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GNSS
(GPS, GLANNAS, Galileo and Compass)
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Remote Sensing with Reflected GPS




Ground-/Space- based GNSS Observations
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GNSS as a new remote sensing tool

» GNSS-based remote sensing for atmosphere, ionosphere, oceans, ice, soil
(moisture), etc. using radio occultation and reflectometry.

* Development of technologies and know-how for future micro satellite
constellations (formation flights) using GNSS.

« Passive radar for altimetry and scatterometry using a beam-steerable
antenna.

* Oceanographic and hydrological applications:

Sea level (altimetry), Ocean wave spectra (2D), roughness, swells
(scatterometry), Retrieval of wind directions, Retrieval of sea ice
parameters, Tsunami detection, and possible soil moisture extraction.
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1) GNSS Atmospheric Sounding

Optic and Geometry GPS
Signal:

‘|:| GPS satellite

GPS Tropospheric delay & Applications

¢ Monitoring the precipitable water vapor (PWV) for Weather
forecast and Climatologic research.

¢ Corrections of tropospheric delay for microwave techniques,
e.g. InNSAR, GPS etc.

GPS Ionospheric delay & Applications

¢  Correct the ionospheric error of GPS measurements (with 1-100
meters errors)

¢  Monitor ionospheric activities and irregularities, e.g.
ionospheric scintillation, storms

¢ Investigate the solid-earth deformation due to coupling with the
ionosphere

¢ Investigate space environment effects on Earth climate

GPS Navigation, POD and Coordinates
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Subdiurnal atmospheric tides by GPS-ZTD

The atmospheric density changes the refractive index of the
zenith column of air under the influence of the atmospheric . 2700
tides, which causes oscillations in the Z'TD at tidal frequen-
cies. Thus. the oscillations in ZTD within periods ol a solar
day (diurnal) and half a solar day (semidiurnal) may reflect
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the diurnal and semidiurnal tides induced on the atmosphere Time (year)
by thermal and gravitational excitation from the Sun. Under
the assumption of hvdrostatic equilibrium. the change in
pressure with height is related to total density at altitude fi
through the approximate relationship with hvdrostatic equi-
librinm approximation as

Power spectrum
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where p(ft)and g(/1) are the density and gravity at the altitude
I, respectively. Disregarding the change in the acceleration
of gravity g with respect to height. the zenith hydrostatic
delay (ZHD) can be further deduced as (Saastamoinen 1973)

2458 ¢
24596 ¢

2494 |

Mean ZTD (mm)

1 1 1 1 1 1 1 r 1

ZHD = kpg (4) 0 2 4 6 & 1012 14 16 18 20 22 24

Diumal time (hour)

where & is a scale factor (2.28 mm/hPa) and pg is the pressure Fie 4 T s of zenith total delay (ZTD) ( }
N vrie ot . . X L kg, 4 Times series of zenith total delay Upper), power spec-
atheightfip (Davis etal. 1985), namely ZHD = 2.28 pg. The trum (middle) and mean diurnal ZTD values at each of local time

scale Tactor k varies less than 1% even under severe weather © (LT = 1.3.5.....23) over the entire period with error bars (hottom)
conditions at Wuhan (WUHN), China

Jin et al. 2009, J. Geodesy

International Workshop on GNSS Remote Sensing
Aug. 7-9, 2011, Shanghai, China




{a) a0

e0r

Cad
(=1

Latitude ()
e
Latitude ()

I

-180 -120 -50 0 &0 120 180

Latitude 27

[

Longituds (%)

Longitude (%)

Fig. 7 Time of diurnal peak values at local time (LT: hour) where at
Fig. 5 Diurnal variation amplitudes (mm). a from GPS-derived ZTD  each GPS sites longitude the Sun is at its highest elevation at 12:00
and b from COADS surface pressure data adjusted by a scale factor LT. a from global IGS GPS observations and b from COADS surface
(2.28 mm/hPa) pressure data



Co-seismic Ionospheric Disturbance (2008 China Mw=8.0 Earthquake)
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Jin, et al. 2010, Int. J. Remote Sens.
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Ionospheric shock-acoustic waves
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The co-seismic 1onospheric
disturbance at 28 GPS sites shows
that an intensive N-shape shock-
acoustic waves propagated north-
eastward with a velocity 600 m/s,
in parallel with the rupture
direction.

Jin, et al. 2010, Int. J. Remote Sens.
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Ground-GPS 1onospheric tomography

* Method A: Multiplicative Algebraic
Reconstruction Technique (MART)

Il |°-|\IR\\ /

M &:&""‘,«a

STEC | : Zaynj xf—i_l:x_l]{( yi ﬂai. Vo
j=1

i
a l . x Earth surface

By iterative reconstruction with an initial guess, until the root mean
square (RMS) doesn’t change.

e Method B: Singular Value Decomposition (SVD)

Ax =b  AXW=b  W=(AX)'b
W =(V(diag(1/w)U"))b| m=pNo need initial values

Jin et al. J. Geodesy, 2009 More SVD is referred to Bhuyan et al.(2002)

International Workshop on GNSS Remote Sensing

Aug. 7-9, 2011, Shanghai, China



TIonospheric electron density profiles over Korea by GPS

measurements
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Figure 2 Ionospheric electron density distributions with the latitude of South
Korea on 28 October 2003 at UT: 13:00 (LT: 22:00). (a) ground-based GPS

tomography reconstruction; (b) IRI-2001. . = N
Jin et al. J. Navigation. 2007
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Ionospheric behaviors to space weather by GPS, CHAMP, and Ionosonde
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Fig. Ground-GPS, CHAMP and Ionosonde observed and one month

GPS-derived average electron density profiles at 13:00 UT.
Jin et al. J. Geodesy, 2008
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2) Bistatic GPS Reflections
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The satellites in the GPS constellation are constantly
bombarding the earth with radio signals. Part of the
signal is reflected from the earth's surface back into
space. The reflected signal component is very weak.

A spacecraft placed into low earth orbit could
simultaneously measure direct and reflected GPS
signals, and the data could be used to deduce
information about the reflecting surface (i.e., the
Earth's surface and oceans).

The signal reflection footprint on the surface of the
earth is defined by the intersection of equi-range and
equi-Doppler contours in what is called the
glistening zone, which is centered on the specular
reflection point.. A delay-doppler mapping receiver
(DDMR) would be used to take measurements across
the range of delay and Doppler

offsets. Measurements taken at a specific Doppler
and delay offset would correspond to specific
regions within the glistening zone.
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Blackjack GPS Receiver

« JPL's Blackjack GPS receiver is a high-precision space-
rated GPS receiver with dual-frequency tracking capabil
ity. The Blackjack is an unclassified receiver, and uses
a patented codeless processing technique that allows it t
o utilize the P-code signal without knowledge of the enc
ryption code. The Blackjack is controlled through flexi
ble and versatile software implementations of various re
cetver functions. This environment is conducive to addi
ng new capabilities, based on the mission requirements.

» BlackJack GPS flight receivers are being used on the fol
lowing space missions: SRTM (2000), SAC-C (2000), C
HAMP (2000), JASON-1 (2000/01), VCL (2000), FED

B A Sat (2001), ICESat (2001), and GRACE (2001). ICESat
P ~~ oy and GRACE are both CSR-managed missions.
JE":'EEH — » In the Fall, CSR will acquire a Blackjack from JPL to be
H,-- | e used in research and mission support for [CESat and GR
ACE.

e  More information:

gr "o
1[' ‘,:
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http://www.jpl.nasa.gov/releases/2000/blackjackgps.html

Disaster Monitoring Constellation (DMC) in UK

The Disaster Monitoring Constellation (DMC) is an international program initially proposed in 1996

and led by SSTL (Surrey Satellite Technology Ltd), Surrey, UK, to construct a network of five afford
able Low Earth Orbit (LEO) microsatellites. The objective is to provide a daily global imaging capabi
lity at medium resolution (30-40 m), in 3-4 spectral bands, for rapid-response disaster monitoring and

mitigation.

Table 1. UK DMC Data collections from Sept 04 to
Sept 05 (times are approximate). All ocean collections
have NDBC in-situ buoy comparisons unless otherwise

noted.

Date d'm/y | Time (UTC) | PRN Region
R10 ] 03/09/2004 | 072515 AM 17 Morthwest Pacific
R11 | O81/2004 | 07:49:80 AM 15 MNorthwest Pacific
R12 | 1611/2004 | 07:54:46 AM 22 MNorthwest Pacific
13 | 26/11/2004 | 07:36:36 AM 22 Morthwest Pacific
14 /002005 10-23:58 AM 13 Alaska Pacific
13 | 3007002005 | 09:05:21 AM 13 Hawaii
Rl16 | 30/01/,2005 102404 AR 13 Alaska, lce
RI18 | 04032005 1 O8:27:16 AM 27 Hawaii
19 | 11032005 | 0746009 AN 13 Morthwest Pacific
R20 | 21/03/2005 | 07:29:56 AM 13 Morthwest Pacific
221 027052005 | 09:16:11 AM 29 Haweaii
R22 | 77052005 | O8:50:40 AM 26 Hawaii
R23 | 25052005 1 O8:50:13 AM 27 Land, M America
24 | 29/05/2005 | 06:26:39 AM 28 Southwest Pacific
R25 | 03/06/2005 | 06:29:27 AM 31 Southwest Pacific
R27 | 50062005 | O8:57:01 AN 9 Hawai
R28 | 23/06/2005 11:15:30 AM ¥ Antarchica, lee
R30 | 24/06/2005 | 09:29:08 AM 5 Alaska Pacific
R31 | 07072005 | 09:33:39 AM 5 Hawaii
R32 | 22/07/2005 | 09:08:07 AM 30 Hawan
B33 | 24072005 | O8:-44:36 AM 5 Hawan
F34 | 09082005 10:21: 14 AM 15 Aldaska Pacific
R35 | 107082005 | 07-46:07 AM 30 MNorthwest Pacific
R36 | 20082005 | 09:07:31 AM 30 Hawai

Gleason et al., 2007
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Soil moisture
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Soil moisture by ground GPS observations

Larson et al. (2008)

CORS Coverage - July 2006
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Snow/ice thickness

Receiving Antenna
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Hurricane Dennis with GPS-R and Dropsondes

Hurricane Dennis, July 2, 205
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GITEWS (German Indonesian Tsunami Early Warning System)

* GPS Reflectometry & Scatterometry
Receiver Technology for future tsunami
detection

*  GPS Scatterometry and Reflectometry are seen as valu
able new techniques in the field of altimetry, oceanogr &% =
aphy and glaciography. The high reflectivity of GPS si ,}
gnals in the frequency range of L-Band (1,2and 1,6 G _
Hz) on water as well as iced and snow covered surface ,
s partly compensates for the low signal intensity and a s
llows the detection of reflected signal components. —

. . A . "‘5 \ unication
 In the past, experiences with special Delay Mapping G | 2% . T4t
PS Receivers in balloons and planes have demonstrate ag!ﬁ.’;‘.; s —_
| - 7/ 1\ CHAMP ‘“--.-::_:H ol e
d, that measurements of the sea level can be achieved | cener AR -4

with an accuracy of up to 5 cm. Quite recently, the ext
raction of altimetric height information of occultation | 57 7
events of the CHAMP mission could be proven with a | >

sensitivity in the decimeter range. :

http://www.gitews.org
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GNSS-RS with future more missions

How Does GNSS
Remote Sensing Work?

Fig. 4. CICERO (Climate Communily Initiative for Continuing Earth Radio Occultation) with about 100 satellites (Yunck et al., 2007). The lelt lower
corner shows the GNSS-Reflectometry and the right lower corner represents GNSS Radio Occultation.
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GNSS Remote Sensing & Applications

Reflection
and scattering
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