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OUTLINE

• What is a Terrestrial Reference System (TRS), why is it 
needed and how is it realized ?

• Concept and Definition
• TRS Realization by a Frame (TRF)
• International Terrestrial Reference System (ITRS) and 

its realization: the International Terrestrial Reference 
Frame (ITRF)

• ITRF2008 Geodetic & Geophysical Results
• How to access the ITRF ?
• GNSS associated reference systems and their 

relationship to ITRF:
– World Geodetic System (WGS84)
– Galileo Terrestrial Reference Frame (GTRF)
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Defining a Reference System & Frame:

Three main conceptual levels :
Ideal Terrestrial Reference System(TRS):
Ideal, mathematical, theoretical system
Terrestrial Reference Frame (TRF): 
Numerical realization of the TRS to which users have access

Coordinate System: cartesian (X,Y,Z), geographic (λ, φ, λ, φ, λ, φ, λ, φ, h), ), ), ), 
............

– The TRF is a materialization of the TRS inheriting the 
mathematical properties of the TRS

– As the TRS, the TRF has an origin, scale & orientation
– TRF is constructed using space geodesy observations
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Ideal Terrestrial Reference System

A tridimensional reference frame (mathematical sense) 
Defined in an Euclidian affine space of dimension 3:

Affine Frame (O,E) where:

O: point in space (Origin )
E: vector base: orthogonal with the same length:

- vectors co-linear to the base (Orientation)
- unit of length (Scale)
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Terrestrial Reference Frame in the context of 
space geodesy

• Origin : 
– Center of mass of the Earth System

• Scale (unit of length): SI unit

• Orientation:
– Equatorial (Z axis is approximately 

the direction of the Earth pole)
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Transformation between TRS(1/2)
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Transformation between TRS(2/2)

(1)
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From one RF to another ?
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Coordinate Systems

– Cartesian: X, Y, Z

– Ellipsoidal: λλλλ, ϕϕϕϕ, h
– Mapping: E, N, h

– Spherical: R, θθθθ, λλλλ
– Cylindrical: l, λλλλ, Z o
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Ellipsoidal and Cartesian Coordinates:
Ellipsoid definition

a

b
a: semi major axis
b: semi minor axis
f: flattening
e: eccentricity

a
ba

f
a

ba
e

−−−−====−−−−====     ,2
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2

(a,b), (a,f ), or (a,e2) define entirely and
geometrically the ellipsoid
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Ellipsoidal and 
Cartesian Coordinates
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(X, Y, Z) ==> (λλλλ,ϕϕϕϕ,h)
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Map Projection
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Why a Reference System/Frame is needed?

• Precise Orbit Determination for:
– GNSS: Global Navigation Satellite Systems
– Other satellite missions: Altimetry, Oceanography, 

Gravity

• Earth Sciences Applications
– Tectonic motion and crustal deformation
– Mean sea level variations
– Earth rotation
– …

• Geo-referencing applications
– Navigation: Aviation, Terrestrial, Maritime
– National geodetic systems
– Cartography & Positioning
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What is a Reference Frame in practice?

• Earth fixed/centred RF: allows determination of 
station location/position as a function of time

• It seems so simple, but … we have to deal with:
– Relativity theory
– Forces acting on the satellite
– The atmosphere
– Earth rotation
– Solid Earth and ocean tides
– Tectonic motion 
– …

Origin, Scale & Orientation

• Station positions and velocities 
are now determined with mm 
and mm/yr precision
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"Motions" of the deformable Earth

• Nearly linear motion: 
– Tectonic motion: horizontal

– Post-Galcial Rebound: Vertical & Horizontal

• Non-Linear motion:
– Seasonal: Annual, Semi & Inter-Annual 

caused by loading effects

– Rupture, transient: uneven motion caused by 
Earthquakes, Volcano Eruptions, etc.
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Crust-based TRF
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The instantaneous position of a point on Earth 
Crust at epoch   t  could be written as :

X0 : point position at a reference epoch t0 

: point linear velocity
: high frequency time variations:
- Solid Earth, Ocean & Pole tides
- Loading effects: atmosphere, ocean, hydrology, 

Post-glacial-Rebound
- ... Earthquakes
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Reference Frame Representations

• "Quasi-Instanteneous" Frame: mean 
station positions at "short" interval: 
– One hour, 6-h, 12-h, one day, one week

==> Non-linear motion embedded in time series 
of quasi-instanteneous frames

• Long-Term Secular Frame: mean station 
positions at a reference epoch (t0) and 
station velocities: X(t) = X0 + V*(t – t0)
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Implementation of a TRF

• Definition at a given epoch, by selecting
7 parameters, tending to satisfy the 
theoretical definition of the corresponding 
TRS

• A law of time evolution, by selecting 7 
rates of the 7 parameters, 
assuming linear station motion!

• ==> 14 parameters are needed to define a TRF
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How to define the 14 parameters ?
« TRF definition »

• Origin & rate: CoM (Satellite Techniques)

• Scale & rate: depends on physical parameters

• Orientation: conventional

• Orient. Rate: conventional: Geophysical meaning 
(Tectonic Plate Motion)

• ==> Lack of information for some parameters:
– Orientation & rate (all techniques)
– Origin & rate in case of VLBI
– ==> Rank Deficiencyin terms of Normal Eq. System
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Eq. (1) is a singular system: has a rank deficiency equal to
the number of TRF parameters not given by the observations.
Additional constraints are needed:
• Tight constraints ( σσσσ ≤≤≤≤ 10-10 ) m   Applied over station
• Removable constraints ( σσσσ ≅≅≅≅ 10-5 ) m    coordinates
• Loose constraints ( σσσσ ≥≥≥≥ 1) m

• Minimum constraints (applied over the TRF parameters, see 
next) 

Implmentation of a TRF in practice
The normal equation constructed upon observations of space
techniques is written in the form of:

where are the linearized unknowns

(1)
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TRF definition using minimum constraints (1/3)

The standard relation linking two TRFs 1 and 2 is:

θθθθ is the vector of the 7 (14) transformation parameters

Least squares adjustment gives for θθθθ :

A : desigin matrix of partial derivatives given in the next slide
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7 parameters

14 parameters
The Design matrix A

Note: A could be reduced to specific parameters. E.g. if only rotations and rotation 

rates are needed, then the first 4 columns of the two parts of A are deleted 
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TRF definition using minimum constraints (2/3)

• The equation of minimum constraints is written as:

• The normal equation form is written as:

It nullifies the 7 (14) transformation parameters between 
TRF 1 and TRF 2 at the ΣΣΣΣθθθθ level

ΣΣΣΣθθθθ is a diagonal matrix containing small variances of the 
7(14) parameters, usually at the level of 0.1 mm
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TRF definition using minimum constraints (3/3)

Considering the normal equation of space geodesy:
(1)

(2)

Par cumul de (1) et (2), on a:

are the linearized unknowns

Selecting a reference solution XR ,the equation of minimal 
constraints is given by:

where

Accumulating (1) and (2), we have:

Note: if XR = Xapr ,  the 2nd term of the right-hand side vanishes 
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Combination of daily or weekly TRF solutions (1/3)

The basic combination model is written as:

Note: this combination model is valid at a give epoch, ts, for 
both the input and output station coordinates
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Combination of daily or weekly TRF solutions (2/3)
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Combination of daily or weekly TRF solutions (3/3)

The design matrixs As has the following form:

s
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Definition of the combined TRF

• The normal equation system described in the 
previous slides is singular and has a rank 
diffciency of 7 parameters.

• The 7 parameters are the defining parameters of 
the combind TRF c: origin (3 components), scale 
(1 component) and  orientation (3 components).

• The combined TRF c, could be defined by, e.g.:
– Fixing to given values 7 parameters among those to be 

estimated
– Using  minimum constraint equation over a selected set 

of stations of a reference TRF solutionXR.              
Refer to slide 24 for more details…
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Combination of long-term TRF solutions
The basic combination model is extended to include 
station velocities and is written as:

In the same way as for daily or weekly TRF combination,
observation and normal equations could easily be derived.

where the dotted parameters are their time derivatives.

Note: this combination model is only valid at a give epoch, 
both for the input and output station coordinates
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Stacking of TRF time series

The basic combination model is written as:

Here also, observation and normal equations are construted 
and solved by least squares adjustment.
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Space Geodesy Techniques

• Very Long Baseline Interferometry (VLBI )

• Lunar Laser Ranging (LLR )

• Satellite Laser Ranging (SLR)

• DORIS

• GNSS:GPS, GLONASS, GALILEO, COMPASS, 
…

• Local tie vectors at co-location sites
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Complex of Space Geodesy instruments

SLR/LLR

DORIS

VLBI

GPS
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Reference frame definition by individual techniques
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Current networks: stations observed in 2011
VLBI SLR

GPS/IGS DORIS



Summer school on Space Geodesy and the Earth System, Shanghai, August 201236

Current Co-locations (2011)
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International Association of Geodesy
International Services

• International Earth Rotation and Reference Systems 
Service (IERS) (1988)

• Intern. GNSS Service  (IGS) (1994)

• Intern. Laser Ranging Service (ILRS) (1998)

• Intern. VLBI Service (IVS) (1999)

• Intern. DORIS Service (IDS) (2003)

http://www.iag-aig.org/
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International Terrestrial Reference 
System (ITRS)

Realized and maintained by the IERS
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International Earth Rotation and Reference 
Systems Service (IERS)

Established in 1987 (started Jan. 1, 1988) by IAU and IUGG 
to realize/maintain/provide:

• The International Celestial Reference System (ICRS)

• The International Terrestrial Reference System 
(ITRS)

• Earth Orientation Parameters (EOP)

• Geophysical data to interpret time/space variations 
in the ICRF, ITRF & EOP

• Standards, constants and models (i.e., conventions)

http://www.iers.org/
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International Terrestrial Reference System (ITRS): 
Definition (IERS Conventions)

• Origin : Center of mass of the whole Earth, including 
oceans and atmosphere

• Unit of length: meter SI, consistent with TCG 
(Geocentric Coordinate Time)

• Orientation: consistent with BIH (Bureau 
International de l’Heure) orientation at 1984.0.

• Orientation time evolution: ensured by using a No-
Net-Rotation-Condition w.r.t. horizontal tectonic 
motions over the whole Earth
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International Terrestrial Reference System (ITRS)

• Realized and maintained by 
ITRS Product Center of the 
IERS

• Its Realization is called 
International Terrestrial 
Reference Frame (ITRF )

• Set of station positions and 
velocities, estimated by 
combination of VLBI, SLR, 
GPS and DORIS individual 
TRF solutions

• Based on Co-location 
sites

More than 800 stations located on 
more than 500 sites

Available: ITRF88,…,2000, 
2005
Latest : ITRF2008

Adopted by IUGG in 1991 for
all Earth Science Applications

http://itrf.ign.fr
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Co-location site

SLR/LLR

DORIS

VLBI

GNSS

• Site where two or more instruments are operating
• Surveyed in three dimensions, using classical or GPS geodesy
• Differential coordinates (DX, DY, DZ) are available

DX(GPS,VLBI) = XVLBI - XGPS
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Strenghts : 
Contribution of Geodetic Techniques to the ITRF

YesYesYesPolar Motion

YesYesYesReal-time & 
ITRF access

YesNoNoGeographic 
Density

YesYesYesDecadal 
Stability

FutureYesNoGeocenter

ITRF Origin

No (but maybe in 
the future!)YesYesScale

NoNo
YesCelestial 

Frame  &   UT1

GPS
Microwave
Satellites

Range change

SLR
Optical
Satellite

Two-way absolute 
range

VLBI 
Microwave
Quasars

Time difference

Technique
Signal
Source

Obs. Type

DORIS

No

Yes

Yes

Future

Yes

Yes

Yes

Mix of techniques
is fundamental to 
realize a frame that 
is stable in origin, 
scale, and with 
sufficient coverage
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How the ITRF is constructed ?

• Input : 
– Time series of mean station 

positions (at weekly or daily 
sampling) and daily EOPs 
from the 4 techniques

– Local ties in co-location 
sites

• Output :
– Station positions at a 

reference epoch and linear 
velocities 

– Earth Orientation 
Parameters

CATREF combination model
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ITRF Construction

Time series stacking X V

Velocity equality

Local ties

Combination

ITRF Solution

At co-location sites

DORIS
GPS

SLR
VLBI

DORIS
GPS

SLR
VLBI

Long-term Solutions
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SINEX Format
%=SNX 2.01 IGN 10:157:00000 IGN 04:003:00000 09:005:00000 C 01308 2 X V  
*-------------------------------------------------------------------------------

+SITE/ID
*CODE PT __DOMES__ T _STATION DESCRIPTION__ APPROX_LON_ APPROX_LAT_ _APP_H_
ANKR  A 20805M002   Ankara, Turkey          32 45 30.4  39 53 14.5   976.0
...

+SOLUTION/EPOCHS
*Code PT SOLN T Data_start__ Data_end____ Mean_epoch__
ANKR  A    5 C 04:003:00000 08:133:00000 06:067:43200

...

+SOLUTION/ESTIMATE
*INDEX TYPE__ CODE PT SOLN _REF_EPOCH__ UNIT S __ESTIMATED VALUE____ _STD_DEV___

………………
19 STAX   ANKR  A    5 06:183:00000 m    2 0.412194852609284E+07 0.17234E-03
20 STAY   ANKR  A    5 06:183:00000 m    2 0.265218790321918E+07 0.12249E-03
21 STAZ   ANKR  A    5 06:183:00000 m    2 0.406902377621100E+07 0.16467E-03
22 VELX   ANKR  A    5 06:183:00000 m/y  2 -.668839830148651E-02 0.14215E-03
23 VELY   ANKR  A    5 06:183:00000 m/y  2 -.270320979559104E-02 0.10069E-03
24 VELZ   ANKR  A    5 06:183:00000 m/y  2 0.971313341105308E-02 0.13542E-03

………………
+SOLUTION/MATRIX_ESTIMATE L COVA
*PARA1 PARA2 ____PARA2+0__________ ____PARA2+1__________ ____PARA2+2__________

1     1 0.150471439320574E-06
2     1 -.140657602040892E-06 0.176947767515801E-06
3     1 -.115071650206259E-06 0.127287839143953E-06 0.122184056413112E-06

………………
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Power of station position time series 

• Monitor station behavior
– Linear, non-linear (seasonal), and discontinuities

• Monitor time evolution of the frame physical 
parameter (origin and scale)

• Estimate a robust long-term secular frame
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ITRF and Science Requirement
• Long-term stableITRF: 0.1 mm/yr

==> Stable: linear behaviour of the TRF parameters, i.e. with 
no discontinuity :
– Origin Components: 0.1 mm/yr
– Scale 0.01 ppb/yr (0.06 mm/yr)

Unstable parameter

time

Value

time

Value

Stable parameter

But stability also means TRF site position predictabilty
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Impact of 1.5 ppb scale discontinuity
Typical scale Typical scale with a simulated

discontinuity of 1.5 ppb

Data-span: 15 years

Vertical velocity Diffs
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Impact of 0.1 ppb/yr scale drift
Typical scale Typical scale with a simulated

drift of 0.1 ppb/yr

Vertical velocity Diffs

Data-span: 15 years
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Some examples of discontinuities and 
seasonal variations
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Dicontinuity due to equipment change 
Before After
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Denaly Earthquake (Alaska)

GPS DORIS
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Arequipa Earthquake
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Example of seasonal variations
BRAZ GPS antenna
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ITRF2008

• Time Series of Station Positions :
– Daily  (VLBI) 
– Weekly (GPS, SLR & DORIS)

• and Earth Orientation Parameters:
Polar Motion (xp, yp)
Universal Time (UT1) (Only from VLBI)
Length of Day (LOD) (Only from VLBI)
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ITRF2008 Network

580 sites (920 stations)

461 Sites North

118 Sites South
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34 
32

ITRF2008: Site distribution per technique

84 
9

76 
13

390 
102

VLBI
SLR

GPS DORIS
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ITRF2008 Datum Specification

• Origin: SLR
• Scale : Mean of  SLR &VLBI
• Orientation: Aligned to ITRF2005

using 179 stations located  at 131 sites: 
104 at northern hemisphere and 27 at southern hemisphere
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SLR & DORIS origin components wrt ITRF2008

SLR

DORIS
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Scales wrt ITRF2008
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Transformation Param Fm ITRF2008 To ITRF2005

Tx
mm

Ty
mm

Tz
mm

Scale
ppb

-0.5
± 0.2

-0.9
± 0.2

-4.7
± 0.2

0.94
± 0.03

Tx rate
mm/yr

Ty rate
mm/yr

Tz rate
mm/yr

Scale rate
ppb/yr

0.3
± 0.2

0.0
± 0.2

0.0
± 0.2

0.00
± 0.03

At epoch
2005.0
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How to estimate an absolute 
plate rotation pole ?

• TRF definition 

• Number and distribution over sites over the plate

• Quality of the implied velocities

• Level of rigidity of the plate
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Plate boundaries: Bird (2003) and 
MORVEL, DeMets et al.  (2010)

Eurasia

Nubia

Australia

Pacific

Antarctica

N
az

ca
CARB
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ALL ITRF2008 Site Velocities:
time-span > 3 yrs

509 sites
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ITRF2008-PMM: Selected Site Velocities

206 sites
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ITRF2008 Plate Motion Model

Inversion model:

Results: 
• Angular velocities for 14 plates
• Translation rate components

• More details in JGR paper by Altamimi et al. (2012) 
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Impcat of the translation rate
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Comparison between ITRF2008 & 
NNR-NUVEL-1 & NNR -MORVEL56

After rotation rate transformation 

NNR-NUVEL-1A
RMS:
East : 2.5 mm/yr
North: 2.1 mm/yr

NNR-MORVEL56
RMS:
East : 1.8 mm/yr
North: 1.9 mm/yr

Green:   < 2 mm/yr
Blue :    2-3 mm/yr
Orange: 3-4 mm/yr
Red :    4-5 mm/yr
Black :   > 5 mm/yr
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Plate motion and Glacial Isostatic Adjustment

NOAM EURA

Residual velocities after removing NOAM & EURA rotation poles

Blue : points used
Red : points rejected
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ITRF2008 Vertical velocity field
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ITRF transformation parameters
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Access & alignment to ITRF

• Direct use of ITRF coordinates

• Use of IGS Products (Orbits, Clocks): all 
expressed in ITRF

• Alternatively:
– Process GNSS data together with IGS/ITRF global 

stations in free mode
– Align to ITRF by

• Constraining station coordinates to ITRF values at the central 
epoch of the observations 

• Using minimum constraints approach
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Transformation from an ITRF to another at epoch tc

• Input : X (ITRFxx, epoch tc)

• Output: X (ITRFyy, epoch tc)
• Procedure:

– Propagate ITRF transformation parameters from their epoch 
(2000.0, slide 72) to epoch tc, for both ITRFxx and ITRFyy:

– Compute the transformation parameters between ITRFxx and 
ITRFyy, by subtraction;

– Transform using the general transformation formula given at 
slide 8: 
X(ITRFyy ) = X(ITRFxx ) + T + D.X(ITRFxx ) + R.X(ITRFxx )
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How to express a GPS network in the ITRF ?

• Select a reference set of ITRF/IGS stations and collect 
RINEX data from IGS data centers;

• Process your stations together with the selected ITRF/IGS 
ones:
– Fix IGS orbits, clocks and EOPs 
– Eventually, add minimum constraints conditions in the processing
==> Solution will be expressed in the ITRFyy consistent with IGS orbits

– Propagate official ITRF station positions at the central epoch (tc) of 
the observations: 

– Compare your estimated ITRF station positions to official ITRF 
values and check for consistency!
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From the ITRF to Regional Reference Frames

• Purpose: geo-referencing applications (σσσσ ~ cm)
• There are mainly two cases/options to materialize 

a regional reference frame:
1. Station positions at a given epoch, eventually updated 

frequently. Ex.: North & South Americas
2. Station positions & minimized velocities or station 

positions & deformation model. Ex.: Europe (ETRS89) 
New Zealand, Greece (?)

– Case 1 is easy to implement (see previous slide)
– Case 2 is more sophisticated & needs application of:

• Transformation formula (ETRS89)
• Deformation model
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GNSS and their associated reference systems 

GNSS Ref. System/Frame
• GPS (broadcast orbits) WGS84
• GPS (precise IGS orbits) ITRS/ITRF
• GLONASS PZ-90
• GALILEO ITRS/ITRF/GTRF
• COMPASS CGCS 2000
• QZSS JGS 
• All are ‘’aligned’’ to the ITRF
• WGS84 ≈ ITRF at the decimeter level
• GTRF ≈ ITRF at the mm level
• σσσσ-Position using broadcast ephemerides = 150 cm 
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The World Geodetic System 84 
(WGS 84)

• Collection of models including Earth 
Gravitational model, geoid, transformation 
formulae and set of coordinates of 
permanent DoD GPS monitor stations

• WGS 60…66…72…84
• Originally based on TRANSIT satellite 

DOPPLER data
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The World Geodetic System 84 
(WGS 84)

• Recent WGS 84 realizations based on GPS 
data:
- G730 in 1994
- G873 in 1997
- G1150 in2002
- G1674 in 2012 (aligned to ITRF2008)

• Coincides with any ITRF at 10 cm level
• No official Transf. Param. With ITRF
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WGS 84-(G1150)
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WGS 84-(G1150)

• Coordinates of ~20 stations fixed to ITRF2000
• No station velocities
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WGS84 - NGA Stations in ITRF2008
NGA: National Geospatial-Intelligence Agency 
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WGS84 - NGA Stations in ITRF2008
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Galileo Terrestrial Reference Frame 
(GTRF)

• Galileo Geodesy Service Provider (GGSP)

• GGSP Consortium (GFZ, AIUB, ESOC, BKG, IGN)

– Define, realize & maintain the GTRF
– GTRF should be "compatible" with the ITRF at 

3 cm level 
– Liaison with IERS, IGS, ILRS

• GTRF is a realization of the ITRS
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The GTRF Experience

GESS (13) IGS station (~120)

• Initial GSS positions&velocities are determined using GPS observations
• Subsequent GTRF versions using GPS & Galileo observations 
• Ultimately Galileo Observations only
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Combination Strategy

• Use Normal Equations from the 3 ACs

• Adequate for weigthing

• Weekly and cumulative solutions are transformed 
into the ITRF using Minimum Constraints 

θθθθ = 0

ITRF Combined Solution
(GTRF)
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GTRF09v01 horizontal velocities
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Comparison of GTRF09v01 to ITRF2005

T1   T2   T3     D     R1     R2     R3    Epoch
mm   mm   mm    10-9   mas    mas    mas      y

-------------------------------------------------------------
ITRF2005  0.3 -0.3 -0.2  -0.02  -0.003 -0.007 -0.006  7:360

± 0.2  0.2  0.2   0.03   0.007  0.008  0.008

Rates     0.0 -0.1 -0.1   0.01  -0.001 -0.002 -0.001
± 0.2  0.2  0.2   0.03   0.007  0.008  0.008

N      WRMS-Pos.   Epoch    WRMS-Vel.
E    N    U            E    N    U

mm         y        mm/y
-------------------------------------------------------------
ITRF2005     89   1.0  1.2  2.6 7:360   0.3  0.3  0.6

• Transformation parameters

• RMS difference between stations coordinates and velocities

==> Perfect GTRF alignment to the ITRF at the sub-mm level
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Conclusion (1/2)

• The ITRF 
– is the most optimal global RF available today
– gathers the strenghs of space geodesy techniques
– more precise and accurate than any individual RF

• Using the ITRF as a common GNSS RF will 
facilitate the interoperability

• Well established procedure available to ensure 
optimal alignment of GNSS RFs to ITRF

• To my knowledge: most (if not all) GNSS RFs are 
already ‘’aligned’’ to ITRF

• GNSS RFs should take into account station 
velocities   
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Conclusion (2/2)

WGS84, PZ90, GTRF 
Are all connected to (compatible with) 

a Unique System
The ITRS 


