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Abstract: Orbit fitting is used in many GPS applications. E.g., in Precise Point Positioning
(PPP), GPS orbits(SP3 orbits) are normally retrieved either from IGS or from one of its Analysis
Centers (ACs) with 15 minutes’ sampling, which is much bigger than the normal observation
sampling. Therefore, algorithms should be derived to fit GPS orbits to the observation time. Many
methods based on interpolation were developed. Using these methods the orbits fit well at the
sampling points. However, these methods ignore the physical motion model of GPS satellites.
Therefore the trajectories may not fit the true orbits at the periods in between 2 sampling epochs.
To solve this problem, we develop a dynamic approach, in which a model based on Helmert
transformation developed in GPS orbit fitting. In this orbit fitting approach, GPS orbits at
sampling points are treated as pseudo-observations. Thereafter, Helmert transformation is built up
between the pseudo-observations and dynamically integrated orbits at each epoch. A set of
Helmert parameter together with corrections of GPS initial orbits are then modeled as unknown
parameters. Results show that the final fit orbits have the same precision as the IGS final orbits.
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Introduction

Currently, GPS orbit products of IGS achieves a precision better than 5 cm(IGS:
http://igscb.jpl.nasa.gov/components/prods.html), which provides and enhances a lot of
applications, e.g. PPP. In PPP, orbits and clocks of GPS satellites are normally fixed to a certain
value. They may be retrieved either from IGS or from one of its ACs. Currently, the sampling rate
of GPS orbits provided by IGS is 15 minute. For high frequency data processing, algorithms
should be derived to get the orbits at the observation time.

Many methods based on interpolation such as Chebyshev polynomial''™

, Lagrange
polynomial”!, Newton polynomial™ etc., were developed. These methods use polynomial to fit
the trajectories of the GPS orbit. The orbits normally fit well at the sampling point. However, there
is one problem of these methods that they ignore the dynamical physical motion model of GPS
satellites, i.e., the Newtonian second law. Consequently, the orbits may not fit well at the epochs in

between 2 sampling epochs.
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Starting from this point, a model based on Helmert transformation is presented in GPS orbit
fitting. Based on this model an orbit fitting approach is developed. Firstly, we get satellites’ initial
orbits from the IGS final orbits. An orbit integration is then performed based on the derived initial
orbits. Afterwards, Helmert transformation between IGS orbits and integrated orbits is set up at
sampling epochs of the IGS orbits. Accumulating all the equations at each epoch, the parameters
of the model, including Helmert transformation parameters and corrections of initial orbits, are
then estimated. Using the updated initial orbits, orbit integration can be performed again to get the
new integrated orbits. This procedure can be iterated. Results show that the final integrated orbits

have the same precision of the IGS final orbits.

1. Orbit integration
According to the Newtonian second law, satellites’ motion equation and satellites’ initial

orbits at epoch 7, can be written as™,

A, =x, M

x=F(x,t)
fy
Where, x, = (r0 7 pO)T are initial orbits including positions, velocities and

dynamic parameters (e.g. the solar radiation pressure parameters (SRP)) of the

satellite. F(x,t) is the modeling equation of the complete set of forces acting on an

orbiting satellite””'. With proper integration method such as Adams-Cowell numerical

integration, dynamic integrated orbits x~ can be computed based on X, .

In equation (1), we can define & = x—x". Based on the Taylor expansion, we get
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The solution of (2) can be expressed as,
0 =Y(tt,)0, 3)

Where, &, =x,—x is the orbit corrections at initial epoch f,. Substitute (3)
into (2), we have the following equation,
W(t,1,)= ?; W(t,t,) 4)
Y(t,.t,)=1
Where, I is the unit matrix, ¥(s,z,) is called transition matrix. It can be

expressed in detail as,
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From numeric integration we can get transition matrix as well as integrated orbits
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2. Orbit fitting based on Helmert transformation

Helmert transformation is mostly used to express differences between reference
frames'"”". It is used by the International GNSS Service (IGS) community to analyze
the systematic differences between ACs and to combine products from different ACs
to get the final IGS products'"". As we know that each software may differ in dynamic
models and processing approaches, consequently the software difference results in the
difference of the reference frame defined. Considering the systematic differences
between our integrated orbits and the IGS final orbits, we can build up Helmert
transformation between the dynamic integrated orbits and the IGS final orbits. At

epoch ¢, itcan be expressed as,
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Where, (X,Y;,Z;)are the IGS final orbits. (X;,Y;,Z;)are the dynamically

integrated orbits expressed in Earth-fixed reference frame, which can be obtained

using the following transformation'®’,
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Where, (X },Y ,i,Z j)are integrated orbits expressed in inertial reference frame,

O(t,),R(¢t;),W(t;)are the matrices for precession-nutation, Earth rotation and pole

wobble, respectively.

We can rewrite the model as,

re =T+(1+K)Rl-R2-r/ (8)

Where, r,é,r,i are the denotation of the IGS final orbit (in Earth-fixed frame), the



dynamically integrated orbit (in inertial frame), 7,K represent the translation and
the scale parameters of the Helmert transformation, and R1,R2 are rotation matrices
in equation (6) and (7). In R2, parameters contained are: Earth pole x,,y, and the
rates )'cp , yp , time parameter UT1—-UTC (dUT1) and the rate dUT1 .

The magnitude of x,,y, isless than 1" and the magnitude of dUT1 is less than

1 second (15" in angle), Magnitude of x,,y, and dUT1 are even smaller. Ignoring

the effects of x o y ) and dUT1 , equation (8) can be rewritten as,
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Where, R, is the residual matrix comparing equation (9) to equation (8) and,

etc
a=a'+y,, B=p+x,, y=y +dUTI (10)
By defining R3(R) = R, ()R, (B)R,(¥). we can rewrite equation (9) as following,
re =T+(1+K)R3(R)-R,, 1/ (11)
Where, T, K , R represent Helmert parameters(H) (AX ,AY,AZ, K, &, B,7).
The linearization of equation (11) reads as,
re zrlé’0+aidv (12)
Parameters to be estimated are expressed in equation (13), where dH are
corrections of Helmert transformation parameters, dr, are corrections of integrated

orbits at current epoch.

dv = (dH ,dr})" (13)

Considering equation (3) and (4), we can transform the parameter dr,i to initial

orbit corrections dr, using equation (14).



dr; =¥(t,,t,)dr, (14)

Therefore the final parameters can be expressed as:

dx = (dH ,dr,)" (15)
Design matrix is:
A = [ 9% Ik g, ) (16)
ox \0H or,

Equation (12) can be formed at each epoch f,. Accumulating all the epochs

(normally 96 epochs) in the IGS final orbits, we get the observation equations,

Adx=L (17)
Where,
1 1
A L, T« =Tko
A L re —re
A=| =] =] x ko (18)
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Normal equation can be written as,
Ndx=b (19)
Where,
N=A"A, b=A"L (20)

According to the Least Square Estimation (LSE) theory, the final normal equation equals to

the accumulation of the normal equation at each epoch, i.e.,
N=Y(ara) b= AL @
i=1 i=l

The solution of equation (19) can be iterated. Using the new initial orbits from (19),
new integrated orbits can be generated. Based on the final estimated initial orbits,
final integrated orbits can be generated, which is our final fit orbits.

3. Data processing

As a validation of the model and the processing approach, we fit the GPS orbits on the
day 062 of year 2005 to the IGS final orbits. Initial satellites’ positions and velocities
of orbit integration are derived from the IGS orbits by interpolation. Initial SRP
parameters are set to zero. Dynamic models are listed in table 1.

Table 1 Dynamic models

Gravity model EGMO96 (8*8)
Tide Solid Earth Tide




N-body Sun & Moon
Solar radiation pressure BERNE!*"?

According to Chen'", satellites’ orbits achieve similar precision under different

parameter sets of our model. Therefore here we estimate only Helmert translation
parameters. To sum up, the estimated parameters include Helmert translation
parameters, corrections of initial orbits (positions, velocities and SRP parameters).

Figure 1 shows the orbit differences between our final fit orbits and the IGS orbits
of GPS PRNOI, where we see smoothing periodical variations. The period fits well
with GPS’ revolution period. The range of the variations is within (-4,4) cm in each
direction.

Figure 2 to figure 4 summarize the statistics of the orbit differences of each
satellite. Figure 2 shows the absolute value of the mean orbit differences, where we
see that most of them are smaller than 2mm. This shows us that the systematic errors
between our fit orbits and the IGS orbits are absorbed quite well by using our model.

Figure 3 shows the mean RMS of the orbit differences. The RMS is less than 3 cm
in each direction and 3D RMS is less than 4 cm for each satellite, which is similar
with the current precision of the IGS final orbits. Figure 4 shows the mean differences
of the distance from satellite to the Earth’s center (3D range), where we see that all of
them are smaller than 4 cm.
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Fig.1 Orbit differences between the fit orbits and the IGS orbits (PRN 01)
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Fig.2 Mean differences between the fit orbits and the IGS orbits
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Fig.3 Mean RMS of the differences between the fit orbits and the IGS orbits
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Fig.4 Mean 3D differences between the fit orbits and the IGS orbits

4. Conclusions

As orbit fitting performed for GPS satellites shows, the proposed model achieves
orbits with similar precision as IGS final orbits.

Orbit fitting with other Helmert parameter settings was carried out also, and we
got similar results as what shown already. In our approach, the fit orbits retain the
dynamic properties of the satellite and the sampling of the fit orbits depends on the
integration interval (we set it to 9.375 seconds). With the smoothing variation of
satellites’ orbits within this short period, the misfit problem of the interpolation
methods is solved.

The fit orbits derived from our research have obvious periodicities, which follows,
in general, the revolution periods of the GPS satellites. This may be due to some
dynamic models’ deficiency, e.g., SRP model. To better understand the reason, further
investigations are needed.
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