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ABSTRACT 
Seabed topography is important for marine geophysics and 
geodesy. However, conventional seabed topography inversion 
methods based on gravity data are constrained to a linear fit-
ting, neglecting the impact of nonlinear terms. In this paper, 
we propose an innovative method for seabed topography 
inversion by establishing fresh mathematical relationships 
through machine learning techniques based on the Smith and 
Sandwell (SAS) method. Utilizing global sea depth data from 
the National Geophysical Data Center (NGDC) and gravity 
anomaly data from satellite altimetry, our study employs the 
SAS method for seabed topography inversion. The improved 
SAS method, enhanced by the Genetic Algorithm- 
Backpropagation (GA-BP) algorithm, is specifically applied to 
invert the Huangyan Seamount Chain topography in the 
South China Sea. The accuracy is evaluated by seabed topog-
raphy models, including EOTPO1, GEBCO-2023, and S & S 
V19.1. The results show the GA-BP method significantly 
reduces residuals and improves the accuracy estimated by the 
SAS inversion method. The Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE) are decreased by 14.98% and 
5.07%, respectively. The proposed method has valuable refer-
ence significance for future marine exploration endeavours 
around the world.
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Introduction

Marine surveying and mapping play a pivotal role in marine exploitation 
and economies development worldwide. A fundamental aspect of marine 
surveying and mapping is to obtain the global high accuracy seabed topo-
graphic map through seabed topographic surveys. However, traditional sur-
veying methods have disadvantages such as time-consuming, inefficiency, 

CONTACT Shuanggen Jin sgjin@nuist.edu.cn School of Remote Sensing and Geomatics Engineering, 
Nanjing University of Information Science and Technology, Nanjing 210044, China. 
� 2024 Informa UK Limited, trading as Taylor & Francis Group

MARINE GEODESY 
2024, VOL. 47, NO. 4, 269–288 
https://doi.org/10.1080/01490419.2024.2347877

http://crossmark.crossref.org/dialog/?doi=10.1080/01490419.2024.2347877&domain=pdf&date_stamp=2024-05-04
http://orcid.org/0000-0002-5108-4828
http://www.tandfonline.com
https://doi.org/10.1080/01490419.2024.2347877


and limited coverage. Satellite altimetry data can quickly and efficiently 
acquire global gravity data. Therefore, using satellite altimetry data to invert 
seafloor topography can effectively compensate the shortcomings of trad-
itional surveying methods. The utilization of satellite altimetry in seabed 
topography inversion was initially proposed by Siement in the nineteenth 
century with postulating a relationship between spatial gravity anomalies 
and the seabed topography of a specific band. However, it was not used 
until a century later that Dixon et al. validated the feasibility of this 
assumption (Dixon et al., 1983). In 1983, Parker introduced gravitational 
potential into the frequency domain and presented the expression for grav-
ity anomalies induced by underground material interface fluctuations in the 
frequency domain (Parker, 1973). In 1991, Calamant and Baudry (1991) 
employed Seasat, Geos-3, and Geosat altimetry geoid data and applied two- 
dimensional inversion technology in frequency and an iterative approach to 
address high-order terms of seafloor topography and geoid, which reduced 
the error impact of lithospheric flexural strength. Nevertheless, this method 
needed more integration of ship-measured sea depth data with satellite 
altimetry data.

Smith and Sandwell (1994) introduced a novel technique based on 
Watts’ three-plate theoretical model (Watts, 1979) and Parker’s formula. 
This approach utilized Geosat GM data, avoiding structural compensation 
assumptions, and estimated seabed topography based on the functional 
relationship between seabed topography and gravity anomalies in the sea 
area. Sandwell and Smith (1997) adopted a similar method to construct a 
global seabed terrain model, employing Smith’s method to derive a 
medium-long-wave seabed terrain. In 1997, Smith and Sandwell (1997) 
derived a digital bathymetric map of the oceans with a horizontal reso-
lution from 1 to 12 kilometers by combining available depth data with 
high-resolution marine gravity information from the Geosat and ERS-1 
spacecraft. Calmant et al. (2002) employed multi-source satellite altimetry 
to acquire geoid height data, considering regional compensation mecha-
nisms, and used the least squares method to predict ocean depth. Kim 
et al. (2010) utilized both the SAS and GGM methods to invert the sub-
marine topography of the eastern waters in Japan, conducting accuracy 
assessments and comparing differences with existing models. In 2011, Kim 
et al. (2011) leveraged vertical gravity gradient anomalies and employed 
nonlinear inversion techniques based on seamount models to investigate 
the global distribution of seamounts. Sandwell et al. (2014) studied the tec-
tonic plates of the seabed using ocean gravity data derived from the altim-
etry satellites CryoSat-2 and Jason-1, suggesting that the inversion accuracy 
of seabed topography was significantly improved by utilizing these new sat-
ellite altimetry data. Furthermore, Liu et al. (2022) significantly improved 
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the accuracy of the topography in the Emperor Seamount Chain using 
Convolutional Neural Networks (CNN). Wang et al. (2001) estimated high- 
resolution seabed topography in the China Sea and adjacent seas using the 
admittance method with higher resolution and accuracy than the widely 
used ETOPO model. Ouyang et al. (2015) evaluated the accuracy of the 
ETOPO1 model in the South China Sea using the gravity geological 
method. Li and Bao (2016) analyzed the SAS method and gravity geology 
method in the sea area near the West Island of Japan, and Sui et al. (2017) 
conducted seabed topography inversion experiments in some areas of the 
North Pacific based on the SAS method. However, accuracy of seabed top-
ography is still low and more improvements are still needed.

Fan et al. (2018) pioneered a linear regression analysis technology for 
estimating seabed topography, and later applied multiple regression tech-
nology for seabed topography inversion with yielding favourable results. 
Yang et al. (2018) utilized the simulated annealing method for seabed top-
ography inversion, demonstrating the method’s effectiveness in finding glo-
bal optimal solutions, albeit with a slower inversion process. Fan et al. 
(2021) emphasized the importance with considering three-term or four- 
term seabed topography to maximize the information contained in sea sur-
face gravity data and proposed a least squares collocation inversion method 
with considering the nonlinear term of seabed topography and highlighted 
the forward modeling results of one-term seabed topography as crucial to 
the contribution of gravity information. Sun et al. (2022) asserted that mar-
ine gravity field inversion based on satellite altimetry remained the primary 
technical approach for refined modeling of global seabed topography. Li 
et al. (2023) introduced a fully connected deep neural network (FC-DNN) 
to merge geometric algebra (GA), visual geometry group (VGG), and the 
deflection of vertical (DOV) to predict the bathymetry in the South China 
Sea. The optimized ensemble model of machine learning techniques was 
applied to the residual gravity anomalies to estimate bathymetry by the 
gravity–geologic method (GGM) from various geospatial information, 
including shipborne depth, shipborne gravity anomalies, and satellite altim-
etry-derived free-air gravity anomalies in the Ulleung Basin in the East Sea 
(Kim et al., 2023).

They underscored the need to explore the application of artificial intelli-
gence technology in refined seabed topography modeling. However, con-
ventional seabed topography inversion methods based on gravity data are 
constrained to a linear fitting, simply considering the impact of nonlinear 
terms or even neglecting it. In this paper, we propose an innovative 
method for seabed topography inversion by establishing fresh mathematical 
relationships through machine learning techniques based on the Smith and 
Sandwell (SAS) method. In Section 2, study area and data are introduced, 
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methods are given in Section 3, results and analysis are presented in 
Section 4, and finally conclusions are given in Section 5.

Study Area and Data

The study focuses on the Huangyan seamount chain, located in the south-
east of the Zhongsha Islands within the coordinates of 14�-16�N and 116�- 
118�30’E. The chain includes Huangyan Island, the sole island in the 
Zhongsha Islands with rocks protruding above the water, situated approxi-
mately 160 nautical miles away from the Zhongsha Atoll. The island’s reef 
rim forms an irregular, large ’C’ shape, spanning 55 km in length and cov-
ering an area of 150 km2. The study area’s latitude and longitude are 
extended outward by 30 to account for edge effects, as illustrated in 
Figure 1.

Shipborne Sounding Data

Figure 2 displays the distribution of control points within the study area. 
The shipborne-sounding data utilized in this paper originates from meas-
urements released by the United States National Geophysical Data Center 
(NGDC). The single-beam data spans 42 years (1961–2002), while the 

Figure 1. Schematic map of the study area.
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multi-beam data spans 16 years (2004–2019). To ensure data accuracy, the 
global topographic model GEBCO is a constraint for mutual difference 
comparison. Employing the triple mean square error criterion, we eliminate 
gross error points in the single-beam data, resulting in 24,381 single-beam 
ship measurement points. To validate the accuracy of the model in this 
paper, the latest GEBCO-2023, ETOPO1, and S&S V19.1 models are used 
for verification. GEBCO-2023 and S&S V19.1 are internationally recognized 
high-precision terrains, incorporating data from single-beam and multi- 
beam surveys, as well as altimetry-inverted topography, representing high- 
quality data sources. ETOPO1, released in 2009 as the last edition in its 
series, is used as an additional reference for precision comparison.

Gravity and Validation Data

Gravity anomaly data are sourced from Smith and Sandwell at the Scripps 
Institution of Oceanography (SIO) at the University of California, San 
Diego (UCSD). They are based on Version 29.1, with a resolution of 10 �
10. The validation data employed in this study include GEBCO-2023, 
ETOPO1, and S & S V19.1. The map of gravity anomalies in the study area 
is depicted in Figure 3.

Figure 2. Study area control point distribution map.
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Methods

Inversion Methods

The application of response function and coherence analysis, grounded in 
admittance function theory, highlights a robust correlation between gravity 
anomalies and ship measurements in the mid-wave. The ‘remove-restore’ 
method is employed to categorize the inversion band into long wave, 
medium wave, and short wave. In the spatial domain, linear fitting is exe-
cuted using the residual sea depth and medium wave gravity anomaly, 
facilitating terrain inversion through an idealized scale factor under the lin-
ear relationship (Smith and Sandwell, 1994).

Since gravity anomalies and seafloor topography exhibit high correlation 
within a specific band, Smith and Sandwell defined the seabed topography 
model as the sum of the band-pass filter value of 15–160 km and the depth 
of the long wave part dlp xð Þ:

depth ¼ dlp xð Þ þ S xð Þg xð Þ (1) 

where the band-pass filtering value is the product of the gravity anomaly 
g(x) and the scaling factor S(x) after band-pass filtering and downward 
continuation. The satellite altimetry gravity anomaly in the frequency 
domain (G0 kð Þ) is extended downward to the average sea depth through 

Figure 3. Map of gravity anomalies in the study area.
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initial band-pass filtering:

G kð Þ ¼ G0 kð ÞW kð Þexp 2pkdð Þ (2) 

where G(k) is the gravity field after band-pass filtering and downward con-
tinuation. The initial value of the gridded ship-measured water depth data 
in the frequency domain is denoted as B0ðkÞ, calculated using bandpass fil-
tering:

H kð Þ ¼ B0 kð ÞW kð Þ (3) 

where H(k) represents seabed terrain, and B(k) is processed by low-pass fil-
tering:

Dlp kð Þ ¼ B0 kð Þ 1 − W1 kð Þ
� �

(4) 

In this study, the band-pass filter’s wavelength is set to 20–200 km, and 
the scale factor is determined by Equations (2) and (3). The classical 
method is obtained using a robust linear regression technique, while the 
improved method establishes a new mathematical relationship directly 
through a machine learning method. Seabed topography with a wavelength 
less than 20 km is acquired using ship-measured water depth data, and the 
residual bathymetry is gridded.

The neural network exhibits nonlinear information processing capabil-
ities. By learning from input training data, the synaptic weight values are 
adjusted to meet the environmental requirements of the training data, pro-
viding predictive and control abilities for samples not partaking in the 
training. The long-term and short-term memory networks, a variant of the 
recurrent neural network, effectively address the problem of gradient dis-
appearance in traditional model training. An inversion method utilizing 
GA-BP to estimate seabed topography is proposed to establish an accurate 
mathematical relationship. The GA-BP network is tested, optimized, and 
adjusted using ship survey data and gravity anomalies as prior knowledge.

Back-Propagation Neural Network (BPNN) (Guo et al., 2024), a widely 
used intelligence algorithm, is employed for modeling, predicting, abstract-
ing, and simulating biological neural networks. Mimicking the human 
brain’s problem-solving approach, BPNN discovers correlations between 
data effectively. The strong correlation between gravity data and water 
depth data in this study, as depicted in Figure 4, is justified by using 
BPNN for model construction and inversion. The model construction prin-
ciple is shown in Figure 5.

In the process of BPNN training, it is easy to fall into the local minimum 
value, so the genetic algorithm is introduced to optimize it. Genetic algo-
rithms are inspired by the powerful adaptive capacity of organisms in their 
natural environment. By simulating and abstracting the biological evolution 
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process, the genetic algorithm based on the evolution of natural biological 
evolution is constructed. A genetic algorithm includes the main steps of 
natural organisms in the evolution process, namely, selection, mutation, 
and crossover, corresponding to the three operators in the genetic algo-
rithm. Under the specific optimization problem, the genetic algorithm will 

Figure 4. Plots of gravity anomalies and bathymetric scatters.

Figure 5. BPNN model presentation.
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generate a feasible solution to multiple problems as a population, and then 
let the population perform operations including selection, mutation, cross-
over and others in the simulation of biological evolution. After a certain 
number of population reproductions (iterations), by calculating the fitness 
of the population, the optimal individual in the final population is found, 
which represents the approximate optimal solution of the optimization 
problem. The two algorithms have obvious complementary advantages, so 
this paper uses the fusion method of the two algorithms to improve the 
performance of the algorithm and the accuracy of the model. The algo-
rithm flow is shown in Figure 6. In the GA-BP neural network, the genetic 
algorithm is used for global searching of the optimal network weights and 
thresholds, while the BP algorithm is used for local fine-tuning of these 
parameters. Specifically, the genetic algorithm first optimizes the initial 
weights and thresholds of the neural network through selection, crossover, 
and mutation operations to generate a series of solutions (i.e. network 
parameters). Then, the best-performing solutions are selected as the starting 

Figure 6. GA-BP model building flowchart.
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point for the BP algorithm, which quickly makes local adjustments. By 
combining these methods, the efficiency and accuracy of neural network 
training can be improved, especially in solving complex nonlinear problems 
(Kim et al., 2023).

Seabed Topographic Inversion Process

The SAS method, renowned for its robustness and versatility, is employed 
to invert the seabed topography within the wavelength range of 10–120 km 
(Figure 7). This sophisticated method categorizes the model into long wave 
(> 200 km), medium wave (20 km), and short wave (< 20 km) using the 
’remove-restore’ program. The calculation steps involve meticulous data 
processing and transformation:

a. The ship-measured water depth data is meticulously gridded to generate 
a precise 1’ � 1’ grid water depth model, ensuring high-resolution 
representation.

b. The grid water depth model data is seamlessly introduced into the fre-
quency domain, facilitating the derivation of the long-wave sea depth 
model through low-pass filtering (200 km) using the Fourier transform, 
ensuring accurate representation of the long-wave features.

c. The interpolation of the long-wave sea depth component of the ship 
measuring point, coupled with the derivation of the residual sea depth, 
ensures the meticulous representation of the seabed topography, captur-
ing intricate details with precision.

d. The processing of the gravity anomaly by Fourier transform, followed 
by band-pass filtering and downward continuation (20� 200 km), 
ensures the accurate derivation of the gravity anomaly in the inversion 
band, crucial for precise seabed topography estimation.

e. The division of the residual sea depth and gravity anomaly components 
of the ship measuring point into training and testing data, meticulously 
input into the GA-BP network, ensures the optimization of the training 
results to obtain the optimal network, guaranteeing the accuracy and 
reliability of the inversion process.

f. The conversion of the gravity anomaly in the inversion band into scat-
ter points, input into the debugged GA-BP network, ensures the 
meticulous derivation of the inversion band sea depth model, capturing 
intricate details with precision.

g. The meticulous superimposition of the long-wave seabed model and the 
inversion band seabed model, followed by external verification, ensures 
the accuracy and reliability of the inversion seabed topographic model, 
providing a comprehensive representation of the seabed topography.
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Results and Analysis

Precision Analysis

Here accuracy analysis is conducted using check points that are not 
involved in the inversion calculation. Figure 8 illustrates the residuals 

Figure 7. Flowchart of seabed topography inversion.
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obtained from the inversion of the mathematical relationship between the 
ETOPO1 model and the least squares proportional factor and GA-BP esti-
mation. Significant differences in the fitting of mathematical relationships 
established by different methods are observed. The GA-BP residual distri-
bution outperforms the least squares method. Statistical parameters are pre-
sented in Table 1, where the residual sum of squares represents the effect 
of random errors.

In the statistical analysis of the three models, it’s evident that EOTPO1 
has poor accuracy due to its early release time. The SAS method, utilizing 
the least squares method for linear inversion, struggles to constrain undu-
lating terrains like mountains and valleys adequately. The lack of a nonlin-
ear relationship in the inversion process leads to poor results for 
topographic data. This paper proposes using the GA-BP inversion method, 
which employs a nonlinear relationship, resulting in more detailed and 
accurate terrain inversion, especially in areas with significant relief.

Topography Comparison

ETOPO1, S&S V19.1, GEBCO-2023, SAS, and the GA-BP network estab-
lished topography in this paper are compared and analyzed for accuracy, 

Figure 8. Comparison chart of residuals.
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respectively. The data from different seabed terrain models is statistically 
analyzed, as shown in Table 2. The average water depth difference between 
the seabed terrain model estimated by machine learning, the V19.1 model, 
and the GEBCO-2023 model is insignificant. The sea area of Huangyan 
Island has been China’s inherent territory since ancient times. In addition 
to the hundreds of extensive reefs in the form of belt rings in the waters of 
Huangyan Island, the rest are generally underwater by 0.5–3 m. The high-
est elevation of the reef blocks is about 1.8 m. Therefore, from the max-
imum value, the GA-BP estimation model and the GEBCO-2023 model are 
closer to the actual terrain. The correlation coefficients of the GA-BP 
model with the ETOPO1 model, SAS model, GEBCO-2023 model, and 
V19.1 model are 0.9489, 0.9803, 0.9936, and 0.9893, respectively. It can be 
seen that the GA-BP model is the closest to the international high-precision 
seabed topography GEBCO-2023 model.

The reef rim of Huangyan Island is 55 km long and covers an area of 
150 km2, showing an irregular large ’ C ’ shape. The comparison between 
Figure 9 and Figure 10 shows that the GA-BP estimation model is closer to 
the actual terrain than the linear inversion model of least squares regres-
sion in the near sea level part. The reason is that the linear inversion 
ignores the nonlinear term and cannot effectively constrain the medium 
wave sea depth terrain. As a result, the inversion results do not match the 
actual topography in the peaks or deep valleys of the rugged terrain.

In order to further analyze the accuracy of the model, the checkpoints 
without being involved in the inversion process are used to obtain the cor-
responding sounding data by interpolating each model, and the model’s 
accuracy is compared by subtracting the checkpoints. The different statis-
tical results of different terrain models at checkpoints are given in Table 3. 
At each monitoring point, each model’s average sea depth difference is 

Table 1. Residual analysis table(m).
DATA SSE RMSE MAE R

EOTPO1 2.06� 107 204.55 101.07 0.78
SAS 1.19� 107 49.13 21.29 0.98
GA-BP 8.60� 106 41.77 20.21 0.99

Notes: SSE is the sum of squares of errors, RMSE is the root mean square error, MAE is the mean absolute error, 
and R is the coefficient of determination

Table 2. Statistical parameters of different seabed topographic models(m).
DATA MAX MIN MEAN STD CORRELATION

GA-BP 30.67 −4577.11 −3985.90 274.21 1.0000
EOTPO1 67.00 −4855.00 −3986.14 286.64 0.9489
SAS 481.36 −4629.35 −3991.99 245.39 0.9803
GEBCO-2023 −3.00 −4538.00 −4004.20 240.56 0.9936
S&S V19.1 120.00 −4596.00 −3977.28 265.83 0.9893

Notes: MAX is the maximum value of the depth, MIN is the minimum value, MEAN is the average value, and 
STD is the standard deviation
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Figure 9. GA-BP 3D sea depth map.

Figure 10. SAS 3D sea map.

Table 3. Statistics on the difference between the check points data and different seabed top-
ography models(m).
DATA MAX MIN MEAN STD CORRELATION

GA-BP 426.01 −445.81 −0.80 41.77 0.9946
EOTPO1 1261.79 −1665.82 −19.43 203.64 0.8868
SAS 696.19 −1075.23 −0.91 49.13 0.9925
GEBCO-2023 254.65 −679.4 −0.12 45.26 0.9939
S&S V19.1 411.59 −769.57 0.84 38.33 0.9953

Notes: MAX is the maximum value of the error, MIN is the minimum value, MEAN is the average value, and STD 
is the standard deviation, CORRELATION is the correlation between the true value and the measured value at 
the verification point
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Figure 11. GA-BP model 2D diagram.

Figure 12. Sea depth difference statistical histogram.
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close. However, the difference between the maximum and minimum values 
of the ETOPO1 model is significant, and the statistical parameters show 
that the ETOPO1 model’s accuracy is lower than other models. According 

Figure 13. Relative error distribution plot of different models.
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to the standard deviation statistics, the residual standard deviations of the 
GA-BP model and ETOPO1, SAS, GEBCO-2023, and V19.1 models are 
41.77, 203.64, 49.13 and 45.26 m, 38.33 m, respectively. The residual statis-
tics show that the accuracy of the GA-BP model is higher than that of the 
ETOPO1 model and is comparable to the high-precision V19.1 model and 
the GEBCO-2023 model (Figure 11).

Error Statistics

Figure 12 shows the histogram of the distribution of sea depth differences 
from different models. The sea depth difference (<50 m) is 88.92% for the 
GA-BP model as well as 62.51%, 86.99%, and 89.39% for the ETOPO1, 
GEBCO-2023 and V19.1 models. Moreover, the sea depth difference 
(<100 m) is 96.63% for the GA-BP model as well as 96.65% and 97.44% 
for the GEBCO-2023 and V19.1 models, respectively.

As shown in Figure 13, the relative error distribution has prominent spa-
tial distribution characteristics. The relative error distribution is more sig-
nificant in the seamount and valley areas and minor in the gentle terrain 
area. The maximum relative error of the GA-BP model in this paper is 
0.2998, which is higher than the terrain model of ETOPO1 and least 
squares inversion. The standard deviation (STD) is 0.0048, second only to 
the V19.1 model. From the perspective of relative error, the accuracy of the 
GA-BP model in this paper is equivalent to that of the V19.1 model and 
GEBCO-2023 model and higher than that of the ETOPO1 model.

As shown in Table 4, from the relative error analysis, using the SAS 
method improved by the GA-BP algorithm effectively reduces the inversion 
error in areas with rugged terrain and solves the problem of overfitting 
caused by ignoring nonlinear terms in traditional methods. The accuracy of 
seabed topography inversion by the GA-BP model is close to that of the 
international advanced V19.1 model and GEBCO-2023 model.

Conclusion

This paper proposed a new nonlinear relationship between gravity anomaly 
and ship bathymetry using GA-BP. The estimation results are validated and 

Table 4. Table of relative error statistics for different models(m).
DATA MAX MIN MEAN STD

GA-BP 0.2998 −0.0317 0.0114 0.0048
EOTPO1 1.1451 −0.1244 0.0390 0.0421
SAS 1.3130 −0.0275 0.0156 0.04448
GEBCO-2023 0.2339 −0.0513 0.0081 0.0053
S&S V19.1 0.2685 −0.1155 0.0068 0.0042

Notes: MAX is the maximum relative error, MIN is the minimum value, MEAN is the average value, and STD is 
the standard deviation
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compared with international high-precision terrain models, including the 
V19.1 model, GEBCO-2023 model, and ETOPO1 model. External verifica-
tion, accuracy assessment, and error analysis are conducted through check-
points. Main conclusions are obtained as followings:

a. The GA-BP method significantly reduces residuals estimated by the SAS 
inversion method. The Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE) are decreased by 14.98% and 5.07%, respectively. 
The coefficient is increased from 0.98 to 0.99, indicating that the GA- 
BP method’s estimation has a better fitting effect with good reliability. 
Additionally, the GA-BP model demonstrates higher accuracy with 
addressing the issue of missing nonlinear terms in traditional methods. 
The three-dimensional map illustrates that topographic inversion results 
near sea level are closer to actual topography.

b. The correlation coefficient between the GA-BP model and the EOTPO1 
model is 0.9489. The correlation coefficients between the GA-BP model, 
the GEBCO-2023 model, and the V19.1 model reach 0.9936 and 0.9893, 
respectively. These results confirm that the GA-BP model’s accuracy is 
on a par with international high-precision seabed topography models.

c. The residual standard deviation difference of the GA-BP model at the 
checkpoint is much smaller than that of the ETOPO1 model and trad-
itional SAS methods. The relative error is small in flat terrain areas and 
extensive in seamount chains, valleys, and other challenging terrains. 
The nonlinear inversion of the GA-BP algorithm primarily reduces the 
relative error in rugged terrain.
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