Several Research Topics at GNSS lab. (TUMSAT)

Online meeting at Shanghai Astronomical Observatory 3/22/2024 Nobuaki Kubo (TUMSAT)

University and Laboratory

- Tokyo University of Marine Science and Technology
- <u>Marine Technology</u> and Marine Science
- Information and communication engineering laboratory (GPS/GNSS lab.)
- Staff 1 (2), Docter 2, Master 8, Undergraduates 6

Topics

- 1. RF signal transmitter location by LEO satellite using TDOA and FOA method
- 2. Improved Initial Integer Ambiguity Resolution When the Sky Visibility is Considerably Masked
- 3. RTK-GNSS with Smartphone in Moving Vehicles
- 4. Static and Kinematic Test Results using PPP/CLAS/SLAS Correction Service through QZSS
- 5. A New Approach of GNSS Multipath Detection using the Guard time of Satellite Based on C/N_0
- 6. Modified RTKLIB for Kinematic Urban Condition
- 7. RTK-GNSS performance prediction

Satellite orbit for TDOA/FOA

- We simulated satellite orbit to receive LPWA signal.
- At least two satellites are required, we used two Starlink orbit which cover Kanto Area in Japan.
- Altitude of the satellite is 550km.
- We calculated satellite position using SGP4 model from TLE information.
- We assumed there is GNSS on the satellite and its position accuracy is approximately 5m.

TDOA method

- In TDOA method, a hyperbola is drawn from transmit signal arrival time difference between 2 stations.
- If there is 3 station, you can make 2 hyperbola and determine transmitter position.
- TDOA method is used as LORAN-C and Multilateration.

Evaluation of TDOA

- We simulated 3 observation interval.
- If observation interval is short, positioning accuracy will decline.
- When observation interval is 15 sec, horizontal RMS error is 2.5km

	5 sec interval		10 sec	interval	15 sec interval	
	2D error	3D error	2D error	3D error	2D error	3D error
AVG[m]	13440	44762	3403	11716	1942	6764
STD[m]	12592	41534	2856	9833	1608	5612
RMS[m]	18417	61063	4443	15296	2522	8789

Horizontal Plot of 15 sec interval

FOA method

- FOA need at least two satellites and several times observation of Frequency of Arrival.
- FOA can calculate transmitter position without knowing its frequency.
- FOA and position, velocity of satellite are required.
- **x** was obtained by weighted least-squares method.

$$z(t_k) = h(t_k) + v(t_k)$$

$$h(t_k) = f_c + \frac{1}{\lambda} \frac{\left(\mathbf{v}_U(t_k)\right)^T \left(\mathbf{p}_T - \mathbf{p}_U(t_k)\right)}{\|\mathbf{p}_T - \mathbf{p}_U(t_k)\|}$$

$$(\mathbf{p}_T)$$

 $x \doteq \begin{pmatrix} \mathbf{r} \\ f_{a} \end{pmatrix}$

k: Observation number $(0 \sim n)$ $z(t_k)$: Measured FOA (Frequency Of Arrival) $h(t_k)$: True FOA $v(t_k)$: Measurement error by thermal noise f_c : Transmit frequency λ : Length of wave (=c/fc) \mathbf{p}_T : xyz position of transmitter $\mathbf{p}_U(t_k)$: xyz position of satellite $\mathbf{v}_U(t_k)$: xyz velocity of satellite

Takeshi Amishima. Theoretical FOA Based Geolocation Accuracy by Single Moving Platform Considering Orbital Error. IEICE Transactions on Communications, Vol.J106-B, No.2, pp.88-100, 2023

Evaluation of FOA

- We calculated positioning accuracy of 6 pattern.
- The higher the frequency of the transmitter signal, the higher the accuracy.
- The higher the thermal noise, the lower the accuracy.
- When thermal noise is 2Hz, horizontal RMS error was 300m in 1GHz.

Horizontal Plot of 1GHz Tx and 2Hz noise

	1 Gł	Ηz			5 GI	Ηz	
			Frequency				Frequency
FOA			Estimation	FOA			Estimation
thermal noise	2D RMS Error[m]	3D RMS Error[m]	Error[Hz]	thermal noise	2D RMS Error[m]	3D RMS Error[m]	Error[Hz]
2 Hz	292	324	8.7	2 Hz	117	131	17.8
10 Hz	1652	1833	49.2	10 Hz	331	364	49.4
50 Hz	7820	8941	238.1	50 Hz	1828	2018	277.9

Monitoring of small lateral movement in challenging environments

1. Crossing passageway on highway embankment section

- 2. Under-track corridor as a solution for unopened railroad crossings
- 3. Underground crossing passages at intersections with high traffic volumes

Commercial receivers and survey grade antenna

Time: 4/6/2023 3:00-7:00 (UTC)

Base stations were set as same receiver respectively.

<u>3 types of positions were evaluated simultaneously</u> in real time.

- 1. RTK engine using low-cost receiver
- 2. RTK engine using survey-grade receiver
- 3. Our engine using low-cost receiver

(modified RTKNAVI in Note PC)

Two commercial receiver's RTK engine

Approx. 25 min. were within 10 cm in ENU compared to true positions.

Big issue : Many large wrong fixes positions.

Our engine using low-cost receiver

After initial position estimation, most of errors (over 90%) were within 10 cm.

Smartphone RTK testing

RTK-GNSS using Pixel6 (L1, GQEB, 30dBHz, Lab's software)

Kinematic Test (Car)

- We conducted the car experiment with pixel6 in middle urban area.
- L1 band, GQEB
- RTK Fix rate was 72.5% at CN0>42dBHz

Kinematic Test (Car)

Pixel6 RTK error compared with smartphone true position calculated from F9P RTK result and heading information.

Maximum horizontal error was 70cm and RMS was 8.6cm.

Smartphone's NMEA in dense urban area

Static test results of CLAS/PPP/SLAS at TUMSAT

- We started the real-time evaluation of CLAS/PPP/SLAS.
- <u>Reference position</u> is determined by some static PPP solutions in ITRF2014. •

No.	Label	Port	ID	Date (JST)	Latitude[deg]	Longitude[deg]	Height[m]	N Error[cm]	E Error[cm]	U Error[cm]	Fix type	
1	CLAS	10031	POS	2022/03/14 08:38:57	35.66634190	139.79221106	59.819	0.196	-0.294	0.243	1	
2	PPP	10032	POS	2022/03/14 08:38:57	35.66634163	139.79221097	59.775	-2.807	-1.140	-4.080	2	
3	SLAS	10033	POS	2022/03/14 08:38:57	35.66633131	139.79220029	60.214	-32.646	-13.706	41.700	4	
4	RTK	10034	POS	2022/03/14 08:38:57	35.66634026	139.79221121	59.810	-17.988	1.031	-0.620	1	
5	SPP	10035	POS	2022/03/14 08:38:57	35.66635381	139.79219544	56.753	217.012	-57.624	-304.400	5	

120

80

40

-40

-80

-120

-160

160

-120

Έ

ude Error [m

atitu

CLAS

PPP

Longitude error [mm]

u-blox

F9P

50km baseline

and TUMSAT

Ground Truck Comparisons

Position Errors for CLAS/PPP/SALS

GNSS LAB

umsat

CLAS/IMU/Speed integration

Horizontal Errors (Original vs. Integration)

SNSS LAB

umsat

Interestingly, the integrated performance was worse than the original receiver (only GNSS) within 50 cm because float solutions are not used for this integration.

Long term evaluation of MADOCA PPP

NMEA (PPP) Locations (Time) TUMSAT JAPAN (August 2019) Chula Thailand (August 2019) UOP Philippine (August 2019) MJIIT Malaysia (Nov. 2019) Curtin Australia (Nov. 2019) UOI Indonesia (Dec. 2019) Singapore (Feb. 2021) Vietnam (March 2023)

Horizontal RMS in 2022

m

New concept for detecting NLOS satellites

- When the value of the satellite C/N_0 is less than the threshold, the satellite is not used for positioning for a certain period.
- Two important parameters needed to be set for this method: the C/N_0 threshold and the period in which the satellite was not used for positioning.
- As an example, we set 30 dB-Hz and 1 min as the threshold and period, respectively. Even if the value of C/N_0 recovered over 30 dB-Hz after 462,460 s, the satellite was not used for positioning for at least 1 min.
- In reality, GPS 03 should not be used for positioning during all the time because the pseudo-range error was continuously large over 60 m.

Test configuration (car parking)

Sensor	Model Name	ltem	Parameter
GNSS receiver	u-blox F9P (base/rover)	Mask angle	15 degrees
GNS/S antenna	Standard patch antenna	Maximum HDOP / Minimum C/N ₀	10.0 / 30.0dB-Hz
(rover)	(ANN-MB-00-00)	Pseudo-range measurements	Tracked
GNSS antenna (base)	Trimble Zephyr 2 Geodetic	Carrier phase measurements	Tracked
	. ,	Carrier phase measurements (only RTK-GNSS)	Tracked and half-cycle resolved

Detailed images around the antenna (1st location)

10.0 m

Threshold for residual (least-squares method)

Detailed images around the antenna (2nd location)

Horizontal errors comparison (1st location)

Horizontal errors comparison (2nd location)

Test configuration (traffic signals)

- Sensors and parameters are same as before.
- The route and 14 locations of traffic signals for this evaluation were shown in left figure.
- In fact, the car stooped in almost same locations 4 out of 18 times. Therefore, there were 14 locations are marked on the ground map.
- We have selected locations that have been stopped for more than 10 seconds.

Horizontal errors comparison (1st traffic signal)

Approx. 90 sec stop

DGNSS horizontal errors

DGNSS horizontal errors using new method

Not only error mitigation but also we could see quick and correct detection of NLOS signals

Summary of RTK-GNSS

 Table summarizes the result of RTK-GNSS (modified RTKLIB) in all locations. S means we got correct solutions with RTK-GNSS. F means we didn't get correct solutions with RTK-GNSS. We were able to get correct solutions with RTK-GNSS in 6 more locations using the new satellite selection method. The number of wrong fixes of RTK-GNSS without the new satellite selection method was high, and the number of wrong fixes of RTK-GNSS with the new satellite selection method was quite low.

Flowchart of methodology (Modified RTKLIB)

Data collection

Test2 3,088 s

Test3 2,852 s

Comparison with commercial receiver

Test	Modified F	RTKLIB	Commercial receiver (u-box F9P)		
number	Fix rate	Horizontal 2DRMS	Fix rate	Horizontal 2DRMS	
First test course	66.8 %	0.53 m	52.2 %	0.32 m	
Second test course	58.0 %	1.34 m	47.9 %	0.82 m	
Third test course	67.8 %	0.20 m	74.2 %	0.54 m	

Comparisons with RTKLIB/rtklibexplorer

- For the ambiguity resolution method, the <u>instantaneous mode</u> was used because the instantaneous mode is the best of the three modes using <u>**RTKLIB**</u> in urban areas.
- For the ambiguity resolution method, the **Fix and Hold mode** was used because the Fix and Hold mode is the best of the three modes using **rtklibexplorer** in urban areas.
- The following table summarizes the setting values of the parameters for RTK-GNSS. Each parameter to produce best performance was searched by changing these values. In fact, <u>Min Lock to Fix Amb</u> was also used here.

Parameters	Setting values
Mask angle	10, 15, 20, 25, 30, 35
Minimum C/N ₀ (dB-Hz)	30, 32, 34, 36, 38, 40, 42, 44
Code/Carrier ratio	100, 200, 300

Comparison with RTKLIB

Toet	Modified F	RTKLIB	RTKLIB		
number	Fix rate	Horizontal 2DRMS	Fix rate	Horizontal 2DRMS	
First test	66.8 %	0.53 m	41.1 %	7.69 m	
Course					
test	58.0 %	1.34 m	34.3 %	7.36 m	
Third test course	67.8 %	0.20 m	54.3 %	11.23 m	

Comparison with rtklibexplorer

Toet	Modified F	RTKLIB	rtklibexplorer		
number	Fix rate	Horizontal 2DRMS	Fix rate	Horizontal 2DRMS	
First test	668%	0 53 m	613%	1.2/m	
course	00.0 /0	0.55 111	04.3 /0	1.47111	
Second					
test	58.0 %	1.34 m	60.8 %	2.35 m	
course					
Third test	(7,9,0)	0.20	7250	0.20 m	
course	67.8 %	0.20 m	12.5 %	0.39 m	

Relationship between Number of LOS and RTK fix rate

Relationship between Number of LOS and RTK FIX rate (2021) Location : Mostly downtown in Tokyo

Hoight[m]	RTK Fix Rate					
	K-NN	Logistic Regression	DNN			
0 (Measured)		68.2				
0	63.4%	59.1%	61.5%			
30	86.7%	84.7%	85.4%			
50	89.5%	88.3%	89.4%			
100	98.9%	99.4%	99.8%			

Thank you very much for your attention.