文章编号: 0253-374X(2011)05-0764-04

DOI: 10.3969/j. issn. 0253-374x. 2011. 05.024

GPS 精密定位软件研制与应用

王解先1,2,陈俊平3

(1. 同济大学 测量与国土信息工程系, 上海 200092;

2. 现代工程测量国家测绘局重点实验室, 上海 200092; 3. 上海天文台, 上海 200030)

摘要:介绍了GPS精密静态定位软件LTW_BS的改正模型、预处理和解算模型,及其对2年上海CORS网的数据以及江苏CORS网70个站的数据处理情况.结果表明,计算结果正确,软件运行稳定可靠.对于基线长度100km区域网静态定位精度能够达到mm级,对于上千km的大区域定位精度优于2cm.

关键词: GPS 精密定位; 软件研制; mm 级定位 中图分类号: P 228.4 文献标识码: A

Development and Application of GPS Precise Positioning Software

WANG Jiexian 1, 2, CHEN Junping 3

Department of Surveying and Geoinformatics, Tongji University,
 Shanghai 200092, China;
 Key Laboratory of Modern Engineering
 Surveying State Bureau of Surveying and Mapping, Shanghai 200092,
 China;
 Shanghai Astronomical Observatory, Shanghai 200030,
 China)

Abstract: Correction models, data preprocessing, and solving approach of GPS precise positioning software LTW_BS are introduced. Two-year-data from Shanghai CORS network and data from Jiangsu CORS network composed of 70 stations are processed. Results show that LTW_BS is reliable and stable. With LTW_BS, millimeter level accuracy for a 100 km regional static network and 2 cm accuracy for a large scale network up to a thousand of kilometer are expected.

Key words: GPS precise positioning; software development; mm level accuracy

中国大陆构造环境监测网络(简称陆态网络), 是以全球卫星导航定位系统为主,辅以其他空间技术,结合精密重力和精密水准观测技术,对地球岩石圈、水圈和大气圈变化进行实时监测的国家级地球 科学综合观测网络.可移动基准站实时定位服务软件是陆态网络数据系统软件中的一个,主要用于快速、任意地在全球卫星定位系统(GNSS)基准站稀疏地区或特别地区,增加基准站密度,起到临时 GNSS基准站和动态差分基准站的作用.

可移动基准站的精密定位是项目的关键. 当临时基准站架设完后,一边接收观测数据,一边通过通讯网络获取周围基准站的观测数据,积累 $1\sim2~h$ 观测数据,将其与周围基准站数据一起处理,精密确定临时基准站坐标. 目前国际上常用的长距离精密相对定位软件主要有 GAMIT, BERN ESE, GIPS Y 等,而这些软件较复杂,有些需要在 LINUX 环境下运行,显然不适合本项目. 为此作者在这些成熟软件的基础上,开发了精密静态定位软件 LT W_BS.

1 改正模型

改正模型是 GPS 长距离精密定位软件的关键. 在陆态网络工程中, 站间距通常达到 $100 \sim 300 \text{ km}$, 大气等环境因素对测站的影响有较大差异, 必须严格考虑各种误差改正模型. LTW_BS 采用了以下改正: ①电离层改正, 采用消除对流层(L_3) 组合消除; ②对流层改正, 采用 Saastmoinen 模型计算天顶方向延迟量, 作为初始值, 剩余量作为参数估计, 每小时每测站解 1 个参数, 映射函数采用 GMF (global mapping function) [1]; ③卫星钟差改正, 因为是准实时定位, 无法获得精密钟差, 只能以广播星历中卫星钟差为初始值, 剩余部分作为参数解算. 每个历元每颗卫星解 1 个参数, 俱接收机钟差改正, 1 个测站 1 个历元解 1 个参数, 其初始值用伪距单点定位得到;

⑤天线相位中心改正, 采用国际 GPS 服务(IGS)[2]

收稿日期: 2009-12-14

基金项目: 国家自然科学基金(40974018); 陆态网络工程(CMONOCII-RJ-2008-005)

第一作者: 王解先(1963—), 男, 教授, 博士生导师, 工学博士, 主要研究方向为卫星大地测量. E-mail; wangjiexian @tongji. edu. cn

提供的绝对相位中心改正模型[3];⑥潮汐改正,固体 潮、极潮对测站坐标的影响参考 IERS(international earth rotation service, 国际地球自转服务) 规范[4], 海洋潮汐的影响由 IGS (international GPS service, 国际 GPS 服务) 推荐的模型计算[3]: ⑦相对论效应 改正, 采用 IERS 规范进行计算; ⑧相位缠绕, 采用 IGS 推荐模型[6] 进行改正: ⑨地球自转改正, 在惯性 系内解算,不需考虑此项改正,

LTW BS 的解算模型

2.1 观测模型

采用精密单点定位的传统模型, 即采用双频 GPS 伪距和载波相位观测值的无电离层组合 L_3 来 构成观测模型, 其观测模型的简化形式如下[7]:

$$\begin{split} P_{\text{IF}} = & \frac{f_{1}^{2}}{f_{1}^{2} - f_{2}^{2}} P_{1} - \frac{f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}} P_{2} = \\ & \varrho + c \left(\operatorname{d}t_{\text{r}} - \operatorname{d}t_{\text{s}} \right) + d_{\text{trop}} + \varepsilon (P_{\text{IF}}) \quad (1) \\ \Phi_{\text{IF}} = & \frac{f_{1}^{2}}{f_{1}^{2} - f_{2}^{2}} \Phi_{1} - \frac{f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}} \Phi_{2} = \varrho + \\ & c \left(\operatorname{d}t_{\text{r}} - \operatorname{d}t_{\text{s}} \right) + d_{\text{trop}} + N_{\text{IF}} + \varepsilon (\Phi_{\text{F}}) \quad (2) \end{split}$$

式中: P_{1F} 为两个频率伪距 P_{1} , P_{2} 的无电离层伪距组 合观测值: Φ_F 为两个频率的相位 Φ_1 Φ_2 无电离层相 位组合观测值(距离); $f_i(i=1,2)$ 为载波频率; $N_{IF}=$ $rac{f_1^2}{f_1^2-f_2^2} \lambda_1 N_1 - rac{f_2^2}{f_1^2-f_2^2} \lambda_2 N_2$ 为无电离层折射组合相 位观测值(观测)的模糊度;♡为卫星至接收机的计算 距离: c 为光速: dt 和 dt 为接收机和卫星的钟差: ϵ $(P_{\rm IF})$, $\varepsilon(\Phi_{\rm F})$ 分别为两种组合观测值的观测噪声和 未被模型化的误差.

2.2 数据预处理

数据预处理包含原始观测数据图的预处理以及 伪距单点定位.

2.2.1 ms 跳变改正

有些 GPS 接收机在生成观测值时, 由于频率的 稳定性不够, 会产生时标的漂移, 为保持观测值与时 标的一致性, 在一定时间间隔接收机对时标进行调 整.目前, 有些接收机(例如 Trimble, Septentrio) 存 在 m s 跳变的问题 9-10],造成以上3种观测值的不一 致.针对这一问题,作者对相邻历元(i, i-1)同一卫 星的观测值进行比较,得到伪距以及相位各自的变 化量 砂. 砂

$$\delta P = P_i - P_{i-1}, \quad \delta \Phi = \Phi_i - \Phi_{i-1},$$

对两者变化量 ኞ 和 ኞ 的差值取整得到 △. 如 果 \triangle 超过整 m s, 则伪距以及相位存在不一致, 将 \triangle 改正到 L_1 和 L_2 的相位观测值 Φ_1 和 Φ_2 上, 以保持 相位观测值的连续性

$$\Phi_1 = \Phi_1 + \Delta, \quad \Phi_2 = \Phi_2 + \Delta \tag{4}$$

通过以上改正,如果卫星连续观测,则模糊度将 保持不变, 由式(2) 可知, \triangle 将由测站钟差吸收.

2.2.2 原始数据预处理

经过以上的数据编辑, 伪距以及相位数据保持 了一致,在此基础上,作者通过历元间组合观测数据 的比较,探测是否存在新的模糊度,

采用的观测数据组合有宽巷(WL)组合、电离层 组合(LG)以及无电离层组合 L_3 的差值 $\Delta L_3 = P_{\mathbb{F}}$ — Φ 定义历元 i 以上 3 种观测值为 Θ^{i} . 该观测值与上 一历元 i-1 观测值的差值为

$$\delta\Theta_k = \Theta_{k,i} - \Theta_{k,i-1} \tag{5}$$

式中, $k=1, 2, 3, 分别代表 WL, LG, \Delta L_3.$ 定义 $\delta \Theta_k$ 大于给定的限差,则认为该历元存在新的周跳,进而 引入新的模糊度参数[11].

2.2.3 伪距单点定位

通过以上的数据编辑,得到了一致的伪距以及 相位观测值. 需要进一步对时标进行求解. 通过 ms 跳变的数据编辑,在相位观测值上增加了整数 ms 的 改正, 而伪距则保持不变, 通过伪距单点定位, 该 ms 跳变最终将反映在测站钟差,从而实现时标与伪距、 相位观测值的一致. 简便而实用的伪距单点定位可 以采用 Bancroft 方法[12-13].

2.3 解算方法

LTW BS 解算参数的说明见表 1.

表 1 LTW_BS的解算参数

Tab. 1 Parameters to be solved in LTW BS

参数名称	参数个数	初值		
卫星钟差	每历元、每个卫星 1 个	来自广播星历		
测站钟差	每历元、每个接收机 1 个	由伪距单点单位计算		
对流层延迟	每个站每小时 1 个	由 Saastmoinen 天顶延 迟模型和 Niell 映射函 数计算		
站坐标	每个站 3 个,已知点不解	由伪距单点单位计算		
模糊度	每个站对每个卫星 1 个, 遇到失周则消去, 用新的 替代	伪距、相位观测值求差		

按式(1)、(2)对每个历元每个卫星的观测量线 性化,叠加至组成法方程,对于钟差参数每个历元需 要求解,对流层延迟参数1h后失效,模糊度参数在 (C)1994-2020 China A cademic Pournal Electronic Publishing House. All rights reserved. min. //www.cirkl.me 参数消去.设迭加到 i-1 历元时.法方程为

$$Nx = C$$
 (6)

式中: $N=(a_{j,k})$, $C=(c_j)(j, k=1, 2, 3, \dots, n; n$ 为总的参数个数), x 为参数改正数.

若要消去第 1 个参数, 即将法方程系数变为

$$\left\{
 \begin{array}{l}
 a_{j,k} = a_{j,k} - a_{j,l} a_{l,k} / a_{l,l} \\
 c_k = c_k - c_{l} a_{l,k} / a_{l,l}
 \end{array}
 \right.$$
(7)

从 i 历元开始, 法方程中第 l 个参数对应为新的参数.

3 上海、江苏 CORS 网的处理

为了验证 LT W_BS 静态定位软件的可靠性与实用性,对上海 CORS 网 9 个点 2 年数据、江苏 CORS 网 70 个点 5 d 数据,进行了静态定位计算.以检验软件的稳定性和可靠性.

3.1 上海 CORS 网的数据处理

上海 CORS 网,由 9点组成,基线长度 $15 \sim 70$ km. 采用 LTW_BS 软件对该网从 2007 年 7月 29日至 2009 年 7月 31日(MJD: 54370-55043),共 25个月的静态观测数据进行了处理.计算引入 IGS 的 SHAO 站一起计算.其坐标固定为(-2831733.6420 m.

4 675 665.910 0 m, 3 275 369.361 0 m).卫星轨道采用 IGS 精密星历,卫星钟差初值取自广播星历.

表 2 给出了 SHAO 至上海 CORS 网各点在高、东、北、长度(U, E, N, L) 4 个量的重复性, 计算重复性时未扣除沉降等因素引起的趋势项. 图 1 为基线 SHAO—SHCH(26 km) 各天解的序列图. 计算结果表明软件稳定可靠, 若扣除趋势项(上海网部分屋顶点已证明存在接近 1 cm ° 年 $^{-1}$ 的沉降), 重复性将在 5 mm 左右.

表 2 SHAO 至各点在高、东、北、长度 (*U*, *E*, *N*, *L*)4 个量的重复性

Tab. 2 RMS of baseline vectors from SHAO to each station in UEN directions and length

				Ш
点名	U	E	N	L
SHCH	0.008	0.004	0.003	0. 004
SHQP	0.005	0.004	0.002	0.004
SSJG	0.005	0.004	0.002	0.004
CMMZ	0.007	0.004	0.003	0.003
LGXG	0.006	0.005	0.002	0.004
SHBS	0.009	0.006	0.003	0.004
SHJD	0.007	0.005	0.003	0.002
SHJS	0.009	0.005	0.003	0.003
SH XZ	0.010	0.004	0.004	0.004

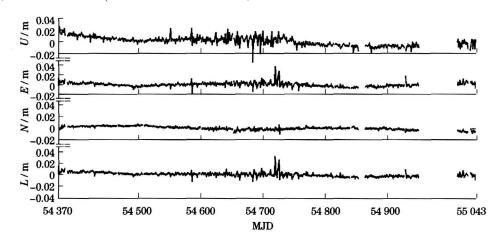


图 1 基线 SHAO-SHCH(26 km)的重复性, 横坐标为 MJD, 纵坐标为离散度 Fig. 1 RMS of baseline vector from SHAO to SHCH (26 km)

3.2 江苏 CORS 网的数据处理

江苏省连续运行参考站系统(JSCORS)框架点共有 70 个, 采用 LTW_BS 软件对 2009 年 2 月 24 日至 2009 年 2 月 28 日共 5 d 的观测数据进行处理. 计算时引入 9 个 IGS 站的数据.

计算时将 SHAO 站固定为 ITRF 2005 的坐标值, 其他 IGS 站的计算结果与 ITRF 2005 的比较结果见表3, 差别最大的是处于南半球的 COCO 站(SHAO— COCO 基线长度为 5 286 km), 达6 cm, 其余站基本在 为了验证软件的正确性, 江苏网的数据还采用GAMIT 软件计算, LTW_BS 软件计算结果与GAMIT 软件的计算结果比较, 结果如图 2 所示, 坐标差值基本在 2cm 以内. 图中已将 COCO 站剔除, COCO 站 GAMIT 的计算结果也不好, 该站处于南半球, 与其余站的公共观测卫星较少.

4 结论

2 cm 以下,说明软件处理长基线的能力较好。ctronic Publishin (1) LTW ABS 应用 IERS 最新规范,采用最新的net

m

表 3 LTW BS 计算的 IGS 站坐标与已知 ITRF 2005 坐标(X, Y, Z) 较差

TT 1 0	C 11 / 1100	0 T CC				TED TI 200 F
Tab. 3	Coordinate differences	of IGS	stations between	solved	value and	ITRF 2005

点名	空间坐标			IT RF 2005			坐标差		
	X	Y	Z	X	Y	Z	D_X	D_Y	D_Z
BJFS	-2 148 744 . 206	4 426 641. 244	4 044 655. 895	-2 148 744. 210	4 426 641.252	4 0446 55. 887	0. 003 6	-0.0083	0.0082
COCO	−741 950. 583	6 190 961. 614	− 1 337 767. 972	— 741 950. 594	6 190 961.673	-1 337 767. 983	0. 011 1	-0.0594	0.0108
IRK T	-968 332. 491	3 794 425. 409	5 018 167. 717	-968 332. 498	3 794 425.409	5 018 167. 711	0.0067	-0.0002	0.0058
KUNM	-1 281 255. 850	5 640 746. 095	2 682 879. 913	-1 281 255. 851	5 640 746.091	2 682 879. 914	0.0010	0.004 3	-0.0007
TSKB	−3 957 199 . 252	3 310 199. 727	3 737 711. 638	-3 957 199 . 250	3 3 10 199.739	3 737 711. 634	-0.0020	-0.0125	0.0035
URUM	193 030. 505	4 606 851. 317	4 393 311. 488	193 030. 506	4 606 851.291	4 393 311. 488	-0.0006	0.025 6	-0.0003
USUD	−3 855 263. 024	3 427 432, 544	3 741 020. 268	-3 855 263.031	3 427 432.553	3 741 020. 272	0.0067	-0.0086	-0.0038
WUHN	-2 267 749 . 560	5 009 154. 271	3 221 290. 664	-2 267 749. 548	5 009 154.243	3 221 290. 650	- 0. 011 6	0.028 1	0. 013 6

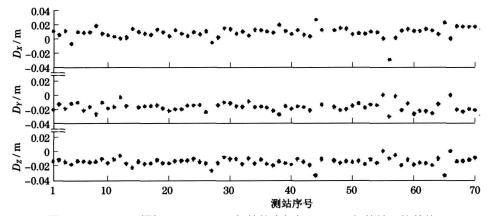


图 2 ITRF 2005 框架下, LTW BS 解算的坐标与 GAMIT 解算结果的差值

Fig. 2 Coordinate differences between results from LTW BS and GAMIT in ITRF 2005 frame

IGS 推荐的改正模型, 采用引入新模糊度的方法处理失周, 使得程序简洁, 不易出错, 解算模型上采用消去失效参数的方法, 使得法方程规模控制在一定量级上, 保证了软件的稳定性和可靠性.

(2) 对 25 个月上海 CORS 网的数据和江苏 CORS 网 70 个站数据的处理结果表明,软件对数十 km 至数千 km 的基线,定位结果正确、稳定可靠.对于基线长度 100 km 左右区域网定位精度可达到 mm 级,对于上千 km 的网精度在 2 cm 以内.

参考文献:

- [1] Boehm J, Niell A E, Tregoning P, et al. The global mapping function (GMF); a new empirical mapping function based on data from numerical weather model data [J]. Geophical Research Letters, 2006, 33; 4.
- [2] Dow J M, Neilan R E, Weber R, et al. Galileo and the IGS: taking advantage of multiple GNSS constellations [J]. Advances in Space Research, 2007, 39, 10: 1545.
- [3] IERS. General Data of IGS Station[EB/OL] . [2010-10-20] . ftp://igscb. jpl. nasa. gov/igscb/ station/ general/igs05. atx.
- [4] IERS. IERS Convention 2003 [EB/OL]. [2010-10-20]. http://www.iers.org/IERS/EN/Publications/ Technical Notes/tn32.html.

www.oso.chalmers.se/ - loading/.

- [6] Wu J T, Wu S C, Hajj G A, et al. Effects of antenna orientation on GPS carrier phase[J]. Manuscripta Geodaetica, 1993, 18; 91.
- [7] 王解先. GPS 精密定轨与定位[M]. 上海: 同济大学出版 社, 1997.
 - Wang Jiexian. GPS precise positioning and orbit determination [M]. Shanghai: Tongji University Press, 1997.
- [8] Gurtner W. R. The Receiver Independent Exchage Format Version 3. 0. 1 [EB/OL] . (2009—06—02) [2010—09—30] . http://igscb.jpl.nasa.gov/igscb/datat/rinex301.pdf.
- [9] Zhang F P, Gendt G, Ge M, et al. GPS data processing at gFZ for monitoring the vertical motion of global tide gauge benchmarks[R]. Potsdam; GFZ, 2007.
- [10] Chen J, Ge M, Dousa J. et al. Evaluation of EPOS RT for realtime deformation monitoring [J]. Journal of Global Positioning Systems, 2009, 1(8): 1.
- [11] Blewitt G. An automated editing algorithm for GPS Data[J]. Geophysical Research Letters, 1990, 3: 199.
- [12] Bancroft S. An algebraic solution of the GPS equations [J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, 21; 56.
- [13] 陈俊平. 低轨卫星精密定轨研究[D]. 上海: 同济大学土木工程学院, 2007.

 CHEN Junping. Research on LEO satellite orbit determination
 [D]. Shanghai: Tongji University. College of Civil

5] CHans Georg Ocean tide Data[EB/OI] . [2010—10—11] . http://www.cnki.net