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The new Global Positioning System (GPS) Civil Navigation Message (CNAV) has been trans-
mitted by Block IIR-M and Block IIF satellites since April 2014, both on the L2C and L5 signals.
Compared to the Legacy Navigation Message (LNAV), the CNAV message provides six addi-
tional parameters (two orbit parameters and four Inter-Signal Correction (ISC) parameters) for
prospective civil users. Using the precise products of the International Global Navigation Satel-
lite System Service (IGS), we evaluate the precision of satellite orbit, clock and ISCs of the
CNAV. Additionally, the contribution of the six new parameters to GPS Single Point Position-
ing (SPP) is analysed using data from 22 selected Multi-Global Navigation Satellite System
Experiment (MGEX) stations from a 30-day period. The results indicate that the CNAV/LNAV
Signal-In-Space Range Error (SISRE) and orbit-only SISRE from January 2016 to March 2018
is of 0·5 m and 0·3 m respectively, which is improved in comparison with the results from an
earlier period. The ISC precision of L1 Coarse/Acquisition (C/A) is better than 0·1 ns, and
those of L2C and L5Q5 are about 0·4 ns. Remarkably, ISC correction has little effect on the
single-frequency SPP for GPS users using civil signals (for example, L1C, L2C), whereas dual-
frequency SPP with the consideration of ISCs results have an accuracy improvement of 18·6%,
which is comparable with positioning accuracy based on an ionosphere-free combination of the
L1P (Y) and L2P (Y) signals.
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1. INTRODUCTION. As key parameters of the Global Positioning System (GPS)
broadcast ephemeris, satellite orbit and clock quality directly affect stand-alone real-time
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2 AHAO WANG AND OTHERS

positioning applications (Hofmann-Wellenhof et al., 2008). Warren and Raquet (2003)
conducted a long-term statistical analysis of GPS broadcast ephemeris orbit accuracy
from 1993 to 2002 and found that its accuracy had increased year by year. Thanks to
the successful implementation of the Legacy Accuracy Improvement Initiative (L-AII),
which expanded the GPS monitoring network by adding tracking stations of the National
Geospatial-Intelligence Agency (NGA), the GPS broadcast ephemeris accuracy has been
significantly improved and the SISRE was reduced to 1·0 m in 2005 (Creel et al., 2007).
Cohenour and Van Graas (2011) and Heng et al. (2011) evaluated the performance of the
new GPS navigation message for Block IIR and Block IIR-M satellites launched between
2005 and 2010, showing smaller SISREs than Block IIA satellites. With the continuing
replacement of old Block IIA satellites by new generation satellites (for example, Block
IIR-M and Block IIF), the mean SISRE of the GPS constellation was about 0·7 m over the
period 2012–2013 (Montenbruck et al., 2015).

The above studies on the accuracy of GPS broadcast ephemeris are all based
on the Legacy Navigation Message (LNAV), which has been transmitted on the L1
Coarse/Acquisition (C/A) signal since the first operation of GPS. As part of the mod-
ernisation of GPS, a new civil signal (L2C) is now transmitted on the L2 frequency for
Block IIR-M satellites. Two more signals (L5I5 and L5Q5) on a new frequency (L5) were
also introduced as standard signals with Block IIF satellites from 2010. Meanwhile, the
GPS Civil Navigation Message (CNAV), a new GPS broadcast ephemeris, was introduced,
aimed at providing more flexibility and higher precision of the GPS ephemeris on the L2
and L5 bands for civilian use and has been in service since 2014 (Montenbruck et al., 2013).
Compared with LNAV, there are three main differences: encoding mechanisms, message
structures and parameter representations, where two orbit parameters (change rate for the
semi-major axis and the mean motion) and four Inter-Signal Correction (ISC) parame-
ters are encoded (IS-GPS-200H, 2014; IS-GPS-705D, 2014; Yin et al., 2014). The ISC
parameters represent the discrepancy of L1C/A, L2C, L5I5 and L5Q5 signals with respect
to the L1P(Y) signal. An initial CNAV test campaign was conducted from 15 June 2013
and obtained a SISRE of 0·58 m and 0·48 m for CNAV and LNAV, respectively (Mon-
tenbruck et al., 2015). The International Global Navigation Satellite System Service (IGS)
started providing daily CNAV + LNAV broadcast ephemerides in a preliminary Recevier
Independent Exchange Format (RINEX)-style format as part of the Multi-Global Navi-
gation Satellite System (GNSS) Experiment (MGEX) brdxddd0.yyx product (where ddd
and yy represents the day of year and two-digit year, respectively) from 28 April 2014
(Steigenberger et al., 2015). Steigenberger et al. (2015) assessed the performance of CNAV
broadcast ephemerides from April 2014 to January 2015 with a SISRE of about 0·6 m,
which is essentially identical to the LNAV SISRE for the same satellites. For the evalua-
tion of the ISCs, Steigenberger et al. (2015) indicated that the precision of L1C/A ISC for
15 early GPS satellites is about 0·2 ns, and those of Timing Group Delay (TGD), L2C ISC
and L5Q5 ISC are about 0·5 ns. For the evaluation of the influence of ISCs on Single Point
Positioning (SPP), current studies either use limited data or ignore the influence of ISCs on
dual-frequency positioning (Steigenberger et al., 2015; Wang et al., 2016a).

Since 2015, the number of GPS satellites providing CNAV has gradually increased from
11 to 19, which enables a global stand-alone service. Few studies on the accuracy of CNAV
broadcast ephemerides for four new Block IIF (Space Vehicle Number, SVN G070 ∼ 073)
satellites have been published. In this paper, we perform an evaluation of CNAV global
stand-alone performance, including SISRE, ISCs and SPP. Section 2 presents the accuracy
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PERFORMANCE EVALUATION OF THE CNAV BROADCAST EPHEMERIS 3

of CNAV and LNAV broadcast ephemerides for the 19 GPS satellites between January
2016 and March 2018; Section 3 presents the performance of TGD and four ISC param-
eters, and these parameters are compared with Differential Code Bias (DCB) products of
different organisations; Section 4 evaluates the positioning accuracy of GPS SPP based on
LNAV-only, CNAV-only and CNAV + ISC; Section 5 summarises the main points of this
paper.

2. CNAV/LNAV ORBIT AND CLOCK QUALITY.
2.1. Evaluation methods. Compared with LNAV, CNAV provides extended orbit

parameterisation including a change rate for the semi-major axis �Ȧ and the mean motion
�ṅA, in addition, four ISC parameters representing differences of L1C/A, L2C, L5I5 and
L5Q5 signals with respect to the L1P(Y) signal are proposed in CNAV for civil user
positioning (Wang et al., 2014; Steigenberger et al., 2015; Wang et al., 2016a; Du et al.,
2017).

At present, the accuracy of GPS precise orbit and clock products provided by the IGS
analysis centres is at the 2–3 cm level (Montenbruck et al., 2015), which can be adopted as
a reference to evaluate the accuracy of broadcast ephemeris for LNAV and CNAV. To
remove temporal/spatial reference discrepancies between broadcast ephemeris and pre-
cise products, some key points should be taken into account. (1) The precise ephemeris
of the IGS is under the International Terrestrial Reference System (ITRF) framework,
while the broadcast ephemeris uses the World Geodetic System-84 (WGS-84) coordinate
system. The deviation between the two systems is about 1–2 cm; compared with broad-
cast ephemeris error, it is much smaller and can be neglected in comparison (Petit and
Luzum, 2010). (2) Clock offset values of precise and broadcast ephemerides cannot be
compared directly due to differences in the underlying realisation of the GNSS-specific
system time scales. These differences affect all GPS satellites in the same manner and pro-
duce a systematic bias that may vary from epoch to epoch. In order to eliminate this bias, an
ensemble clock difference is generally computed at each epoch from the average broadcast-
minus-precise clock values of satellites in a constellation, and then the individual clock
offset differences are corrected for this ensemble average. However, to account for avoid-
ing the influence of a few satellites’ clock gross error, we chose this ensemble median
as a systematic bias (Montenbruck et al., 2015; Zhang et al., 2016). (3) The GPS pre-
cise ephemerides refer to the Centre-of-Mass (CoM) of the satellites whereas the broadcast
ephemerides of all constellations directly provide the mean antenna phase centre location in
the Earth fixed reference frame, which requires a proper antenna offset correction by using
the empirically derived satellite antenna z-offsets in Montenbruck et al. (2018) and “ATX”
(for example, igs08.atx and igs14.atx) antenna models (Schmid et al., 2007; Montenbruck
et al., 2015; Zhang et al., 2016; Montenbruck et al., 2018).

SISRE is a key performance indicator, which describes the statistical uncertainty of the
modelled pseudorange due to errors in the broadcast ephemeris (Montenbruck et al., 2018).
The orbit-only contribution to the signal-in-space range error can be described as follows:

SISRE(orb) =
√

(αgR)2 + βg(A2 + C2) (1)

The combined orbit and clock SISRE is obtained from Equation (2):

SISRE =
√

(αgR − Clk)2 + βg(A2 + C2) (2)

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S037346331900016X
Downloaded from https://www.cambridge.org/core. Tongji University (Shanghai), on 06 Apr 2019 at 02:39:00, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S037346331900016X
https://www.cambridge.org/core


4 AHAO WANG AND OTHERS

Figure 1. Comparison of broadcast ephemeris errors between CNAV and LNAV (January 2016 - March 2018).
The vertical line separates Block IIR-M satellites (G48-G58) from Block IIF satellites (G62-G73).

where R, A, C represent broadcast orbit errors in radial, along-track and cross-track direc-
tions, respectively; Clk denotes the error of the broadcast clock offset and the weight factors
α and β depend on the altitude of the GNSS satellite. For GPS satellites, these values are
0·98 and 1/49, respectively (Montenbruck et al., 2015).

2.2. Analysis of CNAV/LNAV broadcast ephemeris error and SISRE. Broadcast
ephemeris error and SISRE for CNAV and LNAV over a 26-month period from Day 1
in 2016 to Day 62 in 2018 was analysed. IGS precise products of orbit and clock offset
were adopted as a reference by considering the three above-mentioned corrections (Mon-
tenbruck et al., 2018). It should be noted that the SVN G70 and G73 satellites have provided
the CNAV broadcast ephemeris since Day 126 in 2016, for 22 months of the data period.
SISRE outliers exceeding a limit of 15 m were rejected (Steigenberger et al., 2015).

Results of the broadcast ephemeris errors comparison between CNAV and LNAV for
the 19 satellites are shown in Figure 1, which illustrates the Root-Mean-Square (RMS)
of radial, along-track and cross-track orbit errors, as well as that of the clock errors. The
horizontal and vertical axis represents SVN and PRN (Pseudo Random Noise, which cor-
responds to SVN during testing) and errors, respectively in Figure 1. Table 1 presents the
mean RMS of CNAV and LNAV broadcast ephemeris errors for the Block IIR-M and Block
IIF constellations and their mean SISRE.

Compared with LNAV, the orbit error of CNAV is slightly smaller in the radial compo-
nent, but obviously larger errors in the along-track component were observed, which agrees
with the findings in Steigenberger et al. (2015) but improves from 2·23 m to 1·54 m. The
mean RMS of the CNAV clock error for the 19 satellites is almost identical to the LNAV
of no more than 0·5 m, which shows an improvement of around a factor of two compared
to the results in Steigenberger et al. (2015). The improvement is mainly due to the age of
CNAV orbit predictions being changed from three to four days to one day.

The majority of the Block IIF satellites have better accuracy in the clock error than
Block IIR-M. Among all the satellites, however, the accuracy of clock error of two Block
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PERFORMANCE EVALUATION OF THE CNAV BROADCAST EPHEMERIS 5

Table 1. Broadcast ephemeris errors in radial (R), along-track (A) and cross-track (C) directions, and clock
errors (T) as well as SISRE for both CNAV and LNAV transmitted by Block IIR-M and Block IIF satellites in a
26-month test period. All values are given in metres.

BLOCK-IIR BLOCK-IIF ALL

Component LNAV CNAV LNAV CNAV LNAV CNAV

R 0·14 0·13 0·21(0·20) 0·19(0·18) 0·18 0·17
A 1·13 1·65 1·08(1·04) 1·48(1·45) 1·10 1·54
C 0·46 0·45 0·41(0·41) 0·42(0·42) 0·43 0·43
T 0·42 0·42 0·42(0·28) 0·41(0·26) 0·42 0·41
R-T 0·43 0·42 0·49(0·36) 0·46(0·33) 0·47 0·45
SISRE(orb) 0·23 0·28 0·26(0·25) 0·29(0·28) 0·25 0·28
SISRE 0·46 0·49 0·52(0·39) 0·52(0·39) 0·50 0·51

Note: (*) is the mean value for BLOCK-IIF type by excluding G65 and G72.
Orbit-only contributions are indicated by “orb”.

IIF satellites of G65 and G72 reaches 1·29 m and 0·98 m, respectively, as they are equipped
with caesium clocks. The mean SISRE of all Block IIF satellites is therefore slightly worse
than the Block IIR-M satellites. Excluding G65 and G72, mean clock precision and SISRE
of all Block IIF satellites reaches 0·26 m and 0·39 m.

CNAV and LNAV SISREs are both at the 0·5 m level, which is further improved in com-
parison with the results of 0·6 m from 2014 to 2015 published in Steigenberger et al. (2015).
SISRE results show that the worse accuracy of the along-track component in satellite orbits
does not affect the overall performance of CNAV.

3. ACCURACY OF CNAV ISC PARAMETERS.
3.1. ISC data and update frequency. GPS broadcast clock parameters refer to the

ionosphere-free linear combination of the L1P(Y) and L2P(Y) pseudorange signals, DCBs
have to be considered to correct for systematic effects when carrying out SPP using civil
pseudorange observables (Montenbruck and Hauschild, 2013b; Montenbruck et al., 2014).
Four additional Inter-Signal Correction (ISC) parameters as a new type of DCB product
are introduced in the CNAV message to provide corrections for the legacy L1C/A signal
and the new L2C and L5 (L5I5 and L5Q5) signals with respect to L1P(Y), and the detailed
definition of ISCs is described in Yin et al. (2014) and Wang et al. (2016a).

Figure 2 shows the updating epochs of TGD and four ISC parameters of CNAV from
Day 1 in 2016 to Day 62 in 2018. In Figure 2, the TGDs of the SVN G048, G050, G052,
G055 and G062 satellites have never been updated and that of the SVN G053, G057, G063,
G064, G065, G067 and G073 satellites were only updated once or twice during the 26
months. The TGDs/ISCs updating frequency of other satellites is relatively higher.

L1C/A ISC, as the only intra-frequency bias parameter, has the lowest update frequency,
which has only been updated once for SVN G048, G70 and G73 and twice (that is, day of
year (doy) 127 and 160 in 2016) for other satellites. The update frequency of the L2C ISC
is higher than TGD and other ISC parameters, where L2C ISC of SVN G066 and G068-072
are updated more than four times. It can be seen that ISCs of L5I5 and L5Q5 of the Block
IIF satellites were updated at the same time as the L2C.

The TGD and ISCs of CNAV broadcast ephemerides for the 19 GPS satellites are plot-
ted in Figure 3. Multiple values exist for some parameters of the same satellites, which
demonstrate small parameter variations during each updating. Apparent differences are
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6 AHAO WANG AND OTHERS

Figure 2. GPS CNAV broadcast TGD and ISC parameters update time interval. The vertical line separates
Block IIR-M satellites (G48-G58) from Block IIF satellites (G62-G73).

Figure 3. GPS broadcast TGD and ISC values of each individual satellite (January 2016 – March
2018). The vertical line separates Block IIR-M satellites (G48-G58) from Block IIF satellites (G62-G73).
Multiple values exist for some parameters of the same satellites, which demonstrate small parameter
variations during each updating.

observed in the TGDs and L2C ISC of Block IIR-M and Block IIF, where they have oppo-
site signs for these two Block types. The L1C/A ISCs have the smallest variation range as
they refer to different signals of the same frequency, where the scatter is 2·5 ns for satel-
lites of the Block IIF type and 0·7 ns for the Block IIR-M satellites. On the other hand, the
TGD/ISCs of the different Block type satellites show greater differences in comparison with
the same Block type satellites, which reaches even more than 20 ns in case of the TGD.
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(a)

(b)

(c)

Figure 4. Continued.
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8 AHAO WANG AND OTHERS

(d)

Figure 4. Mean bias and STD (represented by error bar) of CNAV (a) TGD and (b, c, d) ISCs relative
to the DCB products of DLR and CODE. (January 2016 – March 2018). The vertical line separates Block
IIR-M satellites (G48-G58) from Block IIF satellites (G62-G73).

Table 2. Consistency of the CNAV TGD and ISCs relative to that of DLR and CODE. (January 2016 – March
2018). All values are given in nanoseconds.

CNAV-DLR CNAV-CODE

TYPE Variation RMS Variation RMS

TGD −0·46 ∼ 0·50 0·40 −0·26 ∼ 0·29 0·21
ISCL1C/A −0·09 ∼ 0·10 0·07 −0·10 ∼ 0·14 0·08
ISCL2C −0·55 ∼ 0·79 0·40 −0·20 ∼ 0·44 0·23
ISCL5Q5 −0·27 ∼ 0·41 0·34 — —

3.2. ISC comparison and discussion. The accuracy of two different DCB products
provided by Deutsches Zentrum für Luft-und Raumfahrtn (DLR) and the Center for Orbit
Determination in Europe (CODE) are at the precision of 0·2 ns and 0·1 ns, respectively
(Schaer, 2008; Montenbruck et al., 2014; Wang et al., 2016b), which are used as a reference
to evaluate the precision of the TGD/ISCs in the CNAV broadcast ephemeris. Table 6 in
Steigenberger et al. (2015) lists the detailed relations between TGD/ISCs from the CNAV
message and DCBs from DLR and CODE. The TGD and ISCs in CNAV are derived
by referring to a calibrated reference receiver at the NGA monitoring station, whereas a
zero-mean condition is applied for the DLR and CODE DCBs (Feess et al., 2013; Mon-
tenbruck et al., 2014). Considering these different estimation approaches, all values have
been re-aligned with the same condition covering the affected satellites, and the detailed
realignment method is described in Wang et al. (2016a). More specifically, all Block IIF
satellites as reference satellites are selected for constructing a new zero-mean condition
since L5 ISCs cannot be provided by Block IIR-M satellites.

Figure 4 and Table 2 show the mean bias and Standard Deviation (STD) of the broadcast
TGD and ISCs relative to the DLR and CODE DCBs, respectively. It should be noted that
L5I5 ISCs are not presented in Figure 4, because no commercial GNSS receiver could
provide observations from the L5I data channel during the validation time period. The
mean biases of the CNAV-DLR TGDs vary from −0·46 ns to 0·50 ns, which is obviously
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PERFORMANCE EVALUATION OF THE CNAV BROADCAST EPHEMERIS 9

larger than that of the CNAV-CODE TGDs (−0·26 ns ∼ 0·29 ns). This may be due to the
DLR TGDs being estimated daily, whereas the CODE TGDs represent a monthly average.
The agreement of mean L1C/A ISCs between CNAV and DLR/CODE does not exceed
0·14 ns. For the L2C ISCs, mean biases range between [−0·55 ns 0·79 ns] and [−0·20 ns,
0·44 ns] compared to the DLR and CODE DCBs. The L5Q5 ISCs are compared to DLR
DCBs as no such products from CODE were available, and mean biases are in the range
[−0·27 ns, 0·41 ns].

In general, these results show that the precision of CNAV TGDs and ISCs are about two
times worse than those of the DLR/CODE products. Both DLR and CODE use a global
tracking network of more than 200 stations, while CNAV data are based on a quite small
tracking network of around ten stations (Steigenberger et al., 2015). Although the current
CNAV network can provide full global coverage and meet the requirements of real-time
processing, the accuracy of CNAV TGDs and ISCs could be further improved if more
stations were added.

4. PERFORMANCE OF CNAV/LNAV BROADCAST EPHEMERIS ON GPS
STANDARD POSITIONING.

4.1. Test data and processing strategy. To further assess the performance of CNAV,
we apply the CNAV/LNAV for SPP in different scenarios. 22 MGEX stations shown in
Figure 5 and a 30-day period of Day 70 to Day 99 in 2018 was selected. A Hatch filter was
applied to smooth the pseudo-range to reduce the impact of the code noise (Hatch, 1982;
Chang et al., 2015). Other SPP process settings were as follows: the orbits and clocks
from broadcast ephemeris; the ionosphere-free linear combination of P code observations
at a sampling rate of 30 s was used for dual-frequency SPP with a cut-off angle of 10◦;
a Global Ionosphere Map (GIM) model was applied to correct the ionospheric error for
single-frequency SPP (Schaer and Werner, 1998; Jee et al., 2010); tropospheric errors were
corrected by the GPT2w model (Böhm et al., 2015), and the coordinates and receiver clocks
were estimated epoch by epoch in a Kalman filter.

As only 12 GPS Block IIF satellites transmitted L5Q signals during the validation time
period, we utilised the P code observables C1C, C2L, C1W and C2W of the 19 GPS
satellites for positioning and specific scenarios are as follows:

(1) C1C/C1W and C2L/C2W-based kinematic single-frequency SPP using the broadcast
ephemeris of LNAV-only, CNAV-only and CNAV + ISC, where LNAV-only and CNAV-
only mean using satellite orbits/clocks from LNAV and CNAV without consideration of
ISC, and CNAV + ISC refers to the use of satellite orbits/clocks of CNAV together with
an ISC parameter. Since there are no ISCs for C1W and C2W, C1W and C2W-based SPP
using LNAV-only and CNAV-only are compared.

The pseudo-range observation equations with and without the consideration of ISCs on
the L1 and L2 frequency can be expressed as:

Ps
r,f1 = ρs

r + c · (dTr − dTs) + c · TGD + dTrop + λ1 · dIon + εP

Ps
r,f1 = ρs

r + c · (dTr − dTs) + c · TGD − c · ISCL1C/A + dTrop + λ1 · dIon + εP

}
(3)

Ps
r,f2 = ρs

r + c · (dTr − dTs) + c · ( f1/f2)2 · TGD + dTrop + λ2 · dIon + εP

Ps
r,f2 = ρs

r + c · (dTr − dTs) + c · TGD − c · ISCL2C + dTrop + λ2 · dIon + εP

}
(4)

where Ps
r,f1 , Ps

r,f2 are the pseudo-range observations on the L1 and L2 frequencies, respec-
tively; ρs

r is the geometric range between the receiver and satellites; dTr and dTs are
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10 AHAO WANG AND OTHERS

Figure 5. Distribution of the selected 22 MGEX stations.

Figure 6. Mean of PDOP, visible satellites number and the percentage of PDOP less than 5·0 for 22 MGEX
stations.

the receiver and satellite clock bias, respectively; dTrop is the slant tropospheric delay,
λi = 40·28/f 2

i (i = 1, 2) and λi · dIon is the slant ionospheric delay; c is light speed and εP
is a noise term.

(2) C1C/C2L ionosphere-free combination-based kinematic dual-frequency SPP using
the broadcast ephemeris of LNAV-only, CNAV-only and CNAV + ISC, respectively.

The dual-frequency pseudo-range observation equations with and without the consider-
ation of ISCs can be expressed as

Ps
r,IF = ρs

r + c · (dTr − dTs) + dTrop + εP

Ps
r,IF = ρs

r + c · (dTr − dTs) + c · TGD − c · ISCL2C − ( f1/f2)2 · ISCL1C/A

1 − ( f1/f2)2 + dTrop + εP

⎫⎬
⎭
(5)
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Figure 7. RMS of positioning errors in north-south, east-west, up and 3D components for 22 MGEX stations
in different SPP schemes.
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Table 3. RMS of positioning errors in different SPP schemes. All values are given in metres.

Kinematic

Vertical Horizontal 3D

Type LNAV CNAV CNAV + ISC LNAV CNAV CNAV + ISC LNAV CNAV CNAV + ISC

C1C 1·89 1·87 1·81 1·05 1·04 1·02 2·16 2·14 2·08
C1W 1·80 1·78 — 1·01 1·00 — 2·07 2·05 —
C2L 2·28 2·26 2·23 1·26 1·25 1·23 2·62 2·59 2·56
C2W 2·23 2·21 — 1·22 1·21 — 2·56 2·53 —
C1C + C2L 2·17 2·15 1·75 1·22 1·22 1·00 2·49 2·48 2·02
C1W + C2W 1·68 1·65 — 0·96 0·95 — 1·94 1·91 —

(3) Dual-frequency SPP based on the C1C/C2L ionosphere-free combination
(using broadcast ephemeris of CNAV + ISC) and dual-frequency SPP based on the
C1W/C2W ionosphere-free combination using the broadcast ephemeris of LNAV-only and
CNAV-only.

4.2. Precision analysis of GPS SPP with and without ISCs. Using the 19 satellites
only, the upper subgraph in Figure 6 shows the average number of visible satellites and
mean Position Dilution of Precision (PDOP) in a daily SPP solution for selected MGEX
stations. The lower subgraph in Figure 6 gives the percentage of epochs with PDOP less
than 5·0 in the total epochs of one day for each station. An average of five to seven satellites
could be observed at each station, but most of these stations had less than six satellites
in view. The mean PDOP varied from 2·6 to 3·1 and the percentage of healthy epochs
(PDOP < 5) was from 77·8% to 98·6% for all stations; only one third of the total stations
exceeded 90%.

Figure 7 shows the RMS of SPP positioning errors under the above-mentioned different
scenarios for the 22 MGEX stations in the test period, and mean RMS of single- and dual-
frequency SPP positioning errors in the horizontal, vertical and Three-Dimensional (3D)
components are described in Table 3.

C1C/C1W and C2L/C2W-based single-frequency SPP based on LNAV-only/CNAV-
only achieves the same precision as that of single-frequency SPP with the consideration of
ISCs using CNAV + ISC. C1C/C1W-based single-frequency SPP has a precision of about
2·1 m in 3D and that of C2L/C2W is a little bit worse at around 2·6 m, due to a relatively
larger range of noise.

C1C/C2L ionosphere-free combination-based dual-frequency SPP without ISC correc-
tion exhibits RMS of 1·22 m and 2·15 m in horizontal and vertical components, respec-
tively. Considering the ISCs results in smaller positioning errors with RMS of 1·00 m in the
horizontal direction and 1·75 m in the vertical and 3D RMS was improved by about 18·6%.
More interestingly, the C1W/C2W ionosphere-free combination-based dual-frequency SPP
under scenario 3, where no ISCs corrections were applied, achieved the best precision
among all scenarios. Its position RMS is less than 1·00 m and 1·70 m in horizontal and
vertical directions, respectively. This implies that the ISCs of C1W and C2W may be quite
close and thus they have little impact on SPP.

5. CONCLUSIONS. Compared with LNAV, CNAV provides a different type of encod-
ing mechanism and more flexible message structures, as well as benefitting from a large
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number of orbit parameters, which aim at producing a substantially smoother and more pre-
cise broadcast orbit. In addition, the new DCB information such as the ISCs for users of the
civil signals is introduced in the CNAV to correct for systematic effects depending on the
used signals and frequencies. This paper selects the CNAV/LNAV broadcast ephemeris and
IGS precise GPS products from the period from January 2016 to March 2018 to evaluate
the CNAV/LNAV performance, including precision of orbits, clocks, SISREs and SPP.

The performance of CNAV broadcast ephemeris is essentially identical to the LNAV for
the same satellites. The CNAV/LNAV SISRE and SISRE(orb) from January 2016 to March
2018 amounts to roughly 0·5 m and 0·3 m, respectively, which is further improved in com-
parison with the results from 2014 to 2015. The SISRE of Block IIF satellites (excluding
G65 and G72) is around 0·1 m lower than that of IIR-M satellites.

The L1C/A ISC parameter has the lowest update frequency among all ISCs and they
are updated no more than twice in a 26-month period. For the different Block types, the
TGDs/ISCs update frequency of the Block IIF satellites is significantly higher than that of
Block IIR-M satellites.

The agreement of the TGDs/ISCs with DLR and CODE DCB products is slightly dif-
ferent, where the precision of L1C/A ISCs is better than 0·1 ns and those of the TGD, L2C
ISCs and L5Q5 ISCs are about 0·4 ns.

ISC correction has little effect on single-frequency SPP for GPS users using civil signals
(for example, L1C, L2C), whereas application of these ISCs in dual-frequency SPP using
C1C + CL2 observations results in positioning errors with an RMS of 1·00 m in the hori-
zontal direction and 1·75 m in the vertical direction and 3D RMS was improved by about
18·6%. The C1W/C2W ionosphere-free combination-based dual-frequency SPP without
ISC corrections achieves the best precision among all scenarios. Its position RMS is less
than 1·00 m and 1·7 m in horizontal and vertical directions, respectively, which implies that
the ISCs of C1W and C2W may be quite close, and thus they have little impact on SPP.
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