GNSS Remote Sensing

Chen Wu

Department of Land Surveying and Geoinformatics

Hong Kong Polytechnic University

Global Navigation Satellite Systems (GNSS)

• GNSS

- GPS, Beidou, GLONASS, Galileo, and Augmentation Systems
- Many Applications
 - Timing and Positioning
 - Navigation
 - Farming
 - Transport
 - Military
 - Atmosphere remote sensing

GNSS Error Sources

Passive Radar

GNSS observation

- From Ground
- Space to Space
- From Space

https://www.cosmic.ucar.edu/what-we-do/gnss-radio-occultation

GNSS occultation

- Provide vertical profile of atmosphere
- Ionosphere: TEC along path
- Troposphere: based on Abel Transformation
 - Covert the bend angle to refractivity
 - Different parameters:
 - dry density, dry pressure, dry temperature, density, pressure, temperature, specific etc. humidity
- Advantage:
 - High vertical resolution: 100 m
 - All-weather operation
 - Global coverage
- Applications:
 - Weather forecasting and atmospheric processes
 - Climate monitoring and model verification
 - Space weather and ionospheric research

Space borne GNSS Reflectometry

- Applications:
 - Sea Surface and Land Topography (as a altimeter)
 - Sea-Surface Wind Speed and Wave Height
 - Rainfall Detection and Rainfall Intensity Retrieval
 - Soil Moisture and Vegetation Parameters
 - Sea Ice Detection and Sea Ice Thickness Estimation
 - Flood and Tsunami Detection
 - Land Classification
 - •

https://www.mdpi.com/2072-4292/14/7/1605

Effects on Radio Signals

GNSS for ionosphere study

• Total electron Count (TEC): P1-P2 (geometry –free)

 $L_4 = \alpha \cdot TEC + C_L \qquad TEC = map(\theta) \cdot VTEC$ $P_4 = \alpha \cdot TEC + C_P \qquad VTEC = f(B, L, H)$

- Tomography: 3D electron density
- Irregularities: un-uniformed distributions of electrons
- Ionospheric delay model

Hong Kong (Low latitude) TEC

Tomography

- Accuracy depends on:
 - Station density
- Integration of ground and occultation data provide density distributions of different layers

Ionosphere response to earthquakes

https://reader.elsevier.com/reader/sd/pii/S027311772100466X?token=F318FD58E7FD70105F292FEB68443F1B8B5EA23AE4F039BBDC2B55AE1CF7381FF2D20EA1A9B72A010B997EF7022AAF91&originRegion=us-east-1&originCreation=20221214083622

GNSS tropospheric delay

• The Refractivity

 $N = 77.6 \frac{P}{T} + 3.73 \times 10^5 \frac{e}{T^2}$

Where P = Total Pressure, T = Absolute Temperature and, e = Partial Water Vapour Pressure.

• Delay in GNSS measurement

Total delay = VDry* $M_d(\alpha)$ +VWet* $M_w(\alpha)$

GNSS PWV and Rainfall

- Significant drop on PWV
- Followed by heavy rains

Site movement

- The fundamental function of GNSS
- What are the reasons?
- Earth Tide
 - GNSS has been used to estimate tidal information
- Earthquakes
 - Type of the earthquakes
- Ground water changes
- Glacier rebounding

https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2011EO150001

GNSS reflectometry

- In conventional GNSS applications, the multipath of GNSS signal influence the position accuracy, and need to be eliminated
 - Antenna Design
 - Receiver Design
 - Data filtering
- On the other hand, GNSS signal reflected from the ground carries information of the reflect surface
- GNSS Reflectometry
 - To study the reflected signals
 - To some extend: L-band remote sensing with constant signal sources

- What can the reflected signals tell us?
- Data source: (from Aug. 1st to Aug 27th, 2013)
 - GPS observation data from HKKT GPS reference station (red pot) with normal GPS receiver.
 - Weather data from Shek Kong weather station (pink pot).
 - The distance between two stations is about 2 km.

Data Processing:

• Calculate C/A code multipath data from GPS observation:

$$\begin{split} MP_{P_1} &= P_1 - \frac{9529}{2329} \phi_1 + \frac{7200}{2329} \phi_2 + K_1 \\ MP_{P_2} &= P_2 - \frac{11858}{2329} \phi_1 + \frac{9529}{2329} \phi_2 + K_2 \end{split}$$

• Where:

 MP_{P_1} , MP_{P_2} are C/A code multipath on L1 and L2 band respectively, with noise in it. P and Ø are the observation of code and carry phase.

K is constant while no circle slip occurs and includes ambiguity, Doppler affection and noise etc.

The output MP_{P_1} and MP_{P_2} contain random system noise which depends on the GPS receiver.

• The Least Mean Square (LMS) adaptive filter was used to separate the Multipath and Noise:

 $y(n) = \boldsymbol{w}^T(n-1) \, \boldsymbol{u}(n)$

Where: u(n) is input data which is the day 1 multipath time series; d(n) is the expected data which is the day 2 multipath time series; y(n) is output data; w(n) is the weight Matrix:

$$w(n) = w(n-1) + \mu e(n) \frac{u^*(n)}{u^H(n) u(n)}$$
$$e(n) = d(n) - y(n)$$

- LMS filter results analysis:
 - The Multipath show great correlation between two continues days.
 - The fluctuations of multipath are different especially the peak value.

Fig. Multipath of Aug. 1st

• The comparison of Std. of multipath and rain penetration:

The Std. of multipath has strong relationship with the penetration data: the Std. goes up when it rains;

The Std. slowly decrease and tends to stability after the rain day;

The Dielectric Constant can be strongly influenced by soil moisture.

And the strength of multipath signal can also be influenced.

Std. of filtered multipath (Aug. 1st to Aug. 26th)

Penetration data (Aug. 1st to Aug. 26th)

Basic Properties of the reflected signals

- In the glisten zone, the reflected signal from multiple reflect points have difference delay and Doppler frequency
- The delay and Doppler frequency depends on the receiver height from the reflect surface, and the relative speed between GPS satellite and the receiver
- The signal strength is related to the properties of the reflected points

Green circles: The iso-range lines Black trip: iso-frequency lines

Basic theory

• Direct signal (RHCP):

$$R_{d}(t) = A \cdot exp[i(\omega t + \phi)] \cdot y(t) \cdot d(t)$$
or Reflected signal (LHCP):
$$R_{r}(t) = \sum_{k=1}^{n} A_{k} \cdot exp[i(\omega(t - \tau_{k}) + \phi_{k})] \cdot y(t - \tau_{k}) \cdot d(t - \tau_{k})$$

$$R_{r}(t) = \sum_{k=1}^{n} A_{k} \cdot exp[i(\omega(t - \tau_{k}) + \phi_{k})] \cdot y(t - \tau_{k}) \cdot d(t - \tau_{k})$$

$$R_{r}(t) = \sum_{k=1}^{n} A_{k} \cdot exp[i(\omega(t - \tau_{k}) + \phi_{k})] \cdot y(t - \tau_{k}) \cdot d(t - \tau_{k})$$

Basic theory

- The difference between the direct and reflected signal:
 - A: the amplitude (SNR);
 - *τ*: signal delay;
 - Ø: carrier phase;
 - $\omega = 2\pi f$: signal frequency (Doppler frequency);
 - The interference between multiple reflected signals;
- The difference of signal parameters reflect the physical properties of the reflect surface. The relationship can be modeled by Isolating and analyzing the reflected signal.

Front-end and software receiver

- Japan IRX front-end
 - Channel: 2
 - IF: 4.092MHz
 - Sampling Frequency: 16.368MHz

- Beihang University front-end
 - Channel: 4 (GPS and Beidou)
 - IF: 3.996MHz
 - Sampling Frequency: 16.369MHz

Front-ends and software receiver

Software receiver: tracking loop and multi-channel Doppler delay correlator

Applications and approaches: some examples

- Surface monitoring
 - Sea wave height; (Clarizia, M. P., 2012)
 - Soil moisture; (Botteron, C., 2013)
 - Forest biomass; (Ferrazzoli, P., 2011)
 - Vegetation water content; (Wan, W., 2015)
 - Floating ice; (Gleason, S., 2006)
 - Oil slick; (Li, C., 2013)
 - etc.

- Altimetry
 - Sea level height; (Larson, M.K., 2013)
 - Vegetation height; (Small, E. E., 2010)
 - Topography retrieval; (Rodriguez-Alvarez, N., 2011)
 - Snow depth; (Gutmann, E., 2012)
 - etc.
- Reflect surface image
 - GNSS-SAR; (M Antoniou et al, 2018)

Applications and approaches

- Based on the signal parameters, different approaches for monitoring the surface has been developed.
 - S/N ratio
 - Doppler Delay Map simulation
 - The Interferometric Complex Field method
 - The Interference-pattern Technology
- For altimetry applications, the delay lags between the direct and reflected signal need to be precise measured.

- The SNR oscillation method use single normal GPS antenna (RHCP) and receiver.
- When satellite moves, the SNR at any instant is described by:

$$SNR = A\cos\left(\frac{4\pi h}{\lambda}\sin\varepsilon + \phi\right)$$

Where:

- A: amplitude of the SNR.
- *h*: antenna height above the reflect surface;
- ε : elevation angle;

 ϕ : phase offset;

make the soil wet

SNR oscillation approach for soil moisture measurement

$$SNR = A\cos\left(\frac{4\pi h}{\lambda}\sin\varepsilon + \phi\right)$$

 ϕ : Phase offset, which is closely related to the reflector depth.

Comparison of soil moisture content (SMC) measured at 2.5 cm and estimated ϕ (left column) and h (right column).

Soil Moisture Measurement

• The relationship between the reflector depth and the soil moisture

Estimated ϕ compared with Volumetric Water Content (VWC)

soil moisture measurement

 Inversion through the modeled relationship between the phase offset and the soil moisture

Variation in (Volumetric Water Content) VWC from multiple GPS satellites (different color dots).

- The SNR oscillation method also can be used for snow depth measurement.
- The reflected signal will have interference with the direct signal and the signal strength will vary with the phase difference.

$$SNR = A\cos\left(\frac{4\pi h}{\lambda}\sin\varepsilon + \phi\right)$$

 ϕ : Phase offset, which is closely related to the reflector depth.

snow depth measurement

- The Plate Boundary Observatory operates lots of GPS stations and provide data for analysis.
- The PBO sites in Alaska, USA are chosen.

snow depth measurement

- GPS snow depth retrievals from PBO sites p360 and p101.
- Standard deviations represent the standard deviation of the individual satellite tracks and a formal error of 2.5 cm, added in quadrature. SNOTEL data are also shown as reference data.

• Snow depth measured at GPS site near Galena, Idaho for three years. The average of error are 4 cm.

Doppler-Delay Map for dynamic GNSS-R receiver (LEO satellite)

Date d/m/y	23/03/04 a	04/03/05 b	03/10/04 c
Wind	~2.0 m/s	7.0 m/s	10.3 m/s
Wave Height	-	2.6 m	2.8 m

- The Z-V model simulator requires some input parameters which can be grouped into:
- 1. Geometry parameters: positions and velocities of the transmitter and receiver;
- 2. Dimension and resolution of the Glistening Zone;
- 3. Antenna parameters;
- 4. Sea state parameters: the Directional Mean Square Slopes (DMSS) and the Principal Wave Slope Direction (PWSD), also the Probability Density Function (PDF) of the sea surface wave slopes;
- 5. Delay-Doppler parameters: the delay range the Doppler range.
- Reason of difference:
- 1. Residual speckle noise; 2. Thermal noise; 3. limitations of modeling or simple PDF (Gaussion distribution)

-4000 -3000 -2000 -1000 0 1000 2000 3000 400 Relative Doppler Frequency [Hz]

• Experiment parameters at Shenzhen

Equipment specification				
	Direct antenna	Right hand circular polarization (RHCP)		
Antonnos		45 degree from zenith		
Antennas	Reflect antenna	Left hand circular polarization (LHCP)		
		135 degree from zenith		
Satellite acquisition	GPS and Chinese BeiDou system			
Channels	4 channels direct and reflected signal			
Intermedia Frequency	3.996 MHz			
Sample rate	16.369 MHz			
Data output	Sampled IF data in binary			
Experiment				
Data collection duration	106 hours			
Data size	6.3 TB			
File number	3289 (each file 2 GB)	h file includes 2 minutes data of about:		

- The delay waveform can be obtained from multiple delay lags correlation of direct and reflected signal;
- Doppler Delay Map (DDM) can be calculated base on each delay lags by applying multiple Doppler shift correlators.

Delay waveforms and DDM of Nov 7th, 2014.

• The Relationship between correlation value and wind speed.

• The relationship between the average DDM correlation peak and the average wind speed.

- DDM can be simulated with input parameter of Mean square slop (MSS).
- Matching the obtained DDM and simulated DDM to inversely calculate the sea surface status.
- Also, by applying wind-driven sea surface model, the wind speed above the sea can be obtained.

- Other applications:
 - Oil slick

The oil covered area has difference reflectivity compared with sea surface.

The satellite image

Oceanpal[®] Instrument architecture

The Interferometric Complex Field (ICF) is defined as: $ICF(t) = \frac{P_R(t)}{P_D(t)}$

Where: P_R and P_D represent the time series of waveform peaks for the reflected and direct signals, respectively.

Data Processing and storage:

- L0 : Interferometric Complex Field (ICF)
- L1 : field coherence time, direct/reflected lapses
- L2 : geophysical products (SWH and H)

- Sea state retrieval
- Sea roughness is related to the coherent of the signal.
- For a time interval Δt , the autocorrelation function can be described as:

 $\Gamma(\Delta t) \approx A(\sigma_Z, l_Z, \varepsilon, G_r) \cdot e^{-4k^2 \sigma_Z^2 \frac{\Delta t^2}{2\tau_Z^2} sin^2 \varepsilon}$

• Where:

 σ_Z is the standard deviation of the sea surface elevation;

 l_Z is the autocorrelation length sea surface;

- au_Z is the correlation time of the sea surface (incoherent time);
- G_r is the gain pattern of antenna;
- $\boldsymbol{\varepsilon}$ is the elevation angle.

Front end and data management unit Antennas

• The coherence time of the interferometric field can be written as:

$$\tau_I = \frac{\tau_Z}{2k\sigma_Z sin\varepsilon} = \frac{\lambda}{\pi sin\varepsilon} \frac{\tau_Z}{SWH}$$

Where τ_I is the coherence time of the interferometric field, defined as the width of the autocorrelation function $\Gamma(\Delta t)$ of the interferometric field.

• τ_Z and SWH are not independent parameters and very difficult to derive theoretically. So the semiempirical approach is preferred through extensive Monte-Carlo simulation:

$$SWH = SWH_0 + \frac{\alpha}{k\tau_I sin\varepsilon - \beta}$$

Where:

 SWH_0 , α and β are calibration parameters. Then it is possible to derive the SWH value from the measured value of τ_I .

SWH Buoys data and Oceanpal data comparison during 3 months. Red dots: Oceanpal data; Blue dots: Buoy data at Cost BCN; Black dots: Buoy data at BCN Sur;

• Soil moisture measurement

The *ICF* squared is related to the soil moisture volumetric content.

$$\Gamma_{av} = \frac{1}{N} \sum_{i=1}^{N} |ICF(t)|^2$$

Where : *N*: the number of waveforms computed during one data acquisition.

 Γ_{av} : the averaged value of the soil's reflectivity.

• Fresnel equation:
$$\Gamma_{v} = \frac{\varepsilon_{r} \sin\gamma - \sqrt{\varepsilon_{r} - \cos^{2}\gamma}}{\varepsilon_{r} \sin\gamma + \sqrt{\varepsilon_{r} - \cos^{2}\gamma}}$$
 $\Gamma_{h} = \frac{\sin\gamma - \sqrt{\varepsilon_{r} - \cos^{2}\gamma}}{\sin\gamma + \sqrt{\varepsilon_{r} - \cos^{2}\gamma}}$
 $\Gamma_{av} = \begin{cases} \frac{\Gamma_{v} + \Gamma_{h}}{2} & \text{if co-polarization} \\ \frac{\Gamma_{v} - \Gamma_{h}}{2} & \text{if cross - polarization} \end{cases}$

Where: ε_r is the permittivity of the reflect surface.

• Soil moisture measurement

• The ε_r can be solved based on the previous equation as following:

$$\varepsilon_{r} = \frac{1 \pm \sqrt{1 - 4sin^{2}\gamma \cdot cos^{2}\gamma \cdot \left(\frac{1 - \Gamma}{1 + \Gamma}\right)^{2}}}{2sin^{2}\gamma \cdot \left(\frac{1 - \Gamma}{1 + \Gamma}\right)^{2}}$$

- The permittivity (dielectric constant) has close relationship with the soil moisture, but differs at different soil components.
- The empirical equation of the dielectric constant and the soil moisture:

 $\varepsilon_r = 2.862 - 0.012s + 0.001c + (3.803 + 0.462c - 0.341s)m_v + (119.003)m_v$

 $-0.500s + 0.633c)m_v^2$

Where: *s* and *c* are the sand and clay textual compositions of a soil in percent by weight;

 m_v is the volumetric soil moisture.

The Interference-pattern Technology

Soil **M**oisture Interference-pattern **G**NSS **O**bservations at **L**-band Reflectometer (SMIGOL)

which is a ground-based instrument that measures the instantaneous power of the interference of the direct and reflected GPS signals from the Earth's surface.

Two linear polarization antenna received horizontal and vertical polarization for both direct and reflected signal.

The SMIGOL instrument provide the interference power with respecting to the elevation angle.

The Interference-pattern Technology

• The total power received (P) can then be derived from:

$$P \propto |E_i + E_r|^2 \equiv |F_n(\theta) \cdot |1 + R \cdot e^{j\phi}|^2$$

Where:

 $F_n(\theta)$: The antenna pattern;

 E_i and E_r : direct and reflected signal strength, respectively;

R: The reflection coefficients;

$$\phi = \frac{4\pi}{\lambda} \cdot h_1 \cdot \cos(\theta_{\rm inc})$$

• The total received power will vary as a function of the incidence angle, which is different at horizontal and vertical polarizations, and depends on the geophysical parameters that characterize the soil.

The Interference-pattern Technology

- Soil Moisture measurement
- For the vertical polarization interference power, a minimum amplitude shows at the Brewster's angle (the first notch point).
- The Brewster's angle:

$$\theta_{B} = \arctan\left(\frac{n_{2}}{n_{1}}\right) = \arctan\left(\sqrt{\frac{\mu_{r2} \cdot \varepsilon_{r2}}{\mu_{r1} \cdot \varepsilon_{r1}}}\right) = \arctan\left(\sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}}\right)$$

Interference power at bare soil surface of different moisture.

GNSS L-Band Radar

Inherited advantages

- Low cost
- Small size
- License-free
- > Security
- Noelectromagneticpollution

A promising alternative to the active radar systems with heavy transmitters

GNSS Radar

GNSS-based passive radar system

GNSS-based passive radar system

56

GNSS-based passive radar system

Signal model description

Noise-free replica of the direct signal

Conventional Moving Target Detection Technique

- Providing coherent integration gain
- > Distinguishing different radar signals

Long-time integration techniques for moving target detection

Long-time integration techniques for moving target detection

Super-resolution Techniques for Range Resolution Enhancement

100

Super-resolution Techniques for Range Resolution Enhancement

System integration of GNSS-based

Conventional MTD

MTD+TMC

The proposed KT+LVD

	Estimated	Estimated	Peak of moving target	Peak of sidelobes	Normalized
Conventional MTD	1245 m	-12.2 Hz	0.65	1	-0.35
MTD+TMC	1227 m	-9.3 Hz	1	0.32	0.68
KT+LVD	1264 m	-10 Hz	1	0.1	0.9

Long-time integration and super-resolution results

Ship length	Ship name	Original ∆W	Method	ΔW	ΔP
143 m =			Tikhonov	66.8 m	28.66 dB
	SITC	191.9 m	TSVD	69.4 m	29.57 dB
	DALIAN		Wiener filter	59.6 m	26.83 dB
			The proposed method	23.0 m	24.22 dB
			Tikhonov	61.8 m	23.28 dB
260 m =	NAVIOS	225.6 m	TSVD	64.7 m	22.36 dB
	AMARILLO		Wiener filter	66.4 m	23.50 dB
			The proposed method	27.0 m	20.03 dB

Target imagery results			Ship length	199 m
Carrier frequency C/A code frequency	1575.4 MHz 1.023 MHz	ST BLUE	Average speed The closest range to the shore GPS name Ranging code Elevation angle Azimuth angle Ship length Average speed The closest range to the shore GPS name	6.54 m/s 845 m GPS BIIR-10 PRN22 32° 68° 170 m 7.52 m/s 785 m GPS BIIR-10
Sampling frequency PRI Dwell time Azimuth angle of antenna pointing direction Length of time window Sampling points extraction threshold The maximum iteration number The tolerance threshold The proportion of the minimum number of inliers	16.368 MHz 1 ms 120 s 239.7° 2048 ms 0.1 100 1.465 7.5%	WAN HAI 506	Ranging code Elevation angle Azimuth angle Ship length Average speed The closest range to the shore GPS name Ranging code Elevation angle	269 m 4.94 m/s 1664 m GPS BIIF-8 PRN3 40°
		WAN HAI 313	Azimuth angle Ship length Average speed The closest range to the shore GPS name Ranging code Elevation angle Azimuth angle	68° 213 m 7.21 m/s 939 m GPS BIIR-10 PRN22 19° 46°

68

Slope deformation Monitoring

- Most slope deformation monitoring equipment is installed on site
- Difficult for active slopes
- GNSS-R provides a possibility to monitoring deformation remotely (i.e. drones, or offsite GNSS receivers)
- How accurate can it achieve?
 - mm level required

https://en.hi-target.com.cn/automatic-monitoring

Deformation monitoring: based on Carrier

- The synchronized direct and reflected signal are acquired and tracked, and output the track results such as carrier phase, code phase and Doppler frequency for each channel, then the difference between the track results can be monitored.
- The carrier phase difference is crucial in this application, which not only influenced by the movement of the reflected surface, but also the movement of the satellite.

Deformation monitoring of single target

• Geometry model

• A geometry model which reveals the relationship between the propagation path difference(Δd) and the geometry parameters

 $\begin{cases} \Delta d = 2 * d * \cos(\beta) \\ \sin(\beta) = \sin(\beta') * \cos(\alpha') \\ \beta' = \pi - \theta' - \gamma \\ \tan(\alpha') = \tan(\alpha) * \cos(\theta') \\ \tan(\theta) = \tan(\theta') \cos(\alpha) \\ \alpha = \alpha_s - \alpha_r \end{cases}$

• satellite elevation angle (θ), azimuth angle (α_s), the reflect surface tilt angle (γ), azimuth angle (α_r) and the distance between the antenna and the reflect surface (d)

Experiment Test

• Software define radio (SDR) receiver approaches: carrier phase monitoring for kinematic deformation

Deformation monitoring of multiple targets?

- Due to the uneven reflect surface, sometimes there are more than one areas that can reflect signal with significant power, which can be considered as interesting points that represent this reflect surface for the use of deformation monitoring.
- In this case, multiple reflected signals are received by the LHCP antenna, the previous deformation monitoring algorithm of calculating the carrier phase between the direct and reflected signal will not be correct.

Deformation monitoring of multiple targets

- Based on the special properties of the PRN code, the code phase of sub-signals can be distinguished by using correlation function. And the correlation function of the received signal is also the superposition of the correlation function of sub-signals, as shown in figure below.
- the correlation amplitude of $Peak_A$ and $Peak_B$ are given by

$$\begin{cases} P_A = A_1 \cos\varphi_1 + \Delta c \cdot A_2 \cos\varphi_2 \\ P_B = A_2 \cos\varphi_2 + \Delta c \cdot A_1 \cos\varphi_1 \\ A_1^{\perp} = A_1 \cos\varphi_1 \\ A_2^{\perp} = A_2 \cos\varphi_2 \end{cases}$$

Where A_1^{\perp} and A_2^{\perp} is projected amplitude of sub-signal S_1 and S_2 , respectively. $\Delta c = \left(1 - \frac{\Delta d}{N}\right), \Delta d$ is the code phase difference in sample, and N is the number of samples per code chip.

Figure, Signal superposition with different carrier phases.

Figure, Correlation function for received signal and estimated sub-signals.

Deformation monitoring of multiple targets

Test Site

• Software define radio (SDR) receiver approaches: Relative deformation monitoring

61.5

60.5

60

59.5

59

58 5

58

57.5

12

 $\times 10^4$

Dataset 1	Mean (cm)	Std. (cm)	Deformation (cm)	
Before deformation	-0.15	0.17	1 09	
After deformation	1.83	0.11	1.98	
Dataset 2	Mean (cm)	Std. (cm)	Deformation (cm)	
Before deformation	-0.23	0.4	1 0 2	
After deformation	-2.15	0.27	-1.92	

• Software define radio (SDR) receiver approaches: SNR monitoring for quasi-static deformation

Deformation monitoring simulation:

	Delay lags (s)	Waveform length (s)	Phase shift (rad)	Deformation (cm)
Waveform1 trough	-8	53	-0.95	-2.10
Waveform2 crest	-7	49	-0.90	-1.97
Waveform2 trough	-10	54	-1.16	-2.54
Waveform3 crest	-7	54	-0.81	-1.77
Waveform3 trough	-8	57	-0.88	-1.90
Waveform4 crest	-9	64	-0.88	-1.89

Mean error =0. 03cm RMSE=0.25cm

• Software define radio (SDR) receiver approaches: SNR monitoring for quasi-static deformation

	Results of each waveform (cm)	Mean of each data set (cm)
Collection 1	2.56 0.58 1.26 2.88	1.82
Collection 2	1.23 1.39 3.00 1.77 1.28 1.04 3.41 2.99 2.72	2.09
Collection 3	2.26 3.75	3.00
Collection 4	4.16 2.18 2.60 1.44 2.67 0.68	2.29
Collection 5	0.38 0.96 1.98 1.63 2.03 2.22 2.41	1.80
Collection 6	2.12 2.22 1.33	1.89

Mean = 2.15 cm; RMSE =0.91 cm

- No need for continuous observation
- Data volume is small when using SNR as observation
- More robust for SNR observation, compared with carrier phase

Commercial receiver approaches: SNR monitoring for quasi-static deformation •

G12

400

440

Day 1

- Day 2

Day 1 fit

Day 2 fit

500

460

Time (s)

G12

Time (s)

22.32

21.02

Day 1

Day 2

Day 1 fit

Day 2 fit

600

700

480

Day 1

800

Day 1

Day 2

-Elevation

900

20

18.5

500

Day 2

Elevatio

20.92

21.14

20.94

20.96

Equivalent elevation angle (deg)

20.98

21

21.04

21.06 21.08 21.1 21.12

Equivalent elevation angle (deg)

PRN05: Mean = 1.27cm; RMSE = 1.43cm PRN12: Mean = 2.04cm; RMSE = 2.1cm

	Phase angle (rad)	Phase diff (rad)	Deformation (abs.) (cm)
PRN 5, subsection 1, day 1	0.47	0.24	1 20
PRN 5, subsection 1, day 2	0.12	-0.54	1.30
PRN 5, subsection 2, day 1	0.09	0.44	1.75
PRN 5, subsection 2, day 2	-0.34	-0.44	
PRN 12, subsection 1, day 1	-0.06	0.45	1 00
PRN 12, subsection 1, day 2	0.38	0.45	1.90
PRN 12, subsection 2, day 1	0.16	0.62	80
PRN 12, subsection 2, day 2	0.79	0.03	2.09

- Commercial receiver approaches: double difference carrier phase approach
 - Using **two commercial GNSS receivers** without synchronization of receiver clock.
 - Introducing satellite from zenith (sat. B) to correct receiver clock error.

Waiting for satellite revisiting for same geometry

High resistance to carrier phase noise by averaging

Low update rate (24h for GPS)

G07	Mean(cm)	Std.(cm)	Average (cm)	
D98	0.03	0.43	0.15	
D99	0.34	0.40	0.15	
D100	-1.88	0.36		
D101	-1.60	0.32	-1.81	
D102	-1.96	0.41		
		Deformation	-1.96	

G09	Mean(cm)	Std.(cm)	Average (cm)	
D98	-0.02	0.28	0.06	
D99	0.12	0.30	0.06	
D100	-2.07	0.30		
D101	-1.78	0.27	-1.91	
D102	-1.93	0.29		
		Deformation	-1.97	

PRN09 PRN07 Carrier phase double difference 20 phase (cm) D97 D98 D99 D100 10 carrier | D101 D102 \Box 64 64.5 65 65.5 66 67.1 67.2 67.6 67.7 67.8 67.3 67.4 67.5 Equivalent elevation angle (deg) Equivalent elevation angle (deg)

Propagation path difference

 $\Delta \nabla$ carrier phase (cm)

66.5

67

- D97

- D98

- D99

D100

D101

-D102

68

67.5

High noise level, cannot be suppressed by averaging

High update rate:

min: 1 min 10 sec;

max: 4 h 45 min 9 sec;

Average: 38 min 5 sec

	Mean (cm)	Std. (cm)	Average (cm)
D97	-0.17	0.55	
D98	0.39	0.60	0.06
D99	-0.03	0.58	
D100	-1.16	0.67	
D101	-1.55	0.51	-1.47
D102	-1.71	0.45	
Deformation			-1.54

Propagation path difference

Deformation

Frequency Bands for satellite missions

- P band (225 and 390 MHz)
 - Remote sensing for vegetation
- L-band (1–2 GHz)
 - Global Positioning System (GPS) carriers and also satellite mobile phones, such as Iridium; Inmarsat providing communications at sea, land and air; WorldSpace satellite radio.
- S-band (2–4 GHz)
 - Weather radar, surface ship radar, and some communications satellites, especially those of NASA for communication with ISS and Space Shuttle. In May 2009, Inmarsat and Solaris mobile (a joint venture between Eutelsat and Astra) were awarded each a 2×15 MHz portion of the S-band by the European Commission.
- C-band (4-8 GHz)
 - Primarily used for satellite communications, for full-time satellite TV networks or raw satellite feeds. Commonly used in areas that are
 subject to tropical rainfall, since it is less susceptible to rainfade than Ku band (the original Telstar satellite had a transponder operating in
 this band, used to relay the first live transatlantic TV signal in 1962).
- X-band (8–12 GHz)
 - Primarily used by the military. Used in radar applications including continuous-wave, pulsed, single-polarisation, dual- polarisation, synthetic aperture radar and phased arrays. X-band radar frequency sub-bands are used in civil, military and government institutions for weather monitoring, air traffic control, maritime vessel traffic control, defence tracking and vehicle speed detection for law enforcement.
- Ku-band (12–18 GHz)
 - Used for satellite communications. In Europe, Ku-band downlink is used from 10.7 GHz to 12.75 GHz for direct broadcast satellite services, such as Astra.
- Ka-band (26–40 GHz)
 - Communications satellites, uplink in either the 27.5 GHz and 31 GHz bands, and high-resolution, close-range targeting radars on military aircraft.

Possible Use of Signal of Opportunities

- Using existing signals
 - Multiple frequency band signals
- One designed signal source, multiple receivers

Thank You