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Abstract: Common mode error (CME) in Chuandian region of China is derived from 6-year 
continuous GPS time series and is identified by principal component analysis (PCA) method. It is 
revealed that the temporal behavior of the CME is not purely random, and contains unmodeled 
signals such as nonseasonal mass loadings. Its spatial distribution is quite uniform for all GPS sites 
in the region, and the first principal component, uniformly distributed in the region, has a spatial 
response of more than 70%. To further explore the potential contributors of CME, daily atmospheric 
mass loading and soil moisture mass loading effects are evaluated. Our results show that ~15% of 
CME can be explained by these daily surface mass loadings. The power spectral analysis is used to 
assess the CME. After removing atmospheric and soil moisture loadings from the CME, the power 
of the CME reduces in a wide range of frequencies. We also investigate the contribution of CME in 
GPS filtered residuals time series and it shows the Root Mean Squares (RMSs) of GPS time series 
are reduced by applying of the mass loading corrections in CME. These comparison results 
demonstrate that daily atmosphere pressure and the soil moisture mass loadings are a part of 
contributors to the CME in Chuandian region of China. 

Keywords: GNSS time series; common mode error; principal component analysis; daily 
atmospheric and soil moisture mass loadings 

 

1. Introduction 

The dense GNSS (Global Navigation Satellite System) networks provide detailed information to 
explore the crustal deformation, such as the secular tectonic movements, the co- and postseismic 
displacements, the loading effects caused by mass redistributions, the thermal expansion, and other 
unknown geophysical processes [1–5]. Improved spatio-temporal resolution of the deformation 
solutions makes it possible to detect weak and transient crustal signals, which were hidden in the 
noise of previous solutions [6–12]. The transient deformation origin should be nontectonic as well as 
tectonic, including the processes occurring at active fault zones, volcanic process, and so on. In 
particular, understanding the tectonic transient characterizations and spatial-temporal variations is 
crucial for exploring the seismic hazards. To capture these short-term irregular events, however, the 
biggest challenge is the separation of the geophysical signals from the noise and unknown system 
errors.  

Previous research revealed that there existed a spatially correlated error (called as Common 
Model Error, CME) in the GNSS solutions [7,12]. Although the origin of the CME is not thoroughly 
understood yet, it can be isolated given that spatial correlation range of the CME is regional (it reaches 
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up to 2000 km) [11], while the spatial coherent range of the transient event is only local (it covers less 
than 100 km) [7,9,10,11]. Wdowinski et al. [7] employed stacking filtering to remove the CME and 
improved the displacement resolutions for the 1992 Lander earthquake. Liu et al. [9] estimated the 
CME in a much larger region to ensure the CME estimation was not contaminated by local nonsecular 
deformation. Finally, after the removal of CME, the original time series reduced the scatter while 
maintaining deformation signals of volcanic activities. Tian et al. [11] applied the correlation-
weighted spatial filtering algorithm to extract coherent signals from a dense GPS network and 
detected subtle tectonic deformation signals. Thus, the regional GNSS network analyses provide ideal 
means to detect and isolate the CME and then to enhance the signal-to-noise ratio of the solution 
series. Several approaches, such as stacking, principal component analysis (PCA), independent 
component analysis (ICA), etc., have been proposed in GNSS position time series analysis to estimate 
the CME [7–17].  

However, the nature and the wavelength of CME are still unclear considering its temporal-
spatial diversity and multi-inducements. The proper characterization and modeling of sites’ 
coordinate time series are critical in improving the coordinate accuracy from regional network 
measurements. Especially for the places characterized by complex tectonic and nontectonic 
movements, such as the Chuandian region of China (Figure 1). The region is in the east of the Tibetan 
Plateau and is the front edge of NE compression induced by the Indian plate where the activities of 
strong earthquakes are intense. In addition, abundant precipitation and hydrologic cycle also induce 
obvious crustal deformation in the region. Various filtering techniques have been developed to detect 
and isolate the CME in Chuandian region. Li et al. [18] applied the Improved Principle Component 
Analysis on Yunnan Province and reduced the average error of the position time series. Pan et al. [5] 
had discussed the period of 3–4 years signals in CME of Eastern Tibetan Plateau which were highly 
related to hydrologic loading displacements. Liu et al. [13] applied the ICA to analyze continuous 
GPS data in Chuandian region and discussed the mechanism of the CME with 40 sites. They 
explained that the seasonal variations in CME were mainly due to loading effects of the surface 
atmosphere and soil moisture loadings. Similar discussions were also shown in Sheng et al. [19] and 
Yuan et al. [20]. In addition, Yuan et al. [20] also expressed that the CME in Hongkong was highly 
related to the high-order ionospheric effects.  

In this paper, we focus on common mode component (CMC) of site displacements caused by 
mass loadings and try to explore the CME origin in Chuandian region. We firstly apply the PCA to 
daily stations coordinate time series to extract the original CME in the region. And we also estimate 
the CMC of the site displacements caused by atmospheric and soil moisture mass loadings. In 
addition, we evaluate the corrected CME in the GPS residual time series which have subtracted the 
calculated daily site displacements caused by atmospheric and soil moisture mass loadings. Finally, 
we demonstrate the contributions of the two mass loadings to the CME in Chuandian region. 

2. Data Source and CME Processing Methods  

Crustal Movement Observation Network of China (CMONOC) was implemented since 1999 and 
had 260 continuous stations until 2011. CMONOC consists not just of 260 GNSS continuous 
observations, but also of supplements with Very Long Baseline Radio Interferometry (VLBI), Satellite 
Ranging (SLR), precise leveling, and gravity observation in a few sites. It provides abundant 
continuous GPS observations for crustal deformation monitoring with relatively high spatial 
resolution (dozens of kilometers) and long time scale (more than 8 years). In this study, GPS 
measurements during 2011 to 2017 obtained from 51 sites in the Chuandian region (Figure 1 and 
Table 1) are used to derive the position time series with integrated Geodetic Platform Of Shanghai 
Astronomical Observatory (iGPOS, http://www.shao.ac.cn/shao_gnss_ac)[21]. The processing 
models and strategies for the daily solution details are available in Chen et al. [21] and references 
therein.  
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Figure 1. Root Mean Square (RMS) reductions of the GPS residual time series after removing original 
common mode error (CME) and corrected CME. The color spots are the locations of 51 GPS sites in 
Chuandian region of China. 

Table 1. GPS sites in Chuandian region of China. 

Site Lon Lat Site Lon Lat Site Lon Lat 
LUZH 105.4 28.8 SCSM 102.3 29.2 YNLJ 100.0 26.6 
KMIN 102.7 25.0 SCSN 105.5 30.5 YNMH 100.4 21.9 
XIAG 100.2 25.6 SCSP 103.5 32.6 YNMJ 101.6 23.4 
SCBZ 106.7 31.8 SCTQ 102.7 30.0 YNML 103.3 24.4 
SCDF 101.1 30.9 SCXC 99.8 28.9 YNMZ 103.4 23.3 

SCGY 105.8 32.4 SCXD 102.4 28.3 YNRL 97.8 24.0 
SCGZ 100.0 31.6 SCXJ 102.3 31.0 YNSD 99.1 24.7 
SCJL 101.5 29.0 SCYX 102.5 28.6 YNSM 101.0 22.7 
SCJU 104.5 28.1 SCYY 101.5 27.4 YNTC 98.5 25.0 
SCLH 100.6 31.3 YNCX 101.4 25.0 YNTH 102.7 24.1 
SCMB 103.5 28.8 YNDC 103.1 26.1 YNWS 104.2 23.3 
SCML 101.2 27.9 YNGM 99.3 23.5 YNXP 101.9 24.1 
SCMN 102.1 28.3 YNHZ 103.2 26.4 YNYA 101.3 25.7 
SCMX 103.8 31.6 YNJD 100.8 24.4 YNYL 99.3 25.8 
SCNC 105.8 30.9 YNJP 103.2 22.7 YNYM 101.8 25.6 
SCNN 102.7 27.0 YNLA 99.9 22.5 YNYS 100.7 26.6 
SCPZ 101.7 26.5 YNLC 100.0 23.8 YNZD 99.6 27.8 

2.1. Acquisition of GPS Residual Coordinate Time Series 

We applied QOCA software to obtain the GPS residual coordinate time series of vertical 
component [2]. The daily coordinate solutions with larger formal uncertainties (>1000 mm) were 
removed. The non-geophysical offsets and coseismic displacements were also removed from the time 
series. As we know, the CME was found when comparing the coordinate residual time series which 
had deducted all known geophysical information. The secular rates and the seasonal variations 
usually indicate the plate motions and mass redistributions separately. Thus, we estimated 
parameters of model that includes offsets, linear trends, and seasonal (annual and semiannual) terms 
and removed these modeled terms to obtain the resulting position time series called as residual time 
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series in this paper [2,17]. Besides, we also removed the residuals that exceeded the thresholds of 40 
mm [15,17]. Then, we analyzed the residual time series to explore the potential signals in CME. 

2.2. Principle Component Analysis (PCA) 

The PCA decomposes the time series into various spatial and temporal coherent orthogonal 
modes. It does not require a preset orthogonal basis function but constructs an orthogonal feature 
vector by orthogonally decomposing a set of related data itself. With these orthogonal feature vectors 
as the basis, the corresponding coefficients constitute the principal components. The principal 
components are arranged in descending order of the eigenvalues, and the first few principal 
components can cover most of the energy in the original data set. Therefore, an important application 
of PCA is to find a small number of principal components to represent the basic characteristics of the 
original data set, which plays a role in dimensionality reduction and denoising [12,14,15,18]. 

For a regional GNSS network of n stations, the daily station residual time series spanning m days 
can be written as X(ti,xj) (i = 1,2,3…,m; j = 1,2,3…n). Firstly, we construct the covariance matrices B, 
the i-th row j-th column element in the covariance matrix B can be expressed as [12] 

1

1 ( ) ( )
1

m

ij k i k j
k

b X t ,x X t ,x
m =

=
−   (1) 

The symmetric matric B can be decomposed given by B = V.Λ.VT, where Λ is a matrix with k non-
zero diagonal eigenvalues and eigenvector matrix VT is an (n × n) matrix. In most cases with geodetic 
data, the rank of matrix B is usually full. From linear algebra, we can expand any matrix of rank n by 
n orthonormal vector basis. Thus, the data matrix X(ti,xj) can be expressed by the orthonormal 
function basis v: 
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The ak(ti) is the so-called kth principal component (PC) for matrix X, and it represents a temporal 
signature of the mode. The vk(xj) is ak(ti) corresponding eigenvector, which represents the spatial 
distribution of the mode. The principal component ak(ti) and the eigenvectors vk(xj) together are 
considered as mode k. We arrange the eigenvectors with descending eigenvalues to identify the first 
few PCs to represent the biggest contributors to the variance of the network residual time series.  

3. Results: CME Patterns in Chuandian Region 

We extracted the residual time series by removing the known periodic variations and linear 
trends. Then, we applied the PCA on GPS residual time series to derive regional CME and 
investigated its spatial distribution. Figure 2 shows the spatial and temporal patterns of the first PC 
derived from PCA. The PCA obtained nearly uniformly distributed normalized spatial eigenvectors 
for the first PC time series, with average normalized amplitudes (absolute values) of 73.9%. The 
minimum normalized amplitude is 52.5%. We use the criterion from Dong et al. [12] to define the 
CME as the mode for which most sites (more than 50%) have significant normalized responses (larger 
than 25%), and the eigenvalues of this mode exceed 1% of the summation of all eigenvalues. Thus, 
we treat the first PC from PCA as the CME in Chuandian region. However, we cannot directly classify 
the CME as signal or noise.  

As we know, the network residual time series contain multi modes from network common (in 
the region reach up to 2000 km [2,11]) to local common (the spatial coherent range of the transient 
event covers less than 100 km [9,11]) and site-dependent, such as the CME, various local effects, and 
random noises. The PCA approach assumes spatiotemporal PCs are orthogonal to each other. 
However, the PCA-derived CME series are not totally uncorrelated with the local effects or random 
noises. It is hard for PCA to decompose the similar contributions components in actual network 
residual time series. The PCA-decomposed principal components and their corresponding 
eigenvectors are arranged by the eigenvalue through descending order. Thus, each principal 
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component is a mixture of several mechanisms. We are unable to identify the potential geophysical 
mechanisms or study the subtle signals in GPS observations. For example, the annual items in the 
GNSS station coordinate series come mainly from the contributions of mass variations including 
atmosphere pressure, ocean loading, snow, and soil moisture variations. When we use PCA for the 
annual analysis, the contributions of these mechanisms cannot be separated [17]. The PCA algorithm 
cannot separate the contributions of these mechanisms in the original sequence. Then, we would also 
conclude the CME in Chuandian region is the mixture of some unknown geophysical signals and 
random noises.  

Thus, the CME is usually composed of two parts: (1) the observation and model errors and (2) 
the potential geophysical signals. (1) The observation and model errors. The observation errors are 
mainly induced by observation instrument errors or inaccurate analysis methods. The model errors 
are mainly ascribed to the multipath model and the incomplete satellite light pressure model. Besides, 
the mode errors of the atmospheric delay, ionospheric delay, and systematic reference frame errors 
are also the potential causes. (2) The potential geophysical signals. The widely used GPS coordinate 
time series analysis mainly estimates the initial position, velocity, and annual and subannual terms 
of the stations. Some studies have demonstrated that the plate motions and subsurface mass 
redistributions’ seasonal variations are the main contributors to the linear and seasonal variations 
separately [1–3]. The seasonal terms are usually modeled as sinusoids [2]. However, the sinusoid 
models only represent the annual and subannual signals in GPS time series, and they are too 
simplified to estimate the truth geophysical processes of mass loading variations accurately, 
especially in the daily timescales. All the unmodeled deformation signals are left in the residual time 
series [12,14]. Then, when we apply the PCA method, the effects of the unmodeled geophysical 
process will be absorbed into the uniformly distributed modes and the randomly distributed modes. 
Thus, the first PC derived from PCA, as well as the CME, may contain the mismodeled signals of the 
mass redistributions. Besides, the high-order modes extracted from PCA are usually related to a few 
stations and presumably reflect local effects. The mechanism of the high-order-mode PCs is an open 
question we leave for future study. 

Since there is a clue that signal sources to the CME may relate the mass redistributions, we make 
deep explorations of the mass loadings. We check the common mode components (CMCs) of the 
mass loading variations which have removed the linear trend and annual and subannual variations. 

  
Figure 2. The first principal component (PC) in Chuandian region from principal component analysis 
(PCA). (a) The normalized spatial eigenvectors of the PC. (b) The scaled PC. 

4. Subtracting the Daily Site Displacements of Known Geophysical Sources  

For the Chuandian region, only the first PC of the vertical components satisfy our criteria for 
CME; we also call these original CME in this paper. The CME of the regional network may contain 
contributions from some unknown geophysical sources. To explore the nature of the CME, an 
approach is to subtract the contributions of sources from the GPS observations to obtain the corrected 
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CME, then study the relation between original CME with corrected CME. It is well known that mass 
loading variations can cause seasonal variations in regional GPS positions time series, especially in 
the vertical direction. We also usually use the sinusoids model to describe the seasonal variations of 
mass loadings. However, we also notice that the mass loadings vary daily and may induce obvious 
displacements. In this section, we examine the distributions and magnitudes of the daily variations 
of the mass loadings. We obtain CMCs of two geophysical processes which would potentially make 
a part of contributions to the CME in the region.  

4.1. Daily Atmospheric Mass Loading 

The 6 hour sampling National Center for Environmental Prediction (NCEP) reanalysis surface 
atmosphere pressure data [22] from 2011 to 2017 are used to calculate the displacements at each site 
in the study. We calculate the daily site displacements from the atmosphere pressure variations by 
Farrell [23] elastic Green’s function approach. To verify daily variations of atmospheric pressure, we 
first check the atmosphere pressure data at some grids located in Chuandian region (Figure 3, Figure 
S1-S3). After removing the seasonal and linear variations of atmosphere pressure, we still see obvious 
residual variations of the atmosphere pressure. The daily atmosphere pressure residual varies 
dramatically especially in the beginning of each year. 

 
Figure 3. (a) The atmosphere pressure variations (red) at point (25°N, 100°E) and the modeled 
seasonal variations with sinusoids (blue lines). (b) The atmosphere pressure residual time series with 
liner trend and seasonal terms removal. 

We also subtracted the trends and seasonal terms of calculated daily site displacements caused 
by atmospheric loading. The left residual time series would especially highlight the daily 
displacement variations for the atmosphere mass loading (ATML). Then, we performed the PCA 
method to identify the principal components in the site displacements inducted by ATML in 
Chuandian region. The first PC is somehow spatially uniform in the whole region, and its average 
spatial response is about 77.9%. The results are shown in Figure 4a. The second and high-order PC 
temporal variations are too small (less than 1mm); thus, we mainly treat the first components as the 
common mode component (CMC) in ATML.  

4.2. Daily Soil Moisture Mass Loading 

The hydrological loadings are also important contributors to the seasonal variations in 
Chuandian region [24]. We applied the NCEP reanalysis Ⅱ

(https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html) daily sampling 
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soil moisture data to calculate site displacements by Farrell [23] elastic Green’s function approach. 
We removed the seasonal variations and linear trends of daily site displacements series caused by 
soil moisture mass loading (SML). Then, we also performed the PCA to get the principal components 
in the SML time series. The first PC of the daily SML in Chuandian region are shown in Figure 4b. 
We also obtain giant variations of the soil moisture loading residuals in the region. The average 
spatial response for the soil moisture loading first PC is 70.4%. In the northern Chuandian region, the 
spatial response is about 20%-40%. And the spatial responses are mostly more than 70% in the 
southern region. According to the CME criterion from Dong et al. [12], we treat the first PC of the soil 
moisture loading as the CMC.  

Dong et al. [2] have demonstrated that the site’s vertical seasonal variations are mostly affected 
by mass redistributions. After the removal of the seasonal terms of the GPS quasi-observations, the 
seasonal terms of the mass-loading-caused displacements are subtracted from the quasi-observation 
series. However, the mass-redistribution-caused daily-variation site displacements and inter-annual-
site displacements will remain in the residual series. Thus, we would consider the daily variations of 
atmosphere pressure and soil moisture loading to be connected to the CME. Besides, we also 
calculated the CMCs for snow and nontidal-ocean-loadings-induced deformation in Chuandian 
region, but both of the two CMCs are less than 0.1 mm. Thus, we excluded the relationship between 
CME and snow/nontidal ocean mass loadings, and we will not have deep discussion of their effects 
in this study. 

 
Figure 4. The first PC identified by PCA for atmosphere (a) and soil moisture (c) mass loadings 
residuals with their eigenvalues (b, d). 

4.3. Corrected CME of GPS Residuals after Subtracting the Known Geophysical Sources 

We firstly subtracted the daily atmosphere and soil mass loadings that caused site displacements 
from the GPS station position residual observations and then applied the PCA to obtain the mass 
loadings corrected CME. Figure 5 shows corrected CME, which reduces the RMS (Root Mean 
Squares) of the CME from 4.19 to 3.56 mm. To quantitatively evaluate the contributions of the 
atmospheric and soil moisture loadings to the CME, we defined a measure termed the RMS Reduction 
Ratio, expressed as follows: 
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RMSoriginal_CME is the RMS of the original CME time series, RMScorrected_CME is the RMS of corrected 
CME series after the daily atmosphere and soil loadings are corrected. The RMS Reduction Ratio 
reflects the corrected loading effects in the CME. The ratio with a value of 0 would indicate that the 
mass loadings have no contributions to the CME. The ratio with a value of 1.0 would indicate that 
the CME only contains the ATML and SML signals. The calculated RatioRMS_reduction is about 15%, which 
reflects that the ATML and SML CMCs can contribute almost 15% to the CME in Chuandian region.  

  
Figure 5. The PCA-derived corrected CME with the atmosphere and soil loadings are reduced from 
the GPS observations. (a)The normalized spatial eigenvectors of the PC. (b)The scaled PC. 

Thus, the original CME contains the daily variations of mass loadings while the corrected CME 
has excluded such loading effects. To present the difference between original CME and corrected 
CME, we subtracted the corrected CME in the original CME and get the “diff” series shown in figure 
6a. The “diff” series is actually the mismodeled daily mass loading variations. It is the geophysical 
signal part to CME, which comes from the GPS time series analysis methods. Meanwhile, we sum the 
CMCs of ATML and SML as “add” shown in Figure 6a. The two series “diff” and “add” actually 
represent the difference of two CME and daily variations of two geophysical processes, respectively. 
The two series, “diff” and “add” are highly consistent with a correlation coefficient 0.95, which 
implies that the mismodeled CMCs of ATML and SML fully leak into the uniformly distributed CME 
in Chuandian region. Figure 6b represents the power spectral densities of original CME and corrected 
CME in the region. We notice that the power of the corrected CME has reduced in a wide range of 
frequencies, which shows that the temporal characteristics of CME are still unknown. Figure 6a and 
6b show comparisons of the original CME and corrected CME time series. 

Besides, we remove the original CME and corrected CME separately from the GPS height time 
series and calculate the RMS reduction of the filtered GPS time series after the removal of the two 
CME. The reduction RMSredtn = (RMScorrected_CME - RMSoriginal_CME)/RMSGPS represents the relative 
magnitude of the CME in observed time series, and it is a common statistic to assess the impact of 
daily loading effects in CME. The reductions reduce at 50 stations (Figure 1), and the RMSredtn is 
reduced by an average of 4.1%. The GPS RMSredtn reductions directly represent the differences 
between the two CME in GPS observations. The average RMSredtn 4.1% is actually the mismodeling 
daily mass loadings effects in GPS. For most of the stations located in Chuandian region, we are able 
to explain a part of CME by the modeling daily atmosphere and soil moisture mass changes.  

It is interesting to compare the average daily scatter of the original CME filtered time series and 
corrected CME filtered time series (Figure 6c). The average daily scatter in Figure 6c is calculated 
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using the sum of the residual values divided by station number. Significant difference is represented 
in the filtered two daily scatter time series. The results imply the existence of mass loading CMCs in 
the CME in Chuandian region (Figure 6c,d). The frequency analysis shows that the left daily mass 
loadings explained most of the scatter, but there is still a low-frequency signal. As the data span is 
only 6 years in this study, it is hard to make a detailed discussion about the low-frequency signals. 
Then we leave this as an open question. Thus, daily variations of mass loadings explain a part of the 
CME in the region.  

  
Figure 6. (a) The difference between original CME and corrected CME and the sum of the two CMCs 
of the atmosphere and soil loadings. (b) The power spectral densities of original CME and corrected 
CME. (c) The average scatter of GPS residuals with original CME and corrected CME filtered. (d) The 
power spectral densities of average scatter of GPS residual with original CME and corrected CME 
filtered. 

5. Conclusions  

In this study, we estimated the CME in Chuandian region by PCA and explored the possible 
origin in the CME time series by examining the time series of 51 CMONOC stations over a 6 year 
period. The PCA is a useful approach to identify the principle components in the spatial distributions 
of the CME [5,9,12,15]. The spatial distributions of CME are close to uniform in the region.  

The CME identified by PCA may contain potential geophysical process signals. Based on the 
theory that the CME is composed of two parts: the error one and the signal one. We make some effects 
to explain the CME. After analyzing the daily atmosphere pressure and soil mass loading residuals 
by removing the long-term trends and seasonal variations, we found that the sinusoid models were 
too simplified to describe the variations of the atmosphere and soil moisture mass loadings in 
Chuandian region. Thus, we extracted the common mode components from site displacements 
caused by ATML and SML which have removed the linear trends and seasonal terms. The extraction 
of the CMCs helped us to understand the details of spatial-temporal variations of physical origin. 



Remote Sens. 2020, 12, 751 10 of 11 

 

Then, we found out that the daily atmosphere and soil moisture loadings variations are a part of 
contributors to the CME in Chuandian region.  

We mainly focused on the high-frequency site displacements caused by ATML and SML. 
However, we found the power of corrected CME reduces in a wide range of frequencies, which 
suggests that some low-frequency or inter-annual geophysical processes are also potential 
contributors to the CME. The wavelength of the known geophysical processes may help to 
understand the wavelength of the CME. Thus, future work will be focused on the ~3- to ~4-year 
hydrologic loading displacements or the ~6 year mantle–inner core gravity coupling [5]. In addition, 
the elevation difference of CGPS stations [11], the unmodeled or mismodeled motions of satellite 
orbits, reference frame, or Earth orientation parameters are also potential origins of CME. Receiver 
and satellite antenna phase center mismodeling are also potential candidates for the CME [11,12,14]. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1-S3. The 
atmosphere pressure data at points (25°N, 102.5°E), (27.5°N, 100°E), and (32.5°N, 100°E).  
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