungang Wang, Weijie Tan, Sainan Yang, Bin Wu

Shanghai Astronomical Observatory (SHAO) junping@shao.ac.cn http://www.shao.ac.cn/shao_gnss_ac

Content

➢Background

- ➢GNSS Velocity field
- GNSS coseismic monitoring
- Further results and analysis
- ≻Summary

CMONOC (Crustal Movement Observation Network of China)

http://neiscn.org/

CMONOC (Crustal Movement Observation Network of China)

http://neiscn.org/

CMONOC (Crustal Movement Observation Network of China)

http://neiscn.org/

CMONOC (Crustal Movement Observation Network of China)

CMONOC (Crustal Movement Observation Network of China)

➢Routine GNSS data analysis at SHAO

SHA strategy in huge network solution (Chen et al. CSNC2013)

➢Routine GNSS data analysis at SHAO

SHA strategy in huge network solution (Chen et al. CSNC2013)

GNSS data analysis at SHAO

GNSS routine results

Coord. Time series

CMONOC GNSS Velocity field

Daily solutions combined using QOCA

247 stations with time span > 1 year ITRF 2008 => EURA plate

CMONOC GNSS Velocity field

Daily solutions combined using QOCA

247 stations with time span > 1 year ITRF 2008 => EURA plate

>instantaneous site velocity solution

$$\lambda_{1} \dot{\varphi}_{m}^{j}(t) = \frac{\boldsymbol{r}^{j}(t - \tau_{m}^{j}) - \boldsymbol{r}_{m}(t)}{\rho_{m}^{j}(t)} \cdot \dot{\boldsymbol{r}}_{m}^{j} + c \cdot \delta \dot{t}_{m}$$
$$- c \cdot \delta \dot{t}^{j}(t - \tau_{m}^{j}) + \dot{\boldsymbol{\varepsilon}}_{m}^{j},$$
$$\dot{\boldsymbol{r}}_{m}^{j} = \dot{\boldsymbol{r}}^{j}(t - \tau_{m}^{j}) - \dot{\boldsymbol{r}}_{m}(t),$$

Zhang and Guo 2013

$$\dot{\varphi}_T = rac{\varphi_{T+\Delta t} - \varphi_{T-\Delta t}}{2\Delta t}$$

>instantaneous site velocity solution

>instantaneous site velocity solution

Real-time GNSS coseismic monitoring system

- ① retrieval of real-time high rate streams;
- ② calculation of the Doppler observations;
- ③ estimation of station instantaneous velocity;
- ④ check for coseismic deformation.

Further results and analysis

Site deformation analysis

Further results and analysis

Site deformation analysis

Further results and analysis

Site deformation analysis

GNSS data analysis at SHAO

GNSS routine results

Troposphere Time series

SHAtrop: data

➤4 years' GNSS ZTD estimates (of 223 continuous GNSS sites) at Shanghai Astronomical Observatory;

Model determination: 152; model validation: 152+71;

> Spanning: 2012-2014

SHAtrop: ZTD model over China continent

ZTD modeled with function of station height over Geoid (constant term) and periodical terms

$$ZTD(doy) = ZTD_m + A_1 \cos\left(\frac{2\pi}{365.25}(doy - d_1)\right) + A_2 \cos\left(\frac{4\pi}{365.25}(doy - d_2)\right)$$

SHAtrop: ZTD constant term

Constant term of all sitesConstant term v.s. site latitude

SHAtrop: ZTD annual term

≻Annual amplitude

SHAtrop: ZTD annual term

≻Annual phase

SHAtrop: ZTD Grid model over China continent

Parameters of 152 sites

- Latitude-Longitude: 2°× 2.5°grid
- ► [70°E~135°E, 18°N~54°N]

SHAtrop: ZTD calculation for user

Select four grid points around the site

> Bilinear interpolation (ZTD_m , A_1 , d_1 , A_2 , d_2)

Reduction to the site height

ZTD at each grid point is modeled by:

$$ZTD(doy,h) = \left(ZTD_m + A_1 \cos\left(\frac{2\pi}{365.25}(doy - d_1)\right) + A_2 \cos\left(\frac{4\pi}{365.25}(doy - d_2)\right)\right) \times e^{\beta h}$$

SHAtrop: model validation - bias

Compare to precise ZTD estimates of SHAO

SHAtrop: model validation

Compare to precise ZTD estimates of SHAO

Internal accuracy using sites included in model determination

	EGNOS	UNB3m	GPT2	SHAtrop
RMS(cm)	5.64(1.77, 8.22)	5.20(1.68,7.81)	4.70(1.55,9.35)	3.45(1.34,6.56)
BIAS(cm)	- 0.58(- 5.87,3.84)	- 0.32(- 5.07,3.23)	1.67(- 3.89,7.53)	- 0.02(- 2.27,1.70)

Improved by 39%,34%,26% over EGNOS,UNB3,GPT2

SHAtrop: model validation

Compare to precise ZTD estimates of SHAO

External accuracy using sites not included in model determination

EGNOS UNB3m GPT2 SHAtrop	UNB3m GPT2 SHAtrop
	1
RMS(cm)5.45(1.75,7.89)5.03(1.75,7.89)4.53(1.41,10.11)3.48(1.30,6.11)	5.03(1.75,7.89) 4.53(1.41,10.11) 3.48(1.30,6.41)
BIAS(cm) - 0.32(-4.18,4.78) - 0.08(-3.90,3.59) 1.51(-3.68,8.33) 0.19(-1.31,2)	- 0.08(- 3.90,3.59) 1.51(- 3.68,8.33) 0.19(- 1.31,2.51)

Improved by 36%,31%,23% over EGNOS,UNB3,GPT2

Summary

➢ Routine GNSS CMONOC analysis at SHAO

Troposphere modeling, Velocity field & earthquake monitoring results

➤site deformation analysis on going

NEXT: ➤CMONOC data contributing to BDS data analysis ➤Regional RF combining with SLR & VLBI Acknowledgment: 863 projects (No. 2013AA122402,2014AA123102) NSFC project (No. 11273046) CMONOC Project

http://www.shao.ac.cn/shao_gnss_ac Thank you!