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ABSTRACT：A model based on Helmert transformation is presented in reduced-dynamic 
Precise Orbit Determination(POD). As an implementation, a reduced-dynamic POD 
approach was developed. The approach includes two steps: firstly, Kinematic POD and then 
reduced-dynamic POD. Based on the approach, a set of programs were developed. POD of 
CHAMP and GRACE was then carried out. Kinematic and reduced-dynamic POD for 
CHAMP and GRACE satellite over 2 weeks time show that reduced-dynamic orbits of 
CHAMP have an average 3D RMS of 0.26m compared to PSO orbit of GFZ, and the 
average 3D RMS of GRACE-A has the same value compared to GNV1B orbit of JPL. The 
3D RMS is reduced by around 30% compared with kinematic solutions. The average RMS 
of the differences in the axis X, Y and Z is (0.14, 0.14, 0.16)m and (0.17, 0.15, 0.13)m for 
CHAMP and GRACE, respectively. 
Keywords: Reduced-dynamic precise Orbit Determination, Helmert transformation, GPS, 
LEO 

1. Introduction 
In last years, several gravity satellite missions like CHAMP(CHAllenging Minisatellite 
Payload) and GRACE(Gravity Recovery And Climate Experiment)  were launched, a lot 
of scientific work of precise orbit determination has been carried out since then (Reigber et 
al(eds.),2003). To summarize, the POD method can be divided into dynamic method and 
kinematic method according to the theory and observations it used (Svehla, 2003; Zhu et al, 
2004; Chen, 2007). In the dynamic method, the orbit precision mainly depends on initial 
orbit and dynamic models in satellite motion equation. Benefit from efforts of the 
International Earth Rotation and Reference Service (IERS) and other communities, 
dynamic models improve significantly in recent years. In the kinematic method, main 
challenge is how to reduce influence of weak geometry and phase breaks. Therefore data 
screening is one of the most important works in kinematic POD (Bock, 2003).  

In reduced-dynamic method, the kinematic orbits may be used as pseudo-observations 
(Beutler, 2004; Bock, 2003), i.e. using kinematic precise orbits to correct dynamic 



parameters. The mathematical model can be treated simply as Gause-Markov procedure. 
The main problem of this approach is that the errors of kinematic orbits are accumulated 
directly into dynamic models. Therefore, reduced-dynamic orbits severely depend on 
kinematic orbits. To solve this problem, we suggest a model based on Helmert 
transformation, which connects the dynamic integrated orbits and the kinematic orbits. 
Using this model, the errors of kinematic orbits can be partly absorbed and therefore the 
dependence of kinematic orbits of reduced-dynamic POD can be reduced. Based on this 
model, reduced-dynamic POD of GPS, CHAMP and GRACE satellite were carried out. 
Results show that 3D RMS of residuals (compared with reference orbits) can be reduced by 
around 30% compared to kinematic solutions. 

2. Orbit integration 
According to dynamic POD theory, the satellite motion equation and satellites’ initial orbits 

at epoch 0t can be written as, 
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Where, ( )Tprrx 0000 &= are initial orbits including positions, velocities and dynamic 

parameters (e.g. the solar radiation pressure parameters) of the satellite. ),( txF  is the 

modeling equation of the complete set of forces acting on an orbiting satellite (Beutler,2004; 
McCarthy and Petit (eds.),2004). With proper integration method such as Adams-Cowell 

numerical integration, dynamic integrated orbits *x  can be computed based on 0x . 

In equation (1), we can define *xx −=δ . Based on the Taylor expansion, we get 
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The solution of (2) can be expressed as,  

00 ),( δδ ttΨ=                 (3) 

Where, *
00 xx −=δ  is the orbit corrections at initial epoch 0t . Substitute (3) into (2), 

we have the following equation, 
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Where, I  is the unit matrix, ),( 0ttΨ  is called transition matrix. It can be expressed in 

detail as, 
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From numeric integration we can get transition matrix as well as integrated orbits *x . 

3. Reduced-dynamic POD based on Helmert transformation 
Helmert transformation is mostly used to express differences between reference frames 
(Boucher, et al, 2004). It considers the origin motions and frame rotations. It is also 
generally used by International GNSS Servise (IGS) community to remove the systematic 
differences between Analysis Centers (ACs). Considering the systematic differences, we 
can build up Helmert transformation between dynamic integrated orbits and kinematic 

orbits. At epoch it  it can be expressed as, 
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Where, ),,( i
K

i
K

i
K ZYX are kinematic orbits. ),,( i

T
i

T
i
T ZYX are dynamic-integrated orbits in 

earth-fixed reference frame, which can be obtained using the following transformation 
(McCarthy and Petit (eds.),2004), 
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Where, ),,( i
I

i
I

i
I ZYX are integrated orbits in inertial reference frame, 

)(),(),( iii tWtRtQ are the matrices for precession, earth rotation and pole wobble, 

respectively.  
We can rewrite the model as, 

i
I
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Where, i
I

i
K rr , are the denotation of kinematic orbit (in earth-fixed frame), dynamic orbit 

(in inertial frame), KT ,  represent translation and scale parameters of Herlmert 

transformation, 2,1 RR  are rotation matrices in equation (6) and (7). In 2R , parameters 

contained are: earth pole pp yx ,  and the rates pp yx && , , time parameter UTCUT −1 ( 1dUT ) 

and the rate 1TUd & . 

The magnitude of pp yx ,  is less than 1" and the magnitude of 1dUT  is less than 1 

second (15" in angle), Magnitude of pp yx && ,  and 1TUd &  are even smaller. Ignoring the 

effects of pp yx && , and 1TUd & , equation (8) can be rewritten as,  
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Where, etcR  is the residual matrix comparing equation (9) to equation (8) and, 

py+′= αα ， px+′= ββ ， 1dUT+′= γγ                 (10) 

Rewrite equation (10) as following,  
i
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i
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Where, KT , , R represent Helmert transformation parameters ( γβα ,,,,,, KZYX ΔΔΔ ). 

The linearization of equation (11) reads as, 
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Parameters to be estimated are expressed in equation (13), where dHel are corrections 

of Helmert transformation parameters, i
Idr are corrections of integrated orbits at current 

epoch. 
Ti

IdrdHeldv ),(=            (13) 



Considering equation (3) and (4), we can transform the parameter i
Idr  to initial orbit 

corrections 0dr  using equation (14). 
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Therefore the final parameters can be expressed as: 
TdrdHeldx ),( 0=            (15) 

Design matrix is: 
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Equation (12) can be formed at each epoch it . The solution of these equations may use 

the classic Least Square Estimation (LSE). 

4. Data processing 

To implement the reduced-dynamic method introduced above, a set of programs are 
developed. Data processing procedure contains the following two parts: 

 Kinematic orbit determination and,  
 Reduced-dynamic orbit determination 
The procedure can runs in iterations. It starts with kinematic orbit determination without 

any a priori orbits. Afterwards, reduced-dynamic orbit determination is performed to 
provide reduced-dynamic orbits. The reduced-dynamic orbits can be later used in data 
preprocessing of kinematic orbit determination during iterations. Applying this procedure, 
POD of CHAMP and GRACE were performed. 

4.1. CHAMP POD 
Onboard GPS observations and accelerometer measurements in Day of Year (DoY) 191, 
2004, were used. Kinematic orbits were first derived with an RMS of about 0.38m 
compared to GFZ Post-processed Science Orbit (PSO). Dynamic models and parameters 
settings are listed in table 1. 

Tab.1 Dynamic models of CHAMP 
Gravity model EIGEN-CHAMP03S (120*120) 
Tide Solid Earth Tide,Ocean Tide CSR 3.0 
N-body JPL ephemeris DE405 
Accelerometer data ACC File(official bias and scale parameter) 
Empirical parameter 9 parameters per arc-pass 



 
The performance of different parameter sets were studied first. Different sets of Hermert 

parameters are listed in table 2, where the first case (Ex.1) is conventional orbit fitting (e.g. 
D. Svehla, 2003; H. Bock,2003). Figure 1 shows the RMS of the final reduced-dynamic 
orbits compared to GFZ PSO. 

Tab.2 Parameter settings, with × indicates that the parameter is set up 
Parameter Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 

T   ×  ×  ×  × 
K    × ×   × × 
R      × × × × 

 

 
Fig.1 RMS of orbits difference between CHAMP reduced-dynamic orbits and GFZ PSO, 

under different parameter settings 
As can be seen from Figure 1, the precision of reduced-dynamic orbits has been 

improved compared to kinematic orbits. This is due to the implementation of empirical 
parameters. We obtain better orbits with the parameter settings in case 2 to case 7, where in 
case 2 and case 3 the orbits precision is the best. The results are similar in case 5 and case 7, 
case 6 and case 8, which means that the scale parameter is not sensitive in our model. 
Figure 2 shows the orbits difference between our final reduced-dynamic orbits and PSO in 
case 2. The RMS is 0.27 m, which is reduced by 29% compared to kinematic orbits. RMS 
in axis X, Y and Z is (0.16,0.13,0.17)m, and the average of orbits difference is 
(1.1,1.1,0.02)cm. 



 

Fig.2 Difference between CHAMP reduced-dynamic orbits and GFZ PSO, 3DRMS=0.27m 

4.2. GRACE POD 
GRACE-A onboard GPS observations and accelerometer measurements in DoY 094, 2003, 
were used. Kinematic orbits were first derived with an RMS of about 0.39m compared to 
GNV1B orbits of JPL. Gravity model used is EIGEN-GRACE02S, and other dynamic 
parameters are the same as in table 1. 

Under the parameter setting case 2 (Ex.2) in table 2, reduced-dynamic POD for GRACE 
was carried out. Figure 3 shows the difference between reduced-dynamic orbits and 
GNV1B orbits. The RMS is 0.26 m, which is reduced by 33% compared to kinematic orbits. 
RMS in axis X, Y and Z is (0.14, 0.14, 0.16)m, and the average of orbits difference is 
(0.1,1.0,0.2)cm. 

 
Fig.3 Difference between GRACE reduced-dynamic orbits and GNV1B orbits, 



3DRMS=0.26m 

4.3. Further validation 
As a further investigation of our model, data of CHAMP and GRACE-A from DoY 124 to 
DoY 137, 2003 were processed. Figure 4 and 5 show the RMS statistic of the 
reduced-dynamic orbits compared to reference orbits. 

 
Fig.4 RMS of the difference between CHAMP Reduced-dynamic orbits and PSO 

 

Fig.5 RMS of the difference between GRACE Reduced-dynamic orbits and GNV1B 
The comparison for CHAMP during DoY 131-134 are not performed, because the GFZ 

PSO are missing in these days. 
As can be seen from figure 4 and figure 5, the RMS of orbits difference in each axis is 

in the range from 6 cm to 18 cm. In DoY 136, biggest RMS of CHAMP orbit is seen. At the 
same day, we also see the biggest RMS in CHAMP kinematic orbits. The average 3DRMS 
of both CHAMP and GRACE orbits is 0.26 m, and the average RMS in axis X, Y and Z are 
(0.14,0.14,0.16)m and (0.17,0.15,0.13)m, respectively. 



5. Conclusions 
As POD performed for CHAMP and GRACE shows, the proposed model reduced the 
observing errors of kinematic orbits and therefore improves the orbits precision by around 
30%. 

The investigation of different parameter settings of our model shows that the 
introduction of Hermert transformation parameters improves orbits precision, and orbits 
achieve the highest precision under the parameter setting with only transformation 
parameters being estimated. Test of our model also shows that the scale parameter has no 
influence on orbits when rotation parameters are estimated.  

The reduced-dynamic orbits derived from our research have obvious periodicities, 
which follow the revolution periods of the satellites. This is mostly due to the errors in 
accelerometer measurements, which are corrected using the official calibration parameters. 
By adding calibration parameters of accelerometer measurements in our approach, the 
performance of our model will be further improved.  
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