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ARTICLE INFO ABSTRACT

Keywords: Selenophysical parameters can be estimated based on admittance between gravity and topography, especially
Particle swarm optimization high-precision GRAIL gravity and LOLA topography data. These parameters include load ratio between sub-
Mutation surface and surface loads, crustal thickness, crustal density, and effective elastic thickness. Considering non-
Admittance

negligible membrane stress, the lunar lithosphere is best modeled as a thin and elastic spherical shell. Taking
into account of the nonlinearity of the governing equation of the shell and premature convergence of PSO, we
introduced an updated algorithm of MPSO which considers a self-adaptive inertia weight and a mutation op-
erator as commonly used in Genetic Algorithms (GA). Results indicate that MPSO is relatively more flexible in
the choice of tuning parameters than the general algorithm of PSO. A low mutation probability of 0.005 is found
to promote globally optimized convergence, and a low value of 0.002 is employed in parameters estimation for
20 areas in southern hemisphere highland. Using the updated algorithm of MPSO, it is found that a well-con-
strained crustal density for most of the studied regions is less than or equal to the mean crustal density
(2550 kg'm ~>) of the entire lunar highland. The relatively small crustal density is likely a result of high porosity
of southern hemisphere crust. The elastic thickness at studied locations far from mare basins is found to be
around 7 km, corresponding to the thickness at the stage of formation of highland formed from the crystal-
lization of ancient ferroan anorthosite. A large elastic thickness is on the contrary discovered surrounding mare
basins. The ancient lunar lithosphere developed quite thick as the Moon becoming cool and it was able to
elastically support new loads during the formation of mare basins. The difference of elastic thickness indicates
the development of lithospheric thickness at the distinct lunar evolutionary history.

Elastic thickness
Lunar Southern Hemisphere highland

1. Introduction

Selenophysical parameters inverted from gravity and topographic
data provide some indicators about the internal structure and thermal
evolution of the Moon (Wieczorek et al., 2013; Jin et al., 2013; Huang
et al., 2014). High precision gravity data from the recent Gravity Re-
covery and Interior Laboratory (GRAIL) mission is now available; thus,
parameters inversion based on admittance between gravity and topo-
graphy is a promising alternative to other methods such those based on
the limited Apollo seismic data. Moreover, the Apollo seismic stations
are only located on the nearside of the Moon (Latham et al., 1973;
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Nakamura et al., 1973; Gillet et al., 2017), limiting the ability of tra-
ditional methods to globally constrain the lunar selenophysical para-
meters, especially in regions far from seismic stations. Globally dis-
tributed gravity and topographic data, especially the high precision
data from recent GRAIL missions, provide an opportunity to investigate
the subsurface structure of southern hemisphere highlands. Through a
joint analysis of admittance between gravity and topography, it is
possible to estimate selenophysical parameters based on a flexure
model of either an elastic plate or spherical shell. In the case of small
celestial bodies such as the Moon and Mars, modeling the lithosphere as
a thin elastic spherical shell is a practical option, as the membrane
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stresses' support of loads (Turcotte et al., 1981; Zhong and Zuber,
2002). Given a series of free parameters including the load ratio f,
crustal thickness b, density p., and the lithosphere elastic thickness T,
the resulting gravity anomalies can be inferred by solving the governing
equation for the thin spherical shell. The best value of these parameters
can be estimated by minimizing the misfit between the modeled ad-
mittance and observations. This method has been broadly applied in
research about the Moon.

The parameter of T, is used to describe the lithospheric thickness. It
is actually considered as the effective elastic thickness, since the li-
thosphere is in reality not perfectly elastic (Kohlstedt et al., 1995), but
we will still refer to it as the elastic thickness in the following section.
The lunar lithosphere is its outer rind (Jolliff et al., 2006). Its thickness
provides information about the temperature when the loadings were
emplaced. On Earth, the elastic thickness is controlled by the depth of
the 450 °C isotherm (Watts, 1994). A similar isotherm exists beneath
the lunar lithosphere (Crosby and McKenzie, 2005). The thinner the
lunar lithosphere, the smaller the elastic thickness of T, and therefore
T, is used to place constraints on the model of the ancient thermal
evolution of a planet. Based on a thin plate model, Crosby and
McKenzie (2005) first used admittance to investigate elastic thickness
around the Clavius crater in the southern hemisphere of the Moon using
Clementine topographic data and line-of-sight acceleration collected by
the Lunar Prospector mission.

Ishihara et al. (2009) used the gravity field model SGM100g
(Namiki, 2010) to study the difference of elastic thickness between the
South Pole-Aitken basin (SPA) and far-side highland terrain (FHT) with
the increasing precision of gravity on the farside of the moon. Later,
Huang and Wieczorek (2012) used SGM100i (Goossens et al., 2011) to
estimate the density and porosity of the whole upper crust. The gravity
field model SGM100g was a prior model used in an iteration process to
obtain SGM100h (Matsumoto et al., 2010). This model was solved not
only using the Doppler tracking data of SELENE mission (from 20 Oc-
tober 2007 to 26 December 2008 plus 30 January 2009), including two-
way Doppler tracking data of the main orbiter, and all the four-way
tracking data, but also considering other historical tracking data from
the LP, Clementine, and the Apollo sub-satellite. As the additional
same-beam differential VLBI tracking data between Rsta and Vsta of
SELENE mission became available, Goossens et al. (2011) combined
these VLBI data and those used to solve SGM100h to obtain a new
model, SGM100i. This new model showed an improvement in orbit
determination over the previous SGM100g and SGM100h models.

It is now possible to study small-scale areas with the un-
precedentedly high precision of the GRAIL gravity field model now
available. Huang et al. (2014) first employed GRAIL gravity field model
and topographic data from LOLA to estimate T, over large volcanic
complexes on the nearside of the Moon. Their research revealed a quite
lower T, on the nearside (even close to 1 km). Analogously, Zhong et al.
(2014) first considered a Particle Swarm Optimization (PSO) in ad-
mittance inversion. They applied such algorithm to T, inversion over
the Grimaldi mare basin and found a low value of 30 km (Zhong et al.,
2017). Their result is quite lower than the previous value (~60km)
(Arkani-Hamed, 1998; Sugano and Heki, 2004). These researches reveal
that the elastic thickness from GRAIL gravity field model is likely lower
than models from non-GRAIL data.

The low-precision non-GRAIL gravity field models have been less
extensively employed on southern lunar highlands with limited inver-
sion. Although Crosby and McKenzie (2005) studied parts of these
places, the lithosphere they modeled was a thin plate. The lithosphere is
best modeled however, as a thin spherical shell, considering the non-
negligible membrane stresses' support to loads. Combining the thin
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spherical shell model with the high-precision GRAIL gravity data makes
possible new insights into the substructure beneath the southern
highland. Moreover, the primordial topography on the southern high-
land was formed during the crystallization of ancient ferroan anortho-
site. Investigation on the elastic thickness in the southern highlands can
provide information about the strength of the lithosphere when it
started to grow. High-precision GRAIL gravity field models and topo-
graphy data from LOLA make it possible to carry out extensive inver-
sion. So far, there is no such similar research on the lunar southern
highlands, since it was difficult to make an extensive inversion on this
area using the low-precision non-GRAIL gravity field.

Considering the nonlinear nature of the governing equation of the
spherical shell (see Eq. (C1) in Appendix), solving such an equation is
complex when using traditional linearized approaches to estimate
parameters based on statistical admittance. Moreover, these linearized
methods will face more computational challenge when executing an
inversion. From a theoretical point of view, nonlinear global optimi-
zation methods that synchronously sample all the parameters in wide
ranges are the optimal strategy. To solve these problems, the Monte
Carlo (MC) and Markov Chain Monte Carlo (MCMC) methods were
introduced as global optimization methods in selenophysics (Khan
et al., 2000; Chenet et al., 2006; Huang and Wieczorek, 2012; Huang
et al., 2014; Matsumoto et al., 2015). These approaches can be applied
on non-smooth and non-convex object functions, since they are deri-
vative-free and generate results independent of an initial model; how-
ever, they are extremely time-consuming methods.

Evolutionary algorithms (EA) have experienced rapid development,
particularly as they are efficient at global optimization with high rates
of convergence. One of the powerful EA methods is Particle Swarm
Optimization (PSO), known for simplicity of implementation and few
tuning parameters (Kennedy and Eberhart, 1995). It performs effec-
tively in selenophysical parameter inversion (Zhong et al., 2014, 2017).
However, like other EA methods such as Genetic Algorithm (GA), PSO is
also prone to premature convergence, especially in functions with
complex shapes (Taherkhani and Safabakhsh, 2016). Premature con-
vergence means inversion failure, since particles merely find localized
values for these estimated parameters. Thus, the key issue is how to
escape from localized solutions. Inspired by the mutation operator
employed in Genetic Algorithm (GA) (Ali et al., 2016), we introduced
an updated version of PSO with a mutation operator and a self-adaptive
inertia weight, Mutant Particle Swarm Optimization (MPSO), that
avoids premature convergence.

In this paper, we adopt our algorithm to study the lithospherical
thickness information in the lunar southern highland areas; especially
we demonstrate the superior robustness of MPSO over the general PSO.
Perfect MPSO convergence rates will ensure its successful application in
selonophysical parameter inversion on the lunar southern hemisphere
highland, as well as its potential application in geophysical parameter
inversion for Mars' and Venus'. We organize the paper as follows: we
introduce the proposed method in Section 2; we demonstrate the ad-
vantage of MPSO over PSO with a sensitivity analysis in Section 3; in
Section 4, we present the results and discussion; and finally, we sum-
marize our work and draw conclusions in Section 5.

2. Theory and methods
2.1. Particle swarm optimization
The PSO was originally introduced by Kennedy and Eberhart (1995)

to simulate social behaviors found in flocks of birds or schools of fish,
especially their movements. It creates a swarm of candidate solutions
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represented as particles. All the particles move around in a search-space
composed by the ranges of estimated parameters. For the admittance
analysis in this paper, there are four parameters to be estimated. These
include the load ratio f, crustal thickness b, density p., and lithosphere
elastic thickness T.. Thus, the corresponding search space is four di-
mensions. The i-th particle of the swarm is represented by a 4-dimen-
sional position vector x; = (fi, b i, pe,is Te,i), Where f, be;, pc; and T ; are
the candidate solutions for the estimated parameters. The velocity is
v; = (Vi1, Via, Via, Via). If we use t as an iteration index, then the current
position and velocity of the i-th particle are represented by x;(t) and
vi(t), and the best position (P;pest) from the beginning to current
iteration t is Pipest = (fip, beips Pe,ips Teip)- The current global best po-
sition (Pgpes) for all the particles is Pgpest = (fg, begs Pegr Teg)- The
velocity and position of the i-th particle at the next iteration t + 1 can
be calculated by the following equations (Kennedy and Eberhart, 1995;
Kennedy et al., 2001);

Vit + D) = ovi(®) + et lp e — X0 + 025Dy peye — Xi(D)] o)

xi(t+ 1) = x;(t) + vi(t + 1) 2)

in which, ¢; and ¢, are cognitive and social parameters, r; and r, are
uniform random numbers between 0 and 1, and w is the inertia weight,
showing the effect of a previous velocity vector on the new vector.

2.2. Self-adaptive inertia weight and mutation operator

The inertia weight w in PSO adjusts the influence of a previous
velocity on the current velocity and makes a balance between global
and local exploration (Shi and Eberhart, 1998). In general, a large in-
ertia weight permits a powerfully global exploration, promoting parti-
cles to escape from local solutions. A small inertia weight value will
tend toward local exploration, confining particle searches within its
nearby ranges and thus promoting convergence. It is more rational
therefore, that the inertia weight w varies asynchronously according to
potential solutions. This strategy is called the self-adaptive inertia
weight and has been demonstrated to be quite effective (Taherkhani
and Safabakhsh, 2016). The inertia weight of the i-th particle at the
iteration t can be estimated as follows:

_ (wmax - wmin)'(o_i - 0_min)

Oavg — Omin

Wmin (Gi < Uavg)

wj =

Wmax (O_i > o_avg)

3

where wpyax and oy, represent the maximum and minimum values of
the inertia weight, respectively, o; is misfit value for the i-th particle at
the last iteration t-1, Omin and 0,y represent the minimum and mean
values of the misfit function of a swarm, respectively.

The strategy of self-adaptive inertia weight can suffer from pre-
mature convergence when the objective function is great complex; so
another effective method is needed. Mutation in Genetic Algorithm
(GA) is a genetic operator used to maintain genetic diversity. Given a
user-definable mutation probability, it will alter one or more gene va-
lues in a chromosome (Dai et al., 2006) from their initial states. In the
MPSO, a particle and its position correspond to a chromosome and gene
in GA, respectively. A mutation operator in the MPSO will randomly
alter one component of the position vector for an arbitrary particle. This
operator allows the algorithm to avoid a local best solution by pre-
venting the particles from becoming too similar to each other. In this
paper, we insert the mutation operator after Eq. (2), which implies a
mutation operating in the swarm after each particle is updated for
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velocity and position. The flowchart of the MPSO algorithm is described
in Appendix A.

2.3. Admittance between gravity and topography

The gravity g and topography h on a reference sphere can be ex-
pressed by a linear combination of spherical harmonics as in
(Wieczorek and Simons, 2005, 2007)

() = D 8, Yim(Q), h(Q) = D i Yin (Q) @
Im Im

where Yy, is a spherical harmonic of degree [ and order m, g, and hy,
represent the spherical harmonic expansion coefficients of g and h, re-
spectively, 2 represents a position on the sphere in terms of colatitude 0
and longitude ¢. In order to investigate the selenophysical parameters
in a localized area within an angular radius 6y, the global distributed
gravity and topography must be localized by an axisymmetric win-
dowing function y(6p) up to maximum degree Ly, (Wieczorek and
Simons, 2005, 2007)

bwin

$(80) = Y, B (cos &)

j=0

(5)

where P;(cos8) is the normalized Legendre's polynomial of degree j.
This function is constructed to minimize signals arising from areas ex-
terior to the angular radius 6, for the given spectral bandwidth L;,. We
use a single localization window that can concentrate more than 99% of
its power within the region of interest. The localized gravity and to-
pography are g(€)y(6p) and h(Q)y(6,), respectively. We assume that
®;,, and Iy, are the spherical harmonic expansion coefficients of the
localized gravity and topography, respectively. The total cross-power
Sor(D) of the localized gravity and topography is defined as

1
Yoo Ser =2 Y Pinlim =

1=0 m=-1

- [ @I ER@)]d0
Q

(6)

Similarly, we can get the auto-power spectrum Sgqe(l) and Srr(D) of
the localized gravity and topography. Thus, the wavelength-dependent
localized admittance z(l) and correlation y(I) can be given by.

Sor(1) Sor (1)
= Ly =
V=50 "= Foarsm® @

The localized admittance error squared can then be estimated as in
(Bendat and Piersol, 2000; Wieczorek and Simons, 2007),
Ser(M 1 =v*()

Soo (1) 21

2 1 —
oz (1) ®

2.4. Misfit function and governing equation of a spherical shell

Given a serial of parameters such as p,, f, b. and T, the modeled
gravity is deduced from the governing equation of thin spherical shell.
Using Egs. (4)—(7), we can calculate the modeled admittance. If gravity
and topography are correlated, the four parameters can be estimated by
minimizing the misfit between the modeled admittance and observa-
tions (Belleguic et al., 2005; Beuthe et al., 2012). The misfit is denoted
by the chi-squared function (Belleguic et al., 2005; Beuthe et al., 2012)
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Table 1
Nominal parameter values.

Parameter name Value or range

Load ratio f -0.8-5
Mean crustal density p, (kg'm ™) 2000-3200
Mean crustal thickness b, (km) 0.0-60
Lithospheric elastic thickness T, (km) 0.0-150
Surface gravity acceleration g (m's™~2) 1.721
Referenced radius R (km) 1737.15
Poisson's ratio of lithosphere v 0.25

1.0 x 10" (McGovern et al., 2002)
3360 (Garcia and Gagnepain-Beyneix,
2011)

Young's modulus of lithosphere E (Pa)
Mantle density p,, (kgm~%)

Zobs(l) — gmod (l)

N a(1)

1=lwin

, 1 lix [ ]2

g2 = —

©)
where 2°%(1) and 2™°4(1) are the observed and modeled admittances for
a given degree [ in terms of Eq. (7), 0,(D) is the error of the observed
admittance shown in Eq. (8). The value l;, is the maximum degree of
the windowing function as shown in Eq. (5), while L4 is the max-
imum degree of utilized gravity field model. N is the number of de-
grees of freedom (here equals Ly ax-2lyin-4 in this study). The standard
deviation of the chi-squared function is approximately equal to 2/N.
The global best-values of the parameters can be constrained within
ZUSTD = 2\/2/_1\] .

The modeled admittance z™°%(I) can be estimated based on the
modeled gravity anomaly contributed by the surface topography and
subsurface interfaces. These interfaces depend on the deflection w; of
the lithosphere and their relieves are shown in Table C1. Given a certain
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load q (positive downward), the deflection w; of a thin and elastic shell
is governed by the following expression (Kraus, 1967; Turcotte et al.,
1981)

DVSw; + 4DV4w; + ET.R2V2w; + 2ET.Row; = RY[(V2 + 2) — (1 + v)]q
(10)

where R is the reference radius of the shell (equivalent to the lunar
mean radius) and E is Yong's modulus. v is Poisson's ratio and D = ET.%/
[12(1-v®)] is the flexural rigidity (as shown in Table 1). Eq. (10) is
characterized by nonlinearity with a high order of six, and thus can be
solved with a nonlinear rather than linear method.

3. Sensitivity analysis

In order to test the advantage of MPSO, we analyzed the success rate
(SR) distribution considering just the mutation operator, without the
self-adaptive inertia weight. This factor SR will approach 100% when
the MPSO finds the global best minimum for the testing function
Rastrgin (As seen in Table B1). It is also a function of variable tuning
parameters such as inertia weight w, cognitive and social parameters c;
and c,. We set the inertia weight  varying in the range [0, 1]. We also
suppose parameters c; and ¢, identical to each other (c; = ¢ = ¢), as is
in general recommended in the literature (Shi and Eberhart, 1998), and
constrain their value ¢ varying in the range [0, 3]. The number of
iterations is 100 in our test. For every couple of parameters (w, c), we
take 100 trials to analyze the sensitivities for the swarm sizes n = 20
and n = 60. As shown in Fig. 1(a) and (b), the SR for both PSO and
MPSO is sensitive for tuning parameters @ and c for a small swarm size
n = 20. In this case, the optimal w is dependent on c, but the area of SR
in MPSO is larger than that of PSO.

As the size n increased to 60 as in Fig. 1(c) and (d), the area of SR for

¢ c
SR(%)
100
80
60
000 025 050 075 100 000 025 050 075  1.00
® ® 40
L Il - 20
1 @ ,
] 0
¢ c
000 025 050 075 100 000 025 050 075
) ®

Fig. 1. SR as a function of variable tuning parameters w and c. For PSO, the swarm sizes have different value of n = 20 and n = 60 in (a) and (c), respectively. As to

MPSO, the swarms sizes are n = 20 and n = 60 in (b) and (d), respectively.
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Rastrigin
Ackley o

0 —————— 5 20
0 0005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

IJIN

Fig. 2. Sensitivity analysis for mutation probability p,, for two multimodal
functions of Rastrigin and Ackley.

both PSO and MPSO becomes larger than those of the corresponding
small size swarm n = 20. However, the area of SR for MPSO is much
larger than that of PSO in this situation. This result coincides with the
result for a small swarm size n = 20, indicating the mutation operator is
an effective way to avoid local minimums. If the swarm size n increases
to a larger number such as n = 400, we can infer that the SR region will
be wider. It is evident that the range of the optimal w in MPSO is wider
than that of PSO for a given c. This result reveals that there is more
independency between w and ¢ for MPSO than in PSO. Therefore, MPSO
is more flexible than PSO when selecting @ and c. Based on the large
value of SR in Fig. 1, we selected ¢ = 2.0, ®yax = 0.8, and wpy;, = 0.3 in
our study.

The sensitivity of mutation probability p,, in MPSO was tested,
considering the self-adaptive inertia weight and mutation operator. The

Table 2
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8 s IR |
E
1.00 i
0.75 r |
PSO 7 MPSO 7 —w— 25.\,,”)'7 ........
0.50  MPSO 15 —&— Osrpas i

20 25 30 35 40 45 50
Iteration ¢

Fig. 3. Differences of convergence between PSO (dashed lines) and MPSO (solid
lines). No. 7 and No. 15 represent areas centering at (50°S, 9°E) and (55°S, 51°E)
in Table 2, respectively. The two-standard deviations for No. 7 (20srp ) and No.
15 (20s1p,15) are represented by dashed lines with black and blue colors, re-
spectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

test aimed to identify the optimum range for the mutation probability
for parameters estimation. The Rastrigin and Ackley multimodal func-
tions were employed in our experiment as these n dimensional func-
tions are non-linear and large number of local minima to test the ro-
bustness of an algorithm. These functions are detailed in Appendix B. In
Fig. 2, the two functions show the same SR value (~100%) at a low
mutation probability. This low probability falls in the range of (0, 0.01).
Beyond this range, the success rates drop slowly, which means that a
large mutation probability will likely lead to a low success rate. Con-
sidering that, a mutation operator will reset the position of a target
particle, and a large probability means a large number of particles shift

Summary of inversion parameters. 6 is the angular radius, [y, is the maximum degree of utilized gravity and topography data, f is the load ratio between subsurface
and surface loads, b, is the crustal thickness, p. is the crustal density, T, is elastic thickness and o is the misfit.

No. Center 6o Lmax f b, (km) pe (kgm™?3) T, (km) g
1 (33°S, 42°W) 5 170 3.448 _ 73510228 41.5_,5%12 2950 _136 173 40_,,"10 1.0861
2 (42°S, 31.5°'W) 5 170 —0.2859 23.4 2340.5 20.2 1.6666
3 (50°S, 35°W) 5 200 -0.5386 28.0 2200.0 28.8 1.5332
4 (42°S, 15°W) 5 170 0.38 0,026 700 38_,,"%3 2485_g*13 30_55*1° 0.9579
5 (41°S, 2°W) 5 170 —-0.0429 30 2666.2 9.9 1.6525
6 (42°S, 8°E) 7 200 —0.35_g.027 %07 28 _,,%20 2400_,5+12 8_3*° 0.9933
7 (50°S, 9°E) 5 200 —0.17 _ 042 %% 33_5"° 2550 _5,%17 6_165" 18 0.7284
8 (37°S, 25°E) 5 170 0.2090 30.0 2720.2 45 2.0211
9 (46°S, 25°E) 5 170 0.4374 28.0 2808.5 19.2 1.5184
10 (58°S, 25°E) 7 200 0.0982 28.0 2547.2 3.3 1.3239
11 (35°S, 36°E) 6 170 —0.43_g030" %% 30_5,%3° 2280 "% 12_5%10 0.7678
12 (53°S, 36°E) 5 200 -0.2607 30.0 2400.0 27.2 2.1588
13 (63°S, 39°E) 8 170 -0.2433 32,5 2518.2 2.6 1.9669
14 (35°S, 47°E) 5 170 —0.354_¢ 0300 35.2_(3%03 2400_,** 13,72 1.3586
15 (55°S, 51°E) 6 170 —0.355_ 00034 " 200% 26_,5H 2450_¢"° 3.0_g347 0% 1.2389
16 (50°S, 70°E) 5 200 —0.36_g.030 " %% 35 ,5+2%8 2342 45110 12_5%¢ 1.2421
17 (45°S, 65°E) 6 170 —0.2505 25.0 2501.3 4.1 1.6610
18 (35°S, 75°E) 6 170 —-0.1479 33.5 2418.9 10.2 1.9037
19 (28°S, 87°E) 8 170 —-0.2934 36.7 2485.5 2.6 1.6183
20 (35°S, 85°F) 5 170 —0.273_0.005 "% 04 . +as 2570_,+11 2.4_016"""® 0.6924
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A

Fig. 4. Hemisphere map centering at (35°S, 30°E) using the Lambert azimuthal
equal-area projection comes from LOLA topography. Studied areas with a
number of tags from 1 to 20 are circled with white color.

toward a primitive random search. Therefore, this probability ought to
be set as a low value; a value around 0.005 is suggested by Fig. 2. A low
value of 0.002 was applied in our study.

4. Selenophysical parameter estimation

The high-resolution gravity field model GLO660B (Konopliv et al.,
2013) and LOLA topography data (Smith et al., 2010) were used in our
analysis. GLO660B was expanded to degree and order 660, it is an update
of the preliminary lunar gravity field model GLO420A (Zuber et al.,
2013), and has 98% global coherence with the LOLA topography to a
degree of 330. Considering that the deflection of the lunar crust-mantle
interface in response to surface loads makes only a negligible contribu-
tion to the observed gravity field beyond degree and order 150
(Wieczorek et al., 2013), the gravity and topography data were con-
servatively truncated up to 170 or 200 (corresponding to maximum
degree L,,.x = 170 or 200). The admittance computation between gravity
and topography was carried out using the SHTOOLS2.8 archive
(Wieczorek and Meschede, 2018). The actual lithospherical deflection
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possibly resulted from surface and subsurface loads; these loads were also
considered. Given a series of estimated parameters, the gravity anomaly
was estimated according to Appendix C. All the parameters values or
ranges are listed in Table 1. In general, a large angular radius 6, includes
more waves, but leads to a lower resolution. In order to make a trade-off
between the resolution and success of estimation, the areas of interested
were confined within an angular radius from 5° to 8°, corresponding to a
spherical harmonic bandwidth of 52 or 32. These angular radii contain
most of the localized gravity anomalies. For an angular radius of 5° and
maximum degree L, = 170, the corresponding effective degrees used in
our analysis ranged from 52 to 148, with a degree of freedom of 61.
Similarly, using the same angular radii but when considered as a large
maximum degree L. = 200, the degree of freedom will be 91.

We made a comparison between PSO and MPSO to test the con-
vergence speed. We selected two areas (i.e. No. 7 and No. 15 in Fig. 4)
in our test. These two areas were constrained within 20grp, as presented
in Table 2. The center positions of these areas were located at (50°S,
9°E) and (55°S, 51°E). The results are shown in Fig. 3. The swarm size
was 400 and number of iterations was less than 50. In area No. 7, the
misfit o declined rapidly before iteration 20. However, the misfit o for
MPSO was confined within 20grp (~0.3015), but was greater than
20grp in PSO. When constrained within 20grp (~0.3203), MPSO shows
the same behavior of convergence in other areas of No. 15, but PSO
exhibits divergence within 50 iterations, thus MPSO has more powerful
capacity of convergence than PSO. This indicates that the mutation
factor and self-adaptive inertia weight included in MPSO speeds up
convergence. These strategies can help particles escape from local
minimization solutions.

We inversed the parameters for 20 areas on the highland of lunar
southern hemisphere by applying swarm sizes of 400 with 50 iterations.
The misfit for most of these areas was constrained within two-standard
deviations; these 20 areas represent most of the features in the southern
highland. Using the Lambert azimuthal equal-area projection, these
areas were plotted on a hemisphere map circled with black color in
Fig. 4. We selected two areas to illustrate their best-fit admittance, as
seen in Fig. 5; panels (a-b) represent admittances for areas of No. 7 and
No. 15. Constrained within 20stp (~0.3015), Fig. 5a shows that the
admittance in No. 7 had a sharp upturning profile until degree 67. After
degree 67, the admittance appears as an approximate straight line, with
little fluctuation. The correlation spectrum gets close to unity across the
whole range. It is clear that the misfit between the modeled admittance
(pink solid line) and observed admittance (black error bar) is quite
small except for four points at the beginning of spectrum. This best fit
also applies in No. 15, shown in Fig. 5b, except for misfits at few points.
These results indicate a significant advantage of MPSO when searching
for global optima. The optimal estimated parameters for the area of No.
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Fig. 5. Correlation spectrum observed (dashed line), admittance spectrum observed (error bar) and admittance spectrum modeled (solid line) for two regions. (a)

denotes region of No. 7 and (b) designates regions of No. 15 in Fig. 4 and Table 2.
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7 are shown in Table 2, including load ratio f of —0.17, crustal thick-
ness b, of 33 km, crustal density p. of 2550 kg'm ~° and elastic thickness
T. of 6 km.

We quantified the acceptable ranges of these parameters with the
best-fit values. A trade-off study is shown in Fig. 6 for the area of No. 7.
In Fig. 6a, the best-fit value of T, was around 6 km with a corresponding
f varying between —0.23 and —0.12. Such a best-fit value of T is also

61

constrained in the rest panels with a range between 4km and 12 km.
Fig. 6b demonstrates that the best crustal thickness b. ranges from
28km to 42km. The best crustal density in Fig. 6c lies between
2528 kg'm 3 and 2570 kg'm ~>. The exact ranges for these parameters
are shown in Fig. 7. The best load ratio f in Fig. 7a is found to be
—0.17 _o.042 T %%%, which includes the range shown in Fig. 6a. Such
small load ratio indicates that the surface load is dominant rather than
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the subsurface load, which is typical of highland or mountain regions.
The range of best-fitting crustal thickness in Fig. 7b is coincident with
that in Fig. 6b. The GRAIL gravity field model demonstrates that the
crustal thickness of the whole highland has a minimum value of 34 km
and a maximum value of 43 km (Wieczorek et al., 2013). Our estimated
range for crustal thickness contains the likely mean value of the whole
highland. The estimated value of crustal density is found to be
2550 _,,*'7 in Fig. 7c, which is roughly coincident with that range in
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Fig. 6¢. This range involves the mean crustal density (~2550 kgm ™3,

Wieczorek et al., 2013) for the entire highland region. The elastic
thickness in Fig. 7d varies between 4.39 km and 9.18 km. This range
roughly approves those inFig. 6. Our results are reliable as they con-
sider the best-constrained crustal thickness and crustal density.

We selected another area with the center at (55°S, 51°E) for our
analysis (No. 15 in Table 2). In order to successfully estimate para-
meters within 20stp, we truncated the gravity and topography up to
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170 (Inax = 170) and used a slightly larger angular radius of 6°, with a
corresponding bandwidth of 43°. Fig. 8 shows the trade-offs between
parameters, showing the narrow range of parameters, and quite dif-
ferent from those in Fig. 6. This is coincident with the large misfit o
(~1.2389) seen in Table 2. However, the parameters are constrained
within 20stp (~1.3203). Fig. 8a shows the range of f varying between
—0.36 and —0.32. Fig. 8b gives a low crustal thickness with a range of
[24 km, 27.5km]. The constrained crustal density in Fig. 8c is around
2450 kg'm 3. All the panels in Fig. 8 demonstrate that the elastic
thickness is around 3 km. As to the range of load ratio, Fig. 9a shows a
best-fit value around —0.355 while the crustal thickness ranges be-
tween 24.7km and 27.1km, and nearly coincident with the crustal
thickness seen in Fig. 8b. Fig. 9c demonstrates a low crustal density
range of [2444kgm™3, 2455kg:m %], which is substantially lower
than the mean value of the entire highland (~2550 kg~m_3). The best-
fit value of elastic thickness in Fig. 9d is around 3 km, coincident with
those in Fig. 8.

Using the same analysis, we find that not only does such small
crustal density appear in the No. 7 and No. 15 areas, but also in other
areas such as No. 5, 6, 8,10, 11, 13, 14,16, 17, 18, 19 and 20, as shown
in Table 2. Although parts of these areas are not constrained within
20s7p, the well constrained areas such as No. 6, 11, 15 and 20 de-
monstrate a lower crustal density than the mean crustal density value in
the highland. Such small density, over areas 4 and 6 especially, coin-
cides with the research of Wieczorek et al. (2013); but the density in the
rest of areas approaches the surface density (Besserer et al., 2015). The
recent work of Sori et al. (2018) demonstrates that the lunar highland
topography formed early in lunar history before the development of a
thick elastic lithosphere. Areas of No. 1 to 4 are nearby impact basins
and the magma intrusion beneath these areas might increase the loca-
lized crustal density. The rest areas far away impact basins would
sustain a relatively small density. The small crustal density is likely a
result of high porosity of southern hemisphere highland. As to elastic
thickness T, these slightly large values at No. 9 and No. 12 are not well
constrained within 20stp and do not represent the actual elastic
thickness. Without considering No. 1, 2, 3, 4, 9 and 12, it can be con-
cluded that the elastic thicknesses of the studied areas far from mare
basins is around 7 km. The Feldspathic Highlands Terrane (FHT) con-
sists of the central anorthositic region (FHT-An) and its outer region
(FHT-0O). The research of Kamata et al. (2013) implies that the lower
crust underneath the FHT-O may be richer in radioactive elements than
FHT-An. Recent research reported by Sori et al. (2018) implies that the
farside highland (FHT-An) was formed earlier in lunar history before
the development of a thick elastic lithosphere and was at large scale
compensated by Airy mechanism. As part of the FHT, the southern
highland was also likely formed before the development of a thick
elastic lithosphere. Considering heating from the likely rich radioactive
elements beneath the southern highland, a small elastic thickness is
likely found there at the time of surface topography emplaced.

Areas No. 1 to No. 4 are close to Mare Humorum and Mare Nubium.
The estimated parameters are well constrained over areas of No. 1 and
No. 4. The area of No. 1 is beside Mare Humorum. The most precise
estimated load ratio is around 3.448, and quite different from other
places. Such large load ratio indicates that the subsurface load is
dominant rather than the surface load. The best-fit value of the crustal
density was around 2950kg'm 3. Such large load ratio and crustal
density could be correlated with lava invading from Mare Humorum.
The best-constrained elastic thickness is around 40 km. The large value
of elastic thickness also appears in area of No. 4 (~30km), shown in
Fig. 4. This region is located on the south of Mare Nubium.

These relatively large thicknesses are distinct with the small values
of the studied regions far from mare basins. The small elastic
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thicknesses (e.g. values at locations of No. 5-20) possibly correspond to
the thicknesses at the stage of ancient surface topography formed after
the solidification of Lunar Magma Ocean (LMO). After that, the lunar
lithosphere developed quite thick as the lunar heat loss and becoming
cooled of the Moon (Jolliff et al., 2006). Until impacting of mare basins'
formation, the lunar lithosphere became greatly stiff to support mare
loads. Melosh et al. (2013) verified that a strong lithosphere was es-
sential to maintain a mascon. During the mare basin formation, the
ejecta from impacts deposited throughout the edge of the basins and
even mantle flow would intrude the subsurface structure beneath the
surrounding of mare basins. The lithosphere elastically adjusted to
support these new loads. A relatively large elastic thickness sur-
rounding mare basin consequently developed. These large thicknesses
were found in our studied regions such as No. 1 and No. 4, shown in
Fig. 4.

5. Conclusion

In this paper, a strategy of self-adaptive inertia weight and a mu-
tation operator are introduced in MPSO to estimate selenophysical
parameters. Our results indicate that these strategies could help parti-
cles escape from localized minimization. A sensitivity analysis demon-
strates that MPSO is more flexible in the choice of tuning parameters
such as inertia weight w, and cognitive and social parameters c; and c,.
A further test shows that a low mutation probability of 0.005 can
promote convergence in global optima. A probability of 0.002 is used in
parameters inversion. A particle swarm size of 400 and a maximum of
50 iterations are also employed and a best-fit is found between the
modeled admittance spectrum and observations.

Using the updated MPSO algorithm, an extensive inversion on the
lunar Southern Hemisphere highland is carried out. Parts of these areas
are successfully constrained within two-standard deviation. Results
indicate that a well-constrained crustal density for most of the studied
regions is less than or equal to the mean crustal density (2550 kg'm ~%)
of the entire lunar highland. The relatively small crustal density is likely
a result of high porosity of crust on the southern hemisphere highland.
The elastic thickness at studied locations far from mare basins is around
7 km, which is quite different with the large elastic thicknesses over
locations nearby mare basins. Their difference potentially implies the
distinct development stage of the lithosphere. The strength of the li-
thosphere was weak after the primordial topography formed from the
crystallization of ancient ferroan anorthositic rock, thus a small elastic
thickness can be found on the southern hemisphere highland. The an-
cient lunar lithosphere developed quite thick, as the loss of heat and
becoming cool of the Moon. It was able to elastically support new loads
during the formation of mare basins; hence a relatively large elastic
thickness is likely found surrounding mare basins. The difference of
elastic thickness indicates the development of lithospheric thickness at
the distinct lunar evolutionary history.
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Appendix A. Flowchart of MPSO algorithm
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Fig. Al. Flowchart of MPSO.
Appendix B. Benchmark test functions

The n dimensional multimodal functions utilized to benchmark global optimization strategies are summarized in Table B1. Their application
ranges, global minimum positions and values are illustrated as well. These functions can be used to evaluate characteristics of optimization algo-
rithms, such as convergence rate and robustness. These tests are presented in Section 3, where the strategies of mutation and self-adaptive inertia
weight were evaluated according to the success rate (SR). The SR is defined as the ratio between succeeding global-search times and the total number
of tests. The larger the SR is, the robust the algorithm is. According to large value of SR, we can estimate the tuning parameters, such as self-adaptive
inertia weight w, cognitive and social factor ¢, and mutation probability p.,. In this paper, we take the dimension n = 2 for simplification.
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Table B1
Benchmark test functions, where x; is the i-th component of the position.

Function Formula Range Solution Global Minimum

Ackley [n n [-32, 32] o" 0

| X xiz >} cos(2mx;)
70_2\“ i=1 i=1
— 20e n —e n +20+e
Rastrigin [-5.12, 5.12] or 0

n
10n + Y [x? — 10cos(27x;)]
i=1

Appendix C. Lithospherical deflections corresponding to various loads

Not only surface load does cause the deflection of the lithosphere, but also subsurface load (Forsyth, 1985). Assuming the initial amplitudes of the
surface and subsurface loads are h; and w;, respectively, and h, and w;, are their heights after loading, it can be deduced their corresponding
lithospherical deflection w, and hy, (Forsyth, 1985)

h; = h + w (CcD

W; = Wy + hy (C2)
Accordingly, the observed surface topography h and subsurface load interface w represent a sum of the components:

h=h —hy (€3

W =Wp — W (Cc4)

The actual lithosphere deflection is possibly produced by the combination of the surface and subsurface loads. We here introduced a model
involving four interfaces, which is shown in Table C1. The quantities of b. and 2, represents the crustal thickness and subsurface load depth,
respectively. Supposing subsurface load generates at the crust-mantle interface, we can have the relationship b. = 2. Accordingly, the load gen-
erated by the combination of surface and subsurface loads is

q = glpch = (P, — pI(hy + W) + py (W — W) + py, (hy + W] (C5)

where py, is the density contrast between the subsurface load and its surroundings. In order to solve Eq. (10) according to observed topography h,
Forsyth (1985) introduced load-ratio f and it defined as

f= Py Wi
pchi (C6)
Considering Egs. (C1)—(C6), the actual deflection wy, of the lithosphere is
wp = —klh - kz'W (C7)
where
fi
=t
fo, + om — £c (c8)
k= Pm — P
fpc + Pm — A (Cg)

Eq. (10) is clearly a nonlinear equation and it is impossible to deduce its exact solution. However, it is still solved as spherical harmonic form
when assuming the estimated parameters being isotropic (Beuthe et al., 2012). Considering isotropic estimated parameters, the spherical harmonic
coefficient wy, of subsurface load interface w can be expressed as

Wim = _k37(l)hlm
ks(D) (C10)
where
Pe
k(1) = ok A, (0 kA (1 Az(1
3(D) = ok A (D) + Ty 2()+pm_pc (1) 11
ki) = oky M (D) + o, (D) + A3(D) (C12)
LD =B+ 1)° — 4201 + 1)? (C13)
LDO=11+1)-2 (C14)
MO=Ill+1)—-1+v (C15)
D
o=——"——
gR* (P — Pe) (C16)
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o= E'I;Rz
gR4(pm - pc)
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(C17)

where hy,, is the spherical harmonic coefficient with degree [ and order m of the observed topography h. Given a serial of estimated parameters such
as f, b, p. and T, it can be estimated the resulted amplitudes of interfaces in Table C1 as well as the corresponding surface gravity anomaly.

Table C1
The referenced interfaces employed in modeled gravity anomaly calculation.

No. Interface Height of Interface Density contrast Referenced radius
1 Surface H Pe R
2 Crust-Mantle interface ~(hy + w9 Pm-Pe R-b.
3 Subsurface load Wp-Wy Pb R-zp
4 Reference layer of Subsurface load -Chy + w) -Pb R-z,
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