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Real-time High-resolution Global PWV Retrieval
based on Weather Forecast Foundation Models and
cross-validation with Radiosonde, GNSS, and ERA5

Junsheng Ding , Wu Chen , Junping Chen , Member, IEEE, Jungang Wang , Yize Zhang , Lei Bai

Abstract—High-quality precipitable water vapor (PWV) plays
a vital role in climate change and weather prediction studies.
This research introduces a novel scheme for retrieving high-
resolution surface-domain PWV with real-time and forecasting
capabilities with global coverage, utilizing weather forecast foun-
dation models represented by Huawei Cloud Pangu-Weather,
Google DeepMind GraphCast, and Shanghai AI Lab FengWu.
The accuracy of the new scheme is cross-validated against PWVs
from radiosondes, Global Navigation Satellite Systems (GNSSs),
and the fifth generation ECMWF reanalysis (ERA5). Results
show the new scheme achieves 3.01 mm global root mean square
error (RMSE) in real-time, and the value reduce to 2.25 mm when
focusing only on land areas, which is more accurate than most
existing methods that rely on post-processed surface-domain data.
The poor accuracy in low-latitude and mid-latitude ocean regions
limits the accuracy of the new scheme and future integration of
GNSS PWV data from ocean sources is expected to improve
it. Overall, the proposed scheme demonstrates very satisfactory
global PWV accuracy and has the potential for further improve-
ment with the development of artificial intelligence.

Index Terms—Precipitable water vapor, Surface-domain,
Weather forecast foundation models, Real-time, High-resolution.

I. INTRODUCTION

THE total atmospheric water vapor content is typically
quantified as precipitable water vapor (PWV). Accurate

PWV measurement and forecasting are crucial for regulating
global temperature and weather patterns [1]–[3]. PWV exhibits
high and rapid variability in time and space, this poses a
significant challenge for acquiring high resolution and accurate
PWV [4], [5].
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PWV acquisition techniques are broadly classified into two
categories: point-domain measurements and surface-domain
measurements. Point-domain measurements are predominantly
ground-based, and include radiosonde (RS), Global Navigation
Satellite System (GNSS), and microwave radiometer meth-
ods [6]–[8]. Radiosonde, with over a century of records,
provides direct atmospheric profile measurements and serves
as a benchmark for other techniques [9], [10]. GNSS, an
emerging technology, is also recognized for its high-precision,
all-weather observations with high temporal resolution, mak-
ing it a reference for accuracy assessment [11]–[13]. These
techniques yield PWV accuracies of 1–3 mm [3], [14]. Ding
et al [15] used foundation models to improve the GNSS PWV
accuracy to the sub-millimeter level, yet they are limited to
sparse locations that with GNSS stations that are unevenly
distributed, with significant gaps in oceanic, desert, and un-
derdeveloped areas.

The second category of PWV acquisition techniques is
predominantly space-based and obtained through sensors on
artificial satellites or aerial platforms [16], [17]. These in-
clude aircraft-based detection and meteorological and remote
sensing satellite observations [18], [19]. These methods offer
weather-independent, high-resolution regional observations.
However, they typically exhibit lower accuracy, ranging from
3–8 mm [3], [20], [21]. Furthermore, the spatial coverage
of its observation area of single measurement is typically
limited, and the temporal resolution is constrained by the
revisit frequency of the satellite. Real-time data acquisition
is particularly challenging, making any forecasting efforts
even more complex. Special attention should be given to the
fact that many existing studies rely on less than a year of
experimental data, often using only a few dozen days or one
to two months. The accuracy reported in these studies may be
overrated or underrated and unrepresentative, as the precision
of PWV measurements varies seasonally, leading to different
results. In addition, surface-domain PWV estimates can be
derived in real-time through empirical models. For instance,
the HGPT2 model achieves accuracies of 5.0 mm, 3.5 mm,
and 5.7 mm on global, inland, and oceanic scales respectively
[22]. These precision levels remain consistent with the uncer-
tainty range of surface-domain PWV measurements reported
in previous studies.

The emergence of weather forecast foundation models such
as Pangu-Weather and GraphCast in recent years has pro-
vided new ideas for global high-resolution PWV forecasts.
Using this type of model can generate more than ten days
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TABLE I
PROPERTIES OF WEATHER FORECAST MODELS.

Model (release) Affiliation Model Type
(AI technique) Pressure levels Step length (hours) Inference time

Pangu-Weather
(2023-1-5)
(Bi et al., 2023)

Huawei Cloud Foundation model
(3DEST) 13 1, 3, 6, 24 1.4 s on a Tesla-V100 GPU

(112 TFLOPS, 16/32 GB)

GraphCast
(2022-12-24)
(Lam et al., 2023)

Google DeepMind Foundation model
(GNN) 37 6 60 s on a Google TPUv4 GPU

(275 TFLOPS, 32 GB)

FengWu
(2023-4-6)
(Chen et al., 2023)

Shanghai AI Lab Foundation model
(Transformer) 37 6 0.6 s on a Tesla-A100 GPU

(312 TFLOPS, 40/80 GB)

forecast of 0.25°×0.25° resolution of the global atmospheric
state in any user’s local device within a few seconds. That
means, the global high-resolution real-time and even forecast
surface-domain PWV can be retrieved instantaneously. In this
research, we computed the 15-day global forecast from three
foundation models, represented by Pangu-Weather, GraphCast,
and FengWu in 2022, and then obtained the global forecast
in terms of RS PWV, GNSS PWV and ERA5 PWV as
references to evaluate the accuracy of the new scheme. Section
II describes the data sources and retrieval methods for the
different sources of PWV used in this study, and Section III
evaluates the accuracy of the new scheme on the station and
global grid points, respectively. The discussion is given in
Section IV, and a summary is given in Section V.

II. MATERIALS AND METHODS

A. Foundation Models

Relying on Ding et al. [23], which identified that sparse
pressure levels result in systematic errors in zenithal tropo-
spheric delays (a NWM with only 13 pressure levels will
result in a systematic error of 1 mm for PWV), we have
chosen the GraphCast and FengWu foundation models, which
support 37 pressure levels. Additionally, to demonstrate the
effect of sparse pressure levels on PWV retrieval bias, the
Pangu-Weather model, which supports only 13 pressure levels,
is included in our experiments. Among the three models,
GraphCast is based on graph neural network (GNN) technol-
ogy, while Pangu-Weather is based on a 3D Earth-Specific
Transformer (3DEST) and FengWu is based on the Trans-
former architecture. Table I shows the properties of these three
weather forecast models used in this research. Due to the
6-hour step length of GraphCast and FengWu, we used 6-
hour Pangu-Weather to make a fair comparison. GNSS and
ERA5 PWV were resampled to 6 h resolution, and when
radiosonde was used as reference, all data were resampled to
12 h resolution because radiosonde data were recorded only
twice a day, i.e., for 12 h.

B. Radiosonde Profile

The radiosonde profile data used in this research are ob-
tained from the Integrated Global Radiosonde Archive Version
2 [24]. Note that we retrieved the PWV from the radiosonde
pressure level records, rather than using the IGRA PWV prod-
ucts directly, for the IGRA data still suffered from jumps due

to changes in instrumentation, etc., and the unhomogenized
radiosonde data even affected most of the reanalysis data
[25], [26]. We integrated data screening strategies from [5],
[15], and [27], rigorously filtering the dataset to exclude non-
compliant stations. It should be noted that a large percentage of
the radiosonde raw data records have many missing data, such
as incomplete time series records and pressure level records,
which are mostly caused by weather and other reasons. Our
criteria are met by fewer than 100 radiosonde stations globally
after filtering, most of which are in the U.S. and a few scattered
throughout Europe and Japan. The only data we have kept for
this experiment comes from the U.S. stations (see Fig. 3).

C. GNSS Products

The GNSS products are obtained from the Nevada Geodetic
Laboratory (NGL) [28]. Numerous studies have demonstrated
that NGL tropospheric products possess high accuracy and
serve as valuable data sources for earth science [3], [18], [27].
The GNSS data screening strategy is the same as that of [30].
Additionally, due to the problem of PWV in NGL products
absorbing VMF model errors as mentioned in [27], the GNSS
PWVs in this research are recalculated using NGL ZTD and
ERA5 (see Fig. 1).

D. ERA5 Data

In this study, ERA5 pressure level data [31] and 37 layers
of ERA5 single level data [32] are employed as initial inputs
for the foundation models. ERA5 is delayed by 5 days, but the
inference is near-instantaneous. The real-time in this research
refers to forecasts of 5-day. It should be noted that all the
data used in this research are from 2022 and are not involved
in the models’ training, testing, or validation processes. This
ensures a fair and accurate assessment of model performance
and avoids the risks of overfitting and data leakage.

E. PWV Retrieving and Comparison Method

The RS PWV is calculated as follows [33], [34]:

e = 6.112 exp

(
17.6Td

Td + 243.15

)
(1)

PWV =
1

g

∫ p2

p1

0.622e

p− e
dp (2)

where Td is dew point temperature (°C), e is water vapor
pressure (hPa), p is the atmospheric pressure (hPa), g is the
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Fig. 1. Data processing sequence for PWV retrieving and comparison. RS = Radiosonde; GNSS = Global Navigation Satellite System; ECMWF = European
Centre for Medium-Range Weather Forecasts; ERA5 = ECMWF Reanalysis v5; ZTD = zenith tropospheric delay; ZHD = zenith hydrostatic delay; Tm =
weighted mean temperature; FM = foundation model; PG = Pangu-Weather; GC = GraphCast; FW = FengWu; PWV = precipitable water vapor.

acceleration of gravity (m/s2), p1 and p2 are the atmospheric
pressure at the lower and upper layers (hPa), respectively.
Accurate zenith tropospheric delays (ZTD) can be calculated
from GNSS observations, the GNSS derived PWV is calcu-
lated as follows:

ZWD = ZTD − ZHD (3)

PWV =
106

Rw · [k2 − εk1 + k3/Tm]
· ZWD (4)

Where ZHD is zenith hydrostatic delay, and ε = Mw/Md,
Rw = R/Mw with the universal gas constant R, Mw and
Md are molar weight of water vapor and dry constituents. k1,
k2 and k3 are the ”Rueger-best average” values, which are
77.6890 K/hPa, 71.2952 K/hPa and 375463 K2/hPa respec-
tively [35], [36]. Tm is weighted average temperature. They
can be obtained from the vertical profile of the atmospheric
state through numerical integration (the method used in this
research), they can also be calculated from the surface me-
teorological data and empirical models, but this results in a
loss of accuracy [37]. Other than this, all other variables in
the equation are constant coefficients. The aforementioned data
processing sequences for PWV retrieving and comparisons are
summarized in Fig. 1, and the different types of PWV used in
this study are shown in Date Level 2 in Fig. 1.

III. RESULTS

A. Accuracy Assessment at Stations Level - Single Site

Figure 2 shows the comparison of PWVs from different
sources at the closest pair of RS-GNSS stations that satisfy
the data screening strategy, with a horizontal distance of 3.83
km and height difference of 0.13 m. Figure 2a shows the time
series of PWVs from these different sources, where RS PWV,
GNSS PWV, and ERA5 PWV (line) are the post-processing
results, and PG PWV, GC PWV, and FW PWV (dots) are the
forecast results from the foundation models. The fluctuation
of the ERA5 PWV is relatively small, which seems to be the
result of the combination or smoothing of the RS PWV and
GNSS PWV, which is consistent with the fact that the ERA5
data is the product of the assimilation of multiple observations.
Among the forecast PWVs, the FW PWV is the closest to the
ERA5 PWV, but lacks the temporal details of the ERA5, while

the GC PWV is on the large side and the PG PWV is on the
small side.

Figures 2b–2d show the PWVs obtained from the three
post-processing techniques, comparing the results between the
two. The RMSE between GNSS PWV and RS PWV is the
largest for two reasons, the first is because the two stations
are still spatially distant, and this imperfect co-located leads
to part of the difference, and the other reason is that these
are two completely different acquisition techniques, and they
inherently have systematic biases. On the other hand, ERA5
itself comes from the data assimilation of multi-technology
observations, which also includes RS and GNSS observations,
so the RMSE between ERA5 and RS and RMSE between
ERA5 and GNSS will be a bit smaller. Overall, there are
no significant differences between the three post-processing
PWVs, and the results obtained using any one of them as a
reference are representative.

We also counted the variation of the RMSE of the three
forecast PWVs with forecast time at this station when RS
PWV, GNSS PWV, and ERA5 PWV are used as the reference,
respectively (see Fig. 2e–2g). Overall, the RMSE of the FW
PWV is smaller than that of the GC PWV, which is smaller
than that of the PG PWV. The accuracy of the three PWVs
used for reference is not homogeneous in time and space, so
there are crossovers and overlaps of the RMSEs in the plots.
And the periodic pattern may due to the data assimilation
window of ERA5.In addition, since there is a 5-day delay
in the ERA5 data, we focus on the results for the 5-day
forecasting. From the figures, we can see that the RMSE for
the forecast 5 days can reach about 2.5 mm at this site.

B. Accuracy assessment at stations level - multisite

Figure 3 depicts the RMSE of PWV forecasted by the
Pangu-Weather, GraphCast and FengWu models for 69 pairs
of RS-GNSS stations in the U.S. and neighboring regions,
respectively, with RS PWV, GNSS PWV, and ERA5 PWV
serving as references. The RMSE at these station locations
for a 5-day forecast, namely at 20 steps. All model outcomes
demonstrate smaller values in the high-elevation region of
the east-central U.S. and larger RMSE values in the Gulf of
Mexico and the eastern region of the U.S. The RMSEs of the
Pangu-Weather, GraphCast, and FengWu models are presented
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Fig. 2. PWV time series form different data sources (a) and their comparisons (b)–(g). (b)–(d) are the two-by-two comparisons between RS PWV, GNSS
PWV and ERA5 PWV, respectively. (e)–(f) are the RMSEs of the PWVs of the three new schemes, PG, GC and FW, with respect to the forecast time, using
these different PWVs as references, respectively.

in Figures 3a–3i. Additionally, the RS-referenced RMSE is
generally greater than the GNSS-referenced results, which in
turn are greater than the ERA5-referenced results. Among the
three foundation models, the RMSE of Pangu-Weather is larger
than that of GraphCast, and the RMSE of GraphCast is larger
than that of FengWu.

Figures 3j–3l show RMSE mean value variation with fore-
cast time for these stations. As RS observations are twice
daily, only 12-hour epochs and multiples are valid when RS
is the reference. Overall, FengWu outperforms GraphCast
over Pangu-Weather regardless of reference (RS, GNSS, or
ERA5). A half-day epoch term is evident with RS reference,
likely due to different daytime and nighttime RS observation
accuracies. Initial forecast accuracy (6/12 hours) is around
2 mm for RS and GNSS references and around 0.5 mm
for ERA5 reference due to training on ERA5 data. RMSEs
calculated with different references are around 4 mm for 5-day

forecasts, and there’s no significant difference after more than
5 days. This indicates the proposed method’s real-time and
forecasting accuracy remain consistent across data references.
Given the lack of reliable in-situ measurements in many inland
and oceanic regions, where existing data often lack quality or
completeness, ERA5’s integration of multi-source observations
and physical constraints makes it a feasible and representative
reference for global validation.

C. Accuracy Assessment at Global Grids Level

In this section, we show the results of the accuracy of the
three models in forecasting PWV on the global grid points,
Figure 4 shows the global distribution of BIAS and RMSE
for forecasting 5 days, i.e., 20 steps, while Figure 6 shows
the variation of BIAS and RMSE with latitude and height for
forecasting PWV from 1 to 60 steps.
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Fig. 3. The root means square errors (RMSEs) of PWV forecasts by Pangu-Weather (a, d, and g), GraphCast (b, e, and h), and FengWu (c, f, and i) in the
US and surrounding regions for each station, and the variation of RMSEs with forecast time (j, k, and l), are compared to the results from RS, GNSS, and
ERA5, respectively. (a)–(i) corresponds to the dotted line moments in (j)–(l), i.e., the result at the time of the 5-day forecast. Note that each point on the map
represents a pair of RS-GNSS stations. RS is merely two observations per day, thereby data are only accessible when the forecast time is a multiple of 12
hours.

The left panels (4a, 4c and 4e) of Figure 4 respectively
display the BIAS of Pangu-Weather, GraphCast and FengWu.
Overall, on land, all the three models exhibit more positive bi-
ases with relatively smaller magnitudes. Additionally, Pangu-
Weather has a considerable number of negative biases in the
oceanic regions at low and middle latitudes, particularly in
the Pacific and Indian Oceans. Meanwhile, GraphCast has a
large negative bias in Indonesia and its surrounding areas. The
positive and negative biases are approximately the same in the
other regions. FengWu performs the best, with no significant
large areas featuring positive or negative biases globally, and
the bias is generally more uniform.

The right panels (4b, 4d and 4f) in Figure 4 respec-
tively present the RMSEs of Pangu-Weather, GraphCast and
FengWu. The results of the three models on land are con-
sistent with one another, featuring smaller values. The values
are negatively correlated with height, that is, the higher the
altitude, the smaller the RMSE. Additionally, the values are
significantly smaller in the high-latitude region than in the low-
latitude region. The disparities in the results of these models

mainly lie in the oceanic region, and the areas with higher
RMSE values are also mainly located in the oceanic region.
The locations where the larger values are concentrated are
also basically the same. However, the coverage of these larger
values varies among the three models, with Pangu-Weather
being larger than GraphCast, and GraphCast being larger than
FengWu. In the 5-day forecast, i.e., the real-time results, the
average RMSE in the land region is only about 2.25 mm, while
in the ocean region this value reaches 3.53 mm (see results in
Figure 5). The ETOPO5 model is used here to classify grid
points.

Figures 6a–6c depict the BIAS variation with latitude for
PWV forecast results from 1 to 60 steps. Among the three
models, Pangu-Weather performs the worst due to the sparsity
of pressure levels, leading to negative bias (underestimation
of PWV), especially in low and mid-latitude regions, and
this underestimation grows with an increase in forecast steps.
FengWu outperforms GraphCast as the results of FengWu
show a latitude variation closer to the zero-mean value, while
GraphCast has more negative bias at low latitudes. Addition-
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Fig. 4. Global distribution of mean bias (BIAS) and root mean square error (RMSE) of 5-day (120 hours, 20 steps inference) precipitable water vapor (PWV)
forecast using the foundation models of Pangu-Weather (PG), GraphCast (GC) and FengWu (FW) with ERA5 PWV as references.

Fig. 5. The variations of root-mean-square errors (RMSEs) of PWV with forecast time of the three foundation model solutions, using ERA5 results as a
reference. The left, middle, and right panels are global, ocean, and land results, respectively, with the dotted line being the forecast 5 days (i.e., real-time).

ally, the BIAS of the three models is generally positively
correlated with the increase in forecast steps, i.e., moving
with steps in the direction of their original bias (positive or
negative).

Figures 6d–6f illustrate the RMSE variation with latitude for
PWV forecasts results from 1 to 60 steps. The results from the
three models exhibit a highly similar shape, all presenting an

“M” pattern, meaning the RMSE is larger in middle and low
latitudes and smaller in equatorial and polar regions. Addition-
ally, the Antarctic region has a greater RMSE than the Arctic
region due to the presence of Antarctica. Regarding RMSE
values, FengWu is smaller than GraphCast and GraphCast
is smaller than Pangu-Weather. The best-performing FengWu
can achieve a value better than 4 mm if forecasts are limited

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3580782

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. X, XXX 2025 7

to 5 days. Moreover, there is almost no intersection among
these lines, indicating that the accumulation of errors in
the inference process of the foundation models is relatively
homogeneous and isotropic.

Figures 6g–6i display the variation of BIAS with height
for PWV forecast results from steps 1 to 60. All three
models perform optimally between heights of 2.0–3.8 km, with
BIAS close to zero. Above 3.8 km, the BIAS of all three
models rapidly increases and after the height is over 3.8 km,
FengWu and GraphCast tend to be more negatively biased,
while Pangu-Weather shows no significant positive or negative
bias. In the area less than 100 m, both Pangu-Weather and
GraphCast have significant negative bias, followed by a jump
toward zero. After the jump, in the range from 100 m to 2 km,
Pangu-Weather shows negative bias, GraphCast shows positive
bias, and FengWu has no significant positive or negative bias
below 2 km.

Figures 6j–6l show the variation of RMSE with height for
PWV forecast results from steps 1 to 60. All three models
exhibit a consistent shape. At heights less than 3.8 km, the
RMSE of all three models decreases with increasing height. In
the region of 3.8–4.1 km, it suddenly increases. At elevations
greater than 4.1 km, it becomes smaller with increasing height.
These phenomena are attributed to the underestimation of
forecasted PWV at high altitudes (as shown in the BIAS
results in Figures 6g–6i), while also being influenced by the
decreasing PWV values with increasing altitude. In terms of
RMSE values, FengWu is smaller than GraphCast, which is
smaller than Pangu-Weather. For forecasts limited to 5 days,
the RMSEs of the three models are basically less than 4 mm
at most heights.

IV. DISCUSSION

In this study, we propose a new scheme of surface-domain
PWV retrieval with high-resolution real-time and forecasting
with global coverage using foundation models represented by
Huawei Pangu-Weather, Google GraphCast, and Shanghai AI
Lab FengWu. The accuracy of PWV forecasting in the new
scheme is evaluated using the PWV obtained by radiosonde,
GNSS and ERA5 as references. Site-level evaluations show
that in the U.S. region, the forecasting method provides real-
time PWVs with an accuracy of 4 mm, using either RS,
GNSS, or ERA5 as the reference. In addition, evaluations at
global grid sites show that 5-day forecasts, using ERA5 as a
reference, are able to achieve RMSEs of less than 4 mm over
most of the global region, and an average RMSE of 2.25
mm is achieved in the global land area, which is even better
than the accuracy of most post-processed surface-domain
measurements such as near-infrared (NIR) measurements. It is
important to note that the new scheme is an important addition
to the existing methodology and is not intended to replace the
traditional surface-domain PWV measurements, which are the
data source for the reanalyzed data, i.e., the initial field inputs
that contribute to the proposed method.

The primary limitation to the accuracy of the new scheme
is the poor performance over ocean regions at low and
mid-latitudes, largely due to a lack of high-accuracy PWV

observations in these areas. We anticipate that the incorpo-
ration of additional high-accurate oceanic observations, such
as GNSS PWV data collected from maritime vessels, into
future reanalysis datasets will enhance the accuracy of our
scheme. Despite this, the global PWV accuracy of our scheme
is overall satisfactory compared to current surface-domain
measurements, and we hope that future AI advancements
and the emergence of better foundation models will further
enhance it.

V. CONCLUSIONS

This study establishes a surface-domain PWV forecasting
framework powered by AI foundation models, enabling high-
resolution, real-time global predictions with accuracy rivaling
or exceeding traditional post-processed methods like near-
infrared (NIR) over land areas. Validation against radiosonde,
GNSS, and ERA5 data in the U.S. shows 4 mm RMSE
for real-time forecasts, while global real-time maintains sub-
4 mm RMSE across most terrestrial regions. The approach
complements conventional observational networks by reduc-
ing latency and expanding spatial coverage, though oceanic
predictions at low and mid-latitudes remain less reliable due to
sparse reference data. Incorporating maritime GNSS PWV ob-
servations and refining reanalysis assimilation could mitigate
these gaps, while advancements in AI weather modeling are
likely to further improve precision. This work highlights the
potential of AI-driven systems to transform PWV monitoring
for operational meteorology and climate applications.

VI. ACKNOWLEDGMENTS

This research processed data from more than 20 TB.
The ERA5 data on pressure levels [31] and ERA5
data on single levels [32] are available at Copernicus
Climate Change Service (C3S) Climate Data Store
(CDS) (last accessed 8 Oct, 2023), which can be
obtained from https://cds.climate.copernicus.eu/datasets/
reanalysis-era5-pressure-levels?tab=overview and https://cds.
climate.copernicus.eu/datasets/reanalysis-era5-single-levels?
tab=overview. The foundation model Pangu-Weather is
available at https://github.com/198808xc/Pangu-Weather
[38]. The foundation model GraphCast is available
at https://github.com/google-deepmind/graphcast [39].
The foundation model FengWu is available at
https://github.com/OpenEarthLab/FengWu [40]. The NGL
GNSS tropospheric delay products are available at http:
//geodesy.unr.edu/gps timeseries/trop/ [28]. The radiosonde
data is available at https://www.ncei.noaa.gov/products/
weather-balloon/integrated-global-radiosonde-archive
[24]. The open-source AI models command-
line management tool ai-models is available at
https://github.com/ecmwf-lab/ai-models.
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Álvarez-Zapatero, P., Román, R., . . . ”Inter-comparison of integrated water
vapor from satellite instruments using reference GPS data at the Iberian
Peninsula,” Remote Sensing of Environment, vol. 204, pp. 729–740, 2018.
doi: 10.1016/j.rse.2017.09.028.

[18] Lee, Y., Han, D., Ahn, M.-H., Im, J., & Lee, S. J. ”Retrieval of total
precipitable water from Himawari-8 AHI data: A comparison of random
forest, extreme gradient boosting, and deep neural network,” Remote
Sensing, vol. 11, no. 15, p. 1741, 2019. doi: 10.3390/rs11151741.

[19] Xu, J., & Liu, Z. ”Enhanced all-weather precipitable water vapor
retrieval from MODIS near-infrared bands using machine learning,”
International Journal of Applied Earth Observation and Geoinformation,
vol. 114, p. 103050, 2022. doi: 10.1016/j.jag.2022.103050.

[20] Du, J., Kimball, J. S., & Jones, L. A. ”Satellite microwave retrieval of
total precipitable water vapor and surface air temperature over land from
AMSR2,” IEEE Transactions on Geoscience and Remote Sensing, vol.
53, no. 5, pp. 2520–2531, 2014. doi: 10.1109/TGRS.2014.2361344.

[21] He, J., & Liu, Z. ”Comparison of satellite-derived precipitable water
vapor through near-infrared remote sensing channels,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 57, no. 12, pp. 10252–10262,
2019. doi: 10.1109/TGRS.2019.2932847.

[22] Mateus, P., Mendes, V. B. & Plecha, S. M. ”HGPT2: An ERA5-Based
Global Model to Estimate Relative Humidity,” Remote Sensing, vol. 13,
no. 11, Art. no. 2179, 2021. doi: 10.3390/rs13112179.

[23] Ding, J., Mi, X., Chen, W., Chen, J., Wang, J., Zhang, Y., . . . , &
Tang, W. ”Forecasting of Tropospheric Delay using AI Foundation
Models in support of Microwave Remote Sensing,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 62, p. 5803019, 2024. doi:
10.1109/TGRS.2024.3488727.

[24] Durre, I., Yin, X., Vose, R. S., Applequist, S., & Arnfield, J. ”Enhancing
the data coverage in the Integrated Global Radiosonde Archive,” Journal
of Atmospheric and Oceanic Technology, vol. 35, no. 9, pp. 1753–1770,
2018. doi: 10.1175/JTECH-D-17-0223.1.

[25] Zhang, W., Lou, Y., Huang, J., Zheng, F., Cao, Y., Liang, H., . . . , &
Liu, J. ”Multiscale variations of precipitable water over China based on
1999–2015 ground-based GPS observations and evaluations of reanalysis
products,” Journal of Climate, vol. 31, no. 3, pp. 945–962, 2018. doi:
10.1175/JCLI-D-17-0419.1.

[26] Durre, I., Korzeniewski, B., & National Center for
Atmospheric Research Staff (Eds.). ”The Climate Data
Guide: Integrated Global Radiosonde Archive (IGRA),” 2023.
Retrieved from https://climatedataguide.ucar.edu/climate-data/
integrated-global-radiosonde-archive-igra.

[27] Yuan, P., Blewitt, G., Kreemer, C., Hammond, W. C., Argus, D., Yin,
X., . . . , & Kutterer, H. ”An enhanced integrated water vapour dataset
from more than 10,000 global ground-based GPS stations in 2020,” Earth
System Science Data, vol. 15, pp. 723–743, 2023. doi: 10.5194/essd-15-
723-2023.

[28] Blewitt, G., Hammond, W., & Kreemer, C. ”Harnessing the GPS
data explosion for interdisciplinary science,” Eos, vol. 99, 2018. doi:
10.1029/2018EO104623.

[29] Ding, J., & Chen, J. ”Assessment of empirical troposphere model GPT3
based on NGL’s global troposphere products,” Sensors, vol. 20, no. 13,
p. 3631, 2020. doi: 10.3390/s20133631.

[30] Ding, J., Chen, J., Wang, J., & Zhang, Y. ”Characteristic differences in
tropospheric delay between Nevada Geodetic Laboratory products and
NWM ray-tracing,” GPS Solutions, vol. 27, no. 1, p. 47, 2023. doi:
10.1007/s10291-022-01385-2.

[31] Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz
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Sabater, J., . . . , & Thépaut, J. N. ”ERA5 hourly data on single levels from
1979 to present,” Copernicus Climate Change Service (C3S) Climate Data
Store (CDS), vol. 10, no. 10.24381, 2018. doi: 10.24381/cds.adbb2d47.

[33] Bolton, D. ”The computation of equivalent potential temperature,”
Monthly Weather Review, vol. 108, no. 7, pp. 1046–1053, 1980. doi:
10.1175/1520-0493(1980)108¡1046:TCOEPT¿2.0.CO;2.

[34] Wong, M. S., Jin, X., Liu, Z., Nichol, J., & Chan, P. W. ”Multi-
sensors study of precipitable water vapour over mainland China,” In-
ternational Journal of Climatology, no. 10, pp. 3146–3159, 2015. doi:
10.1002/joc.4199.

[35] Rueger, J. M. ”Refractive index formulae for radio waves,” in Proc. 22nd
Int. CongrIntegr, Techn. Corrections Achieve Accurate Eng., Washington,
DC, USA, 2002, p. 13.

[36] Rueger, J. M. ”Refractive indices of light, infrared and radio waves in
the atmosphere,” School Surveying Spatial Inf. Syst., Univ. New South
Wales, Sydney, NSW, Australia, Tech. Rep. UNISURV S-68, 2002.

[37] Ding, J., Chen, W., Chen, J., Wang, J., Zhang, Y., Bai, L., . . . , & Weng,
D. ”Spatiotemporal inhomogeneity of accuracy degradation in AI weather
forecast foundation models: A GNSS perspective,” International Journal
of Applied Earth Observation and Geoinformation, vol. 139, p. 104473,
2025. doi: 10.1016/j.jag.2025.104473.

[38] Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. ”Accurate
medium-range global weather forecasting with 3D neural networks,”
Nature, vol. 619, no. 7970, pp. 533–538, 2023. doi: 10.1038/s41586-
023-06185-3.

[39] Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., For-
tunato, M., Alet, F., . . . , & Battaglia, P. ”Learning skillful medium-
range global weather forecasting,” Science, p. eadi2336, 2023. doi:
10.1126/science.adi2336.

[40] Chen, K., Han, T., Gong, J., Bai, L., Ling, F., Luo, J. J., . . . , & Ouyang,
W. ”FengWu: Pushing the Skillful Global Medium-range Weather Fore-
cast beyond 10 Days Lead,” arXiv preprint arXiv:2304.02948, 2023. doi:
10.48550/arXiv.2304.02948.

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3580782

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1175/bams-d-13-00171.1
https://doi.org/10.1029/2021GL096408
https://doi.org/10.1029/2003JD003372
https://doi.org/10.1029/2004JD005715
https://doi.org/10.1029/2018RS006789
https://doi.org/10.1175/JCLI-D-11-00557.1
https://doi.org/10.1175/JCLI-D-11-00557.1
https://doi.org/10.1175/JCLI-D-20-0352.1
https://doi.org/10.1002/2014JD021730
https://doi.org/10.1016/j.atmosres.2021.105504
https://doi.org/10.1109/TGRS.2022.3146018
https://doi.org/10.1029/2019GL082136
https://doi.org/10.22541/essoar.172081357.72805131/v1
https://www.jstor.org/stable/26185675
https://doi.org/10.1016/j.rse.2017.09.028
https://doi.org/10.3390/rs11151741
https://doi.org/10.1016/j.jag.2022.103050
https://doi.org/10.1109/TGRS.2014.2361344
https://doi.org/10.1109/TGRS.2019.2932847
https://doi.org/10.3390/rs13112179
https://doi.org/10.1109/TGRS.2024.3488727
https://doi.org/10.1175/JTECH-D-17-0223.1
https://doi.org/10.1175/JCLI-D-17-0419.1
https://climatedataguide.ucar.edu/climate-data/integrated-global-radiosonde-archive-igra
https://climatedataguide.ucar.edu/climate-data/integrated-global-radiosonde-archive-igra
https://doi.org/10.5194/essd-15-723-2023
https://doi.org/10.5194/essd-15-723-2023
https://doi.org/10.1029/2018EO104623
https://doi.org/10.3390/s20133631
https://doi.org/10.1007/s10291-022-01385-2
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
https://doi.org/10.1002/joc.4199
https://doi.org/10.1016/j.jag.2025.104473
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1126/science.adi2336
https://doi.org/10.48550/arXiv.2304.02948


IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. X, XXX 2025 10

Junsheng Ding received the bachelor’s degree from
Chang’an University, Xi’an, China, in 2018, and the
Ph.D. degree from Shanghai Astronomical Observa-
tory, Chinese Academy of Sciences, Beijing, China,
and the School of Astronomy and Space Science,
University of Chinese Academy of Sciences, Bei-
jing, in 2023.

He is currently a Post-Doctoral Fellow with the
Department of Land Surveying and Geo-Informatics,
The Hong Kong Polytechnic University, Hong Kong.
His research interests include Global Navigation

Satellite System (GNSS) meteorology and artificial intelligence (AI) for
geodesy (AI4G).

Wu Chen received the Ph.D. degree from Newcastle
University, Newcastle upon Tyne, U.K., in 1992.

He is currently a Chair Professor with the De-
partment of Land Surveying and Geo-Informatics,
The Hong Kong Polytechnic University, Hong Kong.
He has been actively working on Global Naviga-
tion Satellite System (GNSS)-related research for
more than 30 years. His main research interests
include GNSS positioning quality evaluation, system
integrity, various GNSS applications, seamless posi-
tioning, and simultaneous localization and mapping

(SLAM).

Junping Chen (Member, IEEE) received the Ph.D.
degree in satellite geodesy from Tongji University,
Shanghai, China, in 2007.

He is a Professor and the Head of the GNSS Data
Analysis Group, Shanghai Astronomical Observa-
tory (SHAO), Chinese Academy of Sciences, Shang-
hai. Since 2011, he has been supported by the “one
hundred talents” programs of Chinese Academy of
Sciences. His research interests include multi-Global
Navigation Satellite System (GNSS) data analysis
and GNSS augmentation systems.

Jungang Wang received the Ph.D. degree from the
Technische Universität Berlin, Berlin, Germany, in
2021.

He is a Research Scientist at the Section of
Space Geodetic Techniques, GeoForschungsZentrum
(GFZ), Potsdam, Germany. His research interests
are atmospheric effects in space geodesy, Global
Navigation Satellite Systems, very long baseline
interferometry, satellite laser ranging, and multitech-
nique integrated processing.

Yize Zhang received the Ph.D. degree from Tongji
University, Shanghai, China, in 2017.

After his Ph.D. degree, he did his post-doctoral
research at Tokyo University of Marine Science
and Technology (TUMSAT), Tokyo, Japan. He is
currently an Associate Professor at Shanghai As-
tronomical Observatory (SHAO), Chinese Academy
of Sciences, Shanghai. His research mainly focuses
on multi-Global Navigation Satellite System (GNSS)
precise positioning and GNSS bias analysis.

Lei Bai was a Post-Doctoral Research Fellow at
The University of Sydney, Sydney, NSW, Australia.
He is currently a Research Scientist with Shanghai
AI Laboratory, Shanghai, China. He is leading the
OpenEarthLab. His research interests include ma-
chine learning, spatial–temporal learning, and their
applications.

Dr. Bai was a recipient of the 2020 Google
Ph.D. Fellowship, the 2020 UNSW Engineering
Excellence Award, and the 2021 Dean’s Award for
Outstanding Ph.D. Theses.

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3580782

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


	Introduction
	Materials and Methods
	Foundation Models
	Radiosonde Profile
	GNSS Products
	ERA5 Data
	PWV Retrieving and Comparison Method

	Results
	Accuracy Assessment at Stations Level - Single Site
	Accuracy assessment at stations level - multisite
	Accuracy Assessment at Global Grids Level

	Discussion
	Conclusions
	Acknowledgments
	References
	Biographies
	Junsheng Ding
	Wu Chen
	Junping Chen
	Jungang Wang
	Yize Zhang
	Lei Bai


