

CGE

华中科技大学,引力中心/地球物理研究所

中国科学院上海天文台"天地时空论坛"·2022/10/28

2 重力卫星数据处理进展

2.1 L0数据处理技术

2.2 L1a数据精细处理

2.3 基于L1b数据的精细建模

3 TQ-2反演地球重力场

3.1 一组极轨模式

3.2 一组倾轨模式

3.3 极轨+倾轨的组合模式

4 结论与展望

GRACE Mission

High resolution, mean & time variable gravity field mapping for Earth System Science

Mission Systems

 KBR (JPL/SSL) ACC (ONERA) SCA (DTU) GPS (JPL) Satellite (JPL/DSS) Launcher (DLR/Eurockot) Operations (DLR/GSOC) Science (CSR/JPL/GFZ)

Launch: March 2002 Altitude: 485 km Inclination : 89 deg Eccentricity: ~0.001 Lifetime: 5 years Non-Repeat Ground Track Earth Pointed, 3-Axis Stable

2017年10月27日

GRACE卫星为人类研究陆地水文气候变化、冰川消融与海平面变化、

地震及人类活动引起的大中尺度地表质量变化提供重要的数据积累。

Coseismic gravity decreases observed by GRACE for recent earthquakes larger than Mw 8 as a function of seismic moment. (Matsuo, K., and K. Heki (2011), GRL, 38, L00G12, doi:10.1029/2011GL049018.)

GRACE Follow-On

发射时间: 2018.05.22

倾角: 极轨, 89度 高度: 500 km 星间距离: 220 km 每天轨道圈数:~15

GRACE-FO Single-Orbit Ground Track, May 30, 2018

GRACE-FO Single-Orbit Ground Track, June 14, 2018

微波测距系统测量的星间距离变化

激光测距系统测量到的星间距离变化

- ♦ GRACE Follow-On卫星具备延续GRACE监测全球地表质量变化的能力
 - 首次开展空间激光测距实验,为后续重力卫星计划提供技术支撑

▶ 发展具有自主知识产权的重力卫星计划,提升重力场的精度和时空分辨率

▶ 开展空间激光测距实验,为我国下一代重力卫星和引力波探测提供技术支撑

- 1研究背景
- 2 重力卫星数据处理进展

2.1 LO数据处理技术

2.2 L1a数据精细处理

2.3 基于L1b数据的精细建模

3 TQ-2反演地球重力场

3.1 一组极轨模式

3.2 一组倾轨模式

3.3 极轨+倾轨的组合模式

4 结论与展望

重力卫星数据分级策略: $L0 \rightarrow L1a \rightarrow L1b \rightarrow L2 \rightarrow L3$

Figure 5: GRACE-FO SDS processing levels and flow.

- ◆L0 数据:由卫星收集并传输到地面的原始观测数据
- ◆L1a数据:对L0数据进行非破坏性处理的数据集
- ◆L1b数据:对L1a数据进行时标矫正、噪声抑制、滤波和重采样等处理
- ◆L2 数据:基于L1b数据获得的重力场模型产品

Hundburger

◆重力卫星数据处理系统原型v1.0

国家重点研发课题:星载重力场数据处理技术(2018YFC1503503)

◆L0数据处理

TQ-1加速度计数据的在轨标定 12

◆L0数据处理

郭泽华等,武汉大学学报·信息科学版,2021; Yang et al, RS, 2021

13

◆L0数据处理

吴云龙等,地球物理学报,2021

- 1研究背景
- 2 重力卫星数据处理进展

2.1 LO数据处理技术

2.2 L1a数据精细处理

2.3 基于L1b数据的精细建模

3 TQ-2反演地球重力场

3.1 一组极轨模式

3.2 一组倾轨模式

3.3 极轨+倾轨的组合模式

4 结论与展望

GRACE数据分级处理: $L0 \rightarrow L1a \rightarrow L1b \rightarrow L2$

◆ HUST-Grace2020相比于HUST-Grace2019有明显的精度提升,主要源于去混频模型和L1a数据处理能力的提升

Humber of Science of A

◆L1a数据处理(卫星精密定轨)

◆ 攻克了不同差分模式GNSS载波相位模糊度固定以及抗差估计等难题,HUST精密轨道 绝对精度与JPL相当(10个高性能SLR台站数据检核),相对精度显著优于JPL(KBR测 距检核),接收机钟差短稳优于JPL(Guo X, et al. 2020,2021,2022. GPSS. ASR.)17

◆L1a数据处理(星间观测数据)

◆ 攻克了L1a星间数据处理难题,HUST现阶段研制的L1b数据产品精度与JPL官方 发布数据精度相当(星间测距精度优于2µm,星间距离变率优于0.2µm/s)

◆L1a数据处理(加速度计观测数据)

ACT-1A 处理结果

ACT-1B 处理结果

◆实现了L1a加速度计数据精细处理,HUST现阶段研制的L1b数据产品精度与JPL 官方发布数据精度相当(优于10⁻¹⁰ m/s²)

◆L1b数据处理(重力梯度观测数据)

实现了L1a重力梯度数据精细处理,HUST现阶段研制的L1b数据产品精度与GOCE官方发布数据精度相当(优于10mE)

21

◆大气海洋去混频模型(AOD1B)

Product	Data span	Time resolution	Data input	Algorithm	Maximal degree/order	Content
GFZ-RL06	1979~present	3 hours	ERA-interim and ECMWF	RL06	d/o 180	Atmosphere Ocean
HUST-ERA5	2002~present	1 hour	ERA5 reanalysis	Refined RL06	d/o 100	Atmosphere
10		HUST-1h	vs. HUST-3h 9 (d)	·····		

◆大气海洋去混频模型(AOD1B)

(a) HUST-ERA5: EOF-1, 55.4%

(b) HUST-ERA5: EOF-2, 17.2%

(c) HUST-ERA5: EOF-3, 6.2%

(d) HUST-ERA5: EOF-4, 3.1%

2015

2020

自主研制了大气去混频产品 HUST-ERA5模型,相比于 GFZ最新发布的AOD RL06 产品,时间分辨率从3h提升 至1h,可更加精确的模型化 高频大气质量变化信息 (Yang等, JGR, 2021)。

- 1研究背景
- 2 重力卫星数据处理进展

2.1 LO数据处理技术

2.2 L1a数据精细处理

2.3 基于L1b数据的精细建模

3 TQ-2反演地球重力场

3.1 一组极轨模式

3.2 一组倾轨模式

3.3 极轨+倾轨的组合模式

4 结论与展望

◆基于L1b数据的精细建模

时变重力场模型(a) HUST-Grace2019和(b) HUST-Grace2020

◆采用改进的动力学法(Zhou等, JGR, 2018, 2019), 解算的HUST-Grace2020 模型精度优于GRACE官方机构最新发布的第六代产品(RL06)

Hundheimer Hundheimer

◆基于L1b数据的精细建模

基于HUST-Grace2020模型的中国大陆区域水储量变化特征研究

▶ HUST-Grace2020 模型计算的结果与 COST-G、ITSG、Tongji 等产品结果的一致 性好,具备估算中国大陆区域陆地水储量变化的能力。

◆基于L1b数据的精细建模

表 2 各种时变重力场模型计算的 2005—2010 年间撒哈拉沙漠和中太平洋地区的质量变化统计/cm

- # 1	撒哈拉沙漠			中太平洋地区		
侠型	最大值	最小值	RMS	最大值	最小值	RMS
CSR RL06	4.12	-4.25	1.69	3.41	-2.95	1.51
JPL RL06	4.36	-3.93	1.77	3.34	-3.38	1.44
GFZ RL06	3.89	-4.92	1.86	4.41	-4.31	1.82
ITSG-GRACE2018s	4.04	-3.65	1.47	3.12	-2.57	1.29
ITG-GRACE2010	6.06	-5.36	2.61	4.65	-6.27	2.32
LUH-GRACE2018	9.88	-6.77	3.31	5.74	-7.60	2.53
Tongji-Grace2018	5.08	-4.62	1.80	2.70	-3.50	1.47
HUST-Grace2020	4.54	-4.12	1.56	3.34	-2.60	1.43
IGG RL01	6.01	-5.28	2.21	4.36	-4.88	2.00
SWJTU-GRACE-RL01	4.67	-4.77	1.89	3.21	-2.95	1.38
SWPU-GRACE2021	4.38	-4.66	1.99	3.99	-3.30	1.62
WHU-GRACE-GPD01s	4.53	-3.62	1.72	2.98	-3.21	1.39

▶ 国内机构研制的HUST-Grace2020、Tongji-Grace2018和WHU-GRACE-GPD01s 等系列模型与官方机构发布的模型(即CSR RL06、JPL RL06和GFZ RL06)的精度水平相当,甚至更优。

ICGEM收录情况

模型精度比对情况

◆ HUST-Grace2020模型已被国际地球重力场模型中心ICGEM收录(Zhou et al., 2020), 欢迎下载使用。

http://icgem.gfz-potsdam.de/series/03_GRACE_other/HUST/HUST-Grace2020

Combination of GRACE Gravity Fields

Improved and consolidated product integrating the strengths of all ACs

COST-G Meeting Bern, 13 – 17 January, 2020

时变重力场模型综合服务COST-G (the Combination Service for Time-variable Gravity Field Solutions)

联合多家机构解算结果,进一步提 高重力场模型精度和可靠性!

- 1研究背景
- 2 重力卫星数据处理进展

2.1 LO数据处理技术

2.2 L1a数据精细处理

2.3 基于L1b数据的精细建模

3 TQ-2反演地球重力场

3.1 一组极轨模式

3.2 一组倾轨模式

3.3 极轨+倾轨的组合模式

4 结论与展望

3 TQ-2反演地球重力场

模拟计算流程图

◆"真实"信号确切已知

◆ 反演过程中可加入载荷噪声、背景力模型噪声

3.1 一组极轨模式

南北跟踪模式

GRACE Follow-On卫星模拟结果

引自Flechtner等(2016)

在一组极轨模式下,采用激光测距系统提升时变重力场监测能力有限

3.1 一组极轨模式

	GRACE	GFO	TQ-2(1组)
激光测距	1µm/sqrt(Hz) @0.01Hz	<mark>50nm</mark> /sqrt(Hz) @0.01Hz	<mark>20nm</mark> /sqrt(Hz) @0.01Hz
加速度计	10 ⁻¹⁰ m/s² @1-100mHz	10 ⁻¹⁰ m/s² @1-100mHz	<mark>5*10⁻¹²m/s²</mark> @1-100mHz
定轨精度	5cm	5cm	5cm
轨道高度	500 km	500 km	500 km
轨道倾角	89°	89°	89°
星间距离	220km	220km	100km

3.1一组极轨模式

◆ 硬件制备能力

加速度计(高灵敏轴精度优于10-11m/s²)

激光测距系统(位移测量分辨率优于1nm)

3.1一组极轨模式

◆相比于微波测距(如GRACE或GRACE Follow-On的微波测距系统)结果,即使引入更高精度的观测载荷,时变重力场的精度提升幅度较小

CGE

3.1一组极轨模式

不同误差源对重力场反演的贡献

◆在极轨观测模式下,大气海洋混频误差仍然是主要误差源,即使提升载 荷精度水平,仍然难以大幅提升地球重力场观测精度。

- 1研究背景
- 2 重力卫星数据处理进展

2.1 LO数据处理技术

2.2 L1a数据精细处理

2.3 基于L1b数据的精细建模

3 TQ-2反演地球重力场

3.1 一组极轨模式

3.2 一组倾轨模式

3.3 极轨+倾轨的组合模式

4 结论与展望

- ◆ 一组倾斜轨道在两极地区没有观测数据
- ◆一组倾斜轨道在有效观测区域的观测数据更为密集,且可以引入更 多的东西向观测信息

◆ 一组倾斜轨道能够探测观测区域内的时变信号

◆ 一组倾斜轨道在有效观测区域探测时变信号的能力更强

南北半球时变噪声随纬度的统计值

◆ 利用激光测距系统,能够进一步提高时变信号探测能力

▶ 在可观测区域内,倾斜轨道提取的时变信号分辨率更高

- 1研究背景
- 2 重力卫星数据处理进展

2.1 LO数据处理技术

2.2 L1a数据精细处理

2.3 基于L1b数据的精细建模

3 TQ-2反演地球重力场

3.1 一组极轨模式

3.2 一组倾轨模式

3.3 极轨+倾轨的组合模式

4 结论与展望

	GRACE	GFO	TQ-2(1组)	TQ-2(2组)
激光测距	1µm/sqrt(Hz) @0.01Hz	50nm/sqrt(H z) @0.01Hz	20nm/sqrt(H z) @0.01Hz	20nm/sqrt(Hz) @0.01Hz
加速度计	10 ⁻¹⁰ m/s² @1-100mHz	10 ⁻¹⁰ m/s² @1-100mHz	10 ⁻¹¹ m/s² @1-100mHz	10 ⁻¹¹ m/s² @1-100mHz
定轨精度	5cm	5cm	5cm	5cm
轨道高度	500 km	500 km	500 km	500 km
轨道倾角	89°	89°	89°	89°(第一组) 70°(第二组)
星间距离	220km	220km	100km	100km

150

-100 -150

150

mGal

高精度静态重力场模型

天琴二号卫星反演静态重力场的能力

 ◆ 在60阶次前(约333km空间分辨率)提升约10倍
◆ 在60阶次至120阶次(约333km~166km空间分辨率) 提升约20倍

高精度时变重力场模型

◆天琴二号具备利用短时间 (3天或1周)观测数据探 测重力场时变信号的能力, 表明两组天琴二号卫星可 显著提升时变重力场的时 间分辨率。

监测大气海洋质量变化

- ▶ 利用1天的卫星观测数据可解算时变重力场,其大地水 准面精度优于0.1mm@1500km。
- ◆利用天琴二号单组卫星难以获取高频的大气海洋质量 变化信息,而采用两组卫星能够观测到这部分信号。

□ 在大气科学领域,有望首次监测高时间分辨率的大气质量变化特性

高空间分辨率

利用天琴二号两组卫星可以显著提高时变重力场的提取能力,每月时变重力场模型的空间分辨率约为200km(GRACE卫星月重力场模型的空间分辨率约为300km)。

高时间分辨率

◆ 采用1星期数据解算的时变重力场精度优于采用1个月GRACE卫星数据解算的时变重力场。

◆ 1星期数据解算时变重力场的空间分辨率预期可达到约250km,3天数据解算的时变重力 场的空间分辨率可达到约400km

Hundbert History of Sciences and

潜在应用能力

	GRACE	TQ-2
大气科学	/	0.1mm@1500km/1天
海洋学	/	1mm@200km/月
水文学	10%	40%
地震学	Mw>8.0	Mw>7.0
冰川学	>300km	>200km

◆ 提升时变重力场在大气、水文、地震、冰川和海洋等领域的应用能力!

- 1研究背景
- 2 重力卫星数据处理进展

2.1 LO数据处理技术

2.2 L1a数据精细处理

2.3 基于L1b数据的精细建模

3 TQ-2反演地球重力场

3.1 一组极轨模式

3.2 一组倾轨模式

3.3 极轨+倾轨的组合模式

4 结论与展望

4 结论与展望

- ◆HUST具备了重力卫星"L0-L1a-L1b-L2"的全链条数据处理能力。
- ◆研制的HUST-Grace2020模型精度优于官方机构最新发布RL06产品,研制的HUST-ERA5产品精度优于官方机构GFZ最新发布的AOD RL06产品, 正在服务于我国自主重力卫星XX4数据处理平台建设。
- ◆采用一组极轨模式,由于大气海洋混频误差的影响,TQ-2监测时变重力 信号的能力提升有限。
- ◆采用一组倾斜轨道模式,在有效观测范围内TQ-2监测时变重力信号的能力显著优于GRACE和GRACE Follow-On卫星。
- ◆采用两组卫星(极轨+倾轨)的组合模式,TQ-2反演地球重力场信号的能力相比于GRACE可提升10~20倍,且能够显著提升地球重力场的时空分辨率及在水文、地震、大气、冰川和海洋等领域的应用能力。

地球物理研究所

欢迎到华中科技大学交流指导!