
Geophysical Journal International
Geophys. J. Int. (2015) 201, 267–275 doi: 10.1093/gji/ggv016

GJI Gravity, geodesy and tides

A new bound constraints method for 3-D potential field data
inversion using Lagrangian multipliers

Yi Zhang,1 Jianguo Yan,1 Fei Li,1 Chao Chen,2 Bao Mei,2 Shuanggen Jin3,4

and James H. Dohm5

1State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430070, China.
E-mail: jgyan_511@163.com
2Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
3Department of Geomatics Engineering, Bulent Ecevit University, Zonguldak 67100, Turkey
4Shanghai Astronomical Observatory, Chinese Academy of Science, Shanghai 200030, China
5The University Museum, The University of Tokyo, Tokyo 1130033, Japan

Accepted 2015 January 8. Received 2015 January 7; in original form 2014 July 30

S U M M A R Y
In this paper, we present a method for incorporating prior geological information into potential
field data inversion problem. As opposed to the traditional inverse algorithm, our proposed
method takes full advantage of prior geological information as a constraint and thus obtains
a new objective function for inversion by adding Lagrangian multipliers and slack variables
to the traditional inversion method. These additional parameters can be easily solved during
iterations. We used both synthetic and observed data sets to test the stability and validity of the
proposed method. Our results using synthetic gravity data show that our new method predicts
depth and density anomalies more efficiently and accurately than the traditional inversion
method that does not include prior geological constraints. Then using observed gravity data
in the Three Gorges area and geological constraint information, we obtained the density
distribution of the upper and middle crust in this area thus revealing its geological structure.
These results confirm the proposed method’s validity and indicate its potential application for
magnetism data inversion and exploration of geological structures.
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1 I N T RO D U C T I O N

In general, the 3-D inversion of potential field data is difficult, es-
pecially when dealing with physical properties such as, density or
magnetic susceptibility imaging (Jin et al. 2013). There are two is-
sues involved in this kind of inversion. One is the multiple solutions
problem. In mathematics, an observed data set is always insufficient
to obtain a unique solution to an inversion problem and thus the
non-uniqueness of a solution becomes a serious issue. The other is
the prior geological information. Massive amounts of information
are readily available. However, the full exploitation of this informa-
tion to improve inversion results is less studied, we aim to fill this
gap and extend the literature.

There are numerous inversion methods to solve the multiple so-
lutions problem, such as parametric inversion (e.g. Bhattacharyya
1980; Zeyen & Pous 1991). These kinds of inversion methods are
suited to anomalies generated by simple causative bodies, and re-
quire human–computer interaction to select suitable geological units
with prior information to fit the observed data.

Another approach is physical properties inversion. These meth-
ods are automatic and iterative without manual intervention and the

results always show a contrast between the sources of anomaly and
the surroundings. The key issue in these methods is identifying a
suitable model objective function, also known as a stabilized func-
tion. Last & Kubik’s (1983) method produced compact, homoge-
neous solutions that correctly located and presented sharp borders.
Guillen & Menichetti (1984) used a physical concept, the ‘moment
of inertia’ as a model objective function to obtain stabilized results
while Barbosa & Silva (1994) generalized Guillen & Menichetti’s
(1984) method. Silva & Barbosa (2006) and Barbosa & Silva (2006)
developed an interactive method for inverting gravity and magnetic
data consisting of interfering anomalies produced by multiple, com-
plex and marginally separated geological sources. Li & Oldenburg
(1996, 1998) designed a model objective function with a maximum
smooth method. Li & Oldenburg’s (1996, 1998) model objective
function has a clear physical meaning, and can be easily combined
with additional information. While Li & Oldenburg’s method can
obtain the correct and accurate locations of anomaly sources, nev-
ertheless the values of the recovered model were smaller than the
true values due to the ‘smooth’ effect as defined in the model objec-
tive function. Barbosa et al. (2002) argued that Li & Oldenburg’s
(1996, 1998) strategies relied on the previous information about the
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anomaly source from depth to the height so therefore, this method
will always produce an ambiguous result.

In a regular geophysical inversion, we can only use an observed
data set, such as gravity or magnetic anomalies. The observed data
set is important, however, there is more prior geological information
can be introduced into the inversion, for example, information from
boreholes, surface mapping and in situ measurements. Lelievre et al.
(2009) categorized two types of geological constraints; the first type
is spatially tied and relies on the geometric information, that is
the physical properties of each individual cell, such as structural
orientation, structural boundaries; the second type is non-located
or intangible information, such as sharpness, changes in physical
properties.

Additional information is also considered as geological con-
straints. Previous studies have shown that these geological prior
constraints can be very useful in ill-posed inversion problems
(Boulanger & Chouteau 2001; Williams 2006). Prior geological
constraints play an important role in an inversion; they not only
reduces the likelihood of a multiple solutions problem, but also en-
hance the quality of the resulting density and magnetic susceptibility
distribution model. Consequently, how to introduce prior geological
constraints into an inversion procedure becomes an important issue.

To deal with this problem, Li & Oldenburg (2003) introduce
a logarithmic barrier method incorporating bound constraints on
each cell of the recovered area. Farquharson (2008) developed a
minimum structure inversion with logarithmic barrier method us-
ing the L1 norm. Farquharson et al. (2008) as well as Mosher &
Farquharson (2013) used this logarithmic barrier method to invert
the density structure of deposit at Voisey’s Bay in Canada; Davis &
Li (2011, 2013) introduced logarithmic barrier method to a octree-
mesh inversion; and Martinez et al. (2013) extends the method to
the invert the airborne gravity gradiometry data in Brazil.

In this paper, we present a new approach which can deal with
not only bound constraints but also the equality constraint. This
new method improves and extends Li and Oldenburg’s method by
applying Lagrangian multipliers in the model objective function to
add geological constraints. With these improvements we can deal
with constrained inversions and improve the results in terms of both
equality and inequality constraints. Experimental inversion tests
using synthetic data and observed data show that our method is more
efficient and accurate than the traditional inversion methods that do
not include prior geological constraints. Our proposed method is
also easy to program and integrate with other inversion methods
that deploy different model objective functions. We arranged the
paper as follows: The methodology is described in Section 2, the
experiments with synthetic and observation datasets are presented
in Section 3 and conclusions are drawn in Section 4.

2 M E T H O D O L O G Y

2.1 3-D potential field data inversion

This section will describe the 3-D potential field data inversion
method proposed by Li & Oldenburg (1996, 1998). This method
divides underground source space into a set of rectangular cells
by an orthogonal 3-D mesh and assumes a constant physical value
within each cell.

The object function in this method consists of model and data
objective functions. The model objective function is based on two
variable criteria; the smallest difference between a result and refer-
ence model, and the smoothest boundaries of the inverted model in

Figure 1. L-curve.

all three directions. The data objective function is also the data mis-
fit since there is always disruptive background noise in observation
sets.

φ(m) = φd + μφm = ∥∥Wd (Gm − dobs)
∥∥2

2
+ μ ‖Wm(m − mref )‖2

2 .

(1)

In eq. (1), m and mref refer to the recovered model and reference
model, respectively while dobs is the observed data. The matrix G is
called the kernel function, which denotes the relationship between
the geological model and the observed data. Wd is the weighting
matrix for data misfit. Wm is another weighting matrix for the model
objective function and has both smallness and closeness between
the recovered model m and reference model mref (Li & Oldenburg
1996, 1998).

The objective function φ (m) for inversion in its entirety combines
the model objective function φm and data misfit φd. The parameter
μ in this equation known as the Tikhonov & Arsenin (1977) regular-
ization parameter represents a trade-off between the model objective
function and data misfit; thus the necessity for a suitable value of μ

becomes important. In this paper, we use the L-curve method, which
is developed by Lawson & Hanson (1974) and further developed by
Hansen (1992) and Calvetti et al. (2000). The preferred value of μ

typically lies at the corner of the L-curve (Fig. 1) when using the
L-curve method.

The inversion problem is solved by minimizing the objective
function, that is, eq. (1). The following equation is obtained:(
GT W T

d Wd G+μW T
m Wm

)
m = GT W T

d Wd dobs+μW T
m Wmmref . (2)

In eq. (2), the notation is the same as eq. (1) and GT, Wd
T and Wm

T

are the transposed matrices for G, Wd and Wm. This linear equation
is the foundation for 3-D potential field data inversion and can be
easily solved by the conjugate gradient (CG) method as described
elsewhere in the literature (Pilkington 1997).

2.2 Lagrangian multipliers

The Lagrangian multipliers method is a kind of penalty function
method in optimization theory. It was first introduced by Hestenes
(1969) for solving the constrained equality problems. Rockafellar
(1970) extended it to deal with the constrained inequality problems.
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We make use of different prior geological information during
the inversion procedure. For example, rock samples extracted from
boreholes can be measured to get the physical property data, such
as density or magnetic susceptibility. The location and the phys-
ical properties of these samples can be accurately determined so
inversion becomes a constrained equality problem. In practice, it
is not feasible to drill enough holes to obtain in an adequate num-
ber of rock samples, subsequently, the number of the samples for
data inversion is limited. Therefore, we can only get a poorly de-
fined range for those zones within a study area without determined
physical properties. Hence, the inversion procedure becomes a con-
strained inequality problem; we then add restrictive conditions to
eq. (2),⎧⎪⎪⎨
⎪⎪⎩

min: φ(m) = φd + μφm

s.t.

{
m = m0 or

m1 < m < m2

. (3)

In eq. (3), m = m0 and m1 < m < m2 represent the equality and in-
equality conditions from geological prior information, respectively;
these are different from the reference model mref. In general, both
the two additional constraints can be classified as a function of slack
variables:

s.t. si (m, z) = si (m) + z2
i = 0. (4)

In eq. (4), zi is the slack variable of the ith cell, where i is
the index number for each cell, and si(m) represents the bound
constraints in eq. (3). By adding these auxiliary parameters, the
inequality constraint in eq. (3) becomes an equation. From this
point, the objective function is a function of both model m and slack
variable z.

Then we can bring the penalty factor and some multipliers into
the objective function:

min : F(m, z) = φ(m) +
Nz∑

i=1

ψi (m, z)

= φ(m)+
Nz∑

i=1

λi

[
si (m)+z2

i

]+ 1

2
M

Nz∑
i=1

[
si (m) + z2

i

]2

= φ(m) + 1

2
M

{[
si (m) + z2

i + λi

M

]2

−
(

λi

M

)2
}.

(5)

In the new objective function F(m, z) of eq. (5), λi, Nz and M
represent the Lagrangian multipliers, the total number of the slack
variables, and penalty factor, respectively. In our inversion method,
the initial values of all the Lagrangian multipliers λi are set to zeros
in the first step of the iteration. The relationship between λi and
M is given in eq. (7). Hereafter, the inversion problem becomes
a little more complex, and the solution will be divided into the
original model result and the value of the slack variables. In order to
minimize F(m, z), we minimize both the original objective function
�(m, z) and the additional item ψ i(m, z). Given the non-negative
value of the square of the slack variables, initially, we obtain the
value of the square of the slack variables as;

z2
i =

{
0, si (m) + λi

M ≥ 0

−si (m) − λi
M , si (m) + λi

M < 0
. (6)

In each step during the search for the recovered model m, we
make use of the final m value obtained by preceding iteration. The
original unconstrained linear inversion problem then is transformed

into a constrained non-linear problem:⎧⎨
⎩ λk+1

i = λk
i + Mk

[
sk

i (m) + (
zk

i

)2
]

Mk+1 = αMk(α > 1)
(7)

Nz∑
i=1

[
sk

i (m) + (
zk

i

)2
]2

< ε. (8)

Eq. (7) is the iterative scheme of λi and M where k is the itera-
tive counter and eq. (8) gives the termination criterion (ε) for the
inversion procedure.

For the equality constraint m = m0, the slack variables can all be
set to zero, substituting with s (m) = m, we can obtain the following
equation:

C0 (m) =
Nm0∑
i=1

λ0i (mi − m0i ) + 1

2
M

Nm0∑
i=1

(mi − m0i )
2

= (F0m − m0)T λT
0 + 1

2
M ‖F0m − m0‖2

2 . (9)

Then we can get the results of the inequality constraints m > m1

and m < m2 in the same way, respectively:

C1 (m) =
Nm1∑
i=1

[
λ1i

(
m1i − mi + z2

1i

)] + 1

2
M

Nm1∑
i=1

(
m1i − mi + z2

1i

)2

= (
m1 − F1m + z2

1

)T
λT

1 + 1

2
M

∥∥m1 − F1m + z2
1

∥∥2

2

(10)

C2 (m) =
Nm2∑
i=1

[
λ2i

(
mi − m2i + z2

2i

)] + 1

2
M

Nm2∑
i=1

(
mi − m2i + z2

2i

)2

= (
F2m − m2 + z2

2

)T
λT

2 + 1

2
M

∥∥F2m − m2 + z2
2

∥∥2

2
,

(11)

Nmj (j = 0, 1, 2) here refer to the number of the cells which need
constraint, and Cj (m) (j = 0, 1, 2) are the implementation of the
constraints in eq. (3), so the objective function of eq. (5) becomes:

min : F(m) = φ(m) + ψ(m) = φ(m) + C0(m) + C1(m) + C2(m).

(12)

The minimization of eqs (9–11) leads to:⎧⎪⎨
⎪⎩

∇mC0(m) = F T
0 λT

0 + 1
2 M F T

0 (F0m − m0)

∇mC1(m) = −F T
1 λT

1 − 1
2 M F T

1

(
m1 − F1m + z2

1

)
∇mC2(m) = F T

2 λT
2 + 1

2 M F T
2

(
F2m − m2 + z2

2

) (13)

F0 = F T
0 = F T

0 F0, F1 = F T
1 = F T

1 F1, F2 = F T
2 = F T

2 F2.

(14)

In order to facilitate the computation, we store all these matrices or
vectors as an array. The indices become important as they denote
the geographic location of the elements in these arrays. In eq. (14),
the diagonal of the matrix Fi denotes the index of the constrained
information in each divided rectangle cell; if there is constraint
information in a cell, then the index value becomes 1, otherwise the
value is 0. Substituting eqs (13) and (14) into eq. (12), we can get
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Figure 2. Flowchart for the constrained inversion.

the final equation for this constrained inversion problem:[
GT W T

d Wd G + μW T
m Wm + 1

2
M (F1 + F2 + F3)

]
m

= GT W T
d Wd dobs + μW T

m Wmmref − F0λ
T
0 + F1λ

T
1 − F2λ

T
2

+ 1

2
M (F0m0 + F1m1 + F2m2) + 1

2
M

(
F1z2

1 − F2z2
2

)
. (15)

Compared to eq. (2) for the unconstrained problem, eq. (15) of
the constrained problem is much more complicated; however, this
can also be solved by CG method using an iterative scheme. In eq.
(15), the penalty factor M is usually assigned a small value at the
beginning of the iterative procedure, the items in eq. (15) which
contain penalty factor M are always small enough to be ignored.
eq. (15) becomes an unconstrained problem like eq. (2) with the
addition of several disturbing multipliers. As the iteration continues,
the penalty factor M increases and the items in eq. (15) containing
the penalty factor M are given a higher weighting factor. At this
time, the iterative procedure will fit the constrained information
better as seen in the observed data or model objective function.
Fig. 2 shows the flowchart for this constrained inversion.

3 E X A M P L E S O F S Y N T H E T I C A N D
O B S E RVAT I O N DATA S E T

In this section, we will give four examples of an artificial synthetic
model as well as a real observation dataset in the Three Gorges
area of the Yangtze River, China, to validate our method. The four
examples include: (1) A model with a wide range of density con-
straint for the whole inverted area with each divided cell; (2) In
addition to the constraint (1), we give a specific model constraint (a
lower bound density constraint) for the theoretical model area; (3)
In addition to the constraint (1) and (2), extra surface density infor-
mation is applied and (4) In addition to the constraints (1), (2) and
(3), we simulate two boreholes which drill through the simulated
theoretical model.

3.1 Synthetic case

The artificial synthetic model we use here is a horizontal rectangular
body with constant residual density. Tables 1 and 2 show the 3-D

Table 1. 3-D mesh for inversion.

Direction Grid size (m) Grid range (m) Grid number

X 50 −500 to 500 20
Y 50 −750 to 750 30
Z 50 0 to 500 10

Table 2. Parameters of the horizontal rectangular model.

Direction Model size Model range Residual density Background density
(m) (m) (g cm–3) (g cm–3)

X 300 −150 to 150
Y 900 −450 to 450 0.5 0
Z 150 100 to 250

mesh for inversion and parameters of the inversion model, where X
points east, Y points north and Z points vertically downwards.

Fig. 3 illustrates the artificial theoretical data. Considering the
geometric relationships between the model mesh and the data grid
in Table 3, we obtained the kernel matrix. Furthermore, the synthetic
data was calculated and the independent Gaussian noise was added.
The mean value of the Gaussian noise was zero and the standard
deviation was 0.01 mGal, which is approximately 1 per cent of the
maximum value of the synthetic gravity data.

Fig. 4 shows the L-curve for the synthetic data inversion without
geological constraints. According to Tikhonov’s regularization the-
ory (1977, we chose the best regularization parameter at the corner
of the L-curve for μ = 1.25. In Fig. 5 we present the vertical profile
of the recovered model. Due to rapid decay of the gravity data in
the vertical direction, the horizontal resolution is much better than
the vertical resolution. Hence in Fig. 5, we only show the middle
vertical profile where x = 0. As Fig. 5 shows, the boundary of the
recovered model is blurred, particularly in the vertical direction.
Moreover, the constructed values of the density distribution are far
smaller than the actual values, as we expected. In addition, we found
many negative values in the recovered model for the unconstrained
case, though their amplitudes are not big. There are two reasons for
this: The first reason is that in theory, the data set should cover the
entire free space. However, usually only a limited amount of data
can be used in practice, so the data set we used is insufficient to pro-
vide the required information for the inversion. The second reason
regards the model objective function, as we mentioned previously
in Section 2, the model objective function uses a strategy based on
the smoothest boundaries in all three directions, so the boundaries
become blurred. Therefore the values of the recovered model be-
come decentralized. Our method to some extent can improve this
kind of inversion technique.

In the following section we assign a density constraint between 0
and 0.5 g cm−3 for each inverted cell. The L-curve and the recovered
vertical profile are shown in Figs 6 and 7, respectively. In this case,
the initial value of the penalty factor is 1.0 × 10−6 with an increment
of α = 2.0. In general, the initial value of the penalty factor must
be a small value, according to the level of the smallest value in the
matrix in the left-hand side of eq. (15). This assures the stability of
the iteration.

In Fig. 7, we easily ascertain that the recovered model with the
regularization parameter of μ = 0.25 in Fig. 7(b) performs better
than the model using μ = 2.5 in Fig. 7(a). In Fig. 7(a), the boundary
of the recovered model seems less defined, and the density distri-
bution is more decentralized from the top to bottom. However, the
density distribution as seen in Fig. 7(b) is much more centralized
around the actual boundary, represented by the white rectangle.
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Figure 3. The theoretical synthetic data.

Table 3. The data grid and noise distribution.

Direction Data grid Data grid Data Mean of Standard deviation
size range number noises of noises
(m) (m) (mGal) (mGal)

X 50 −1000 to 1000 41
0 0.01

Y 50 −1500 to 1500 61

Figure 4. L-curve for the inversion, omitting geological constraints.

In Table 4, we compare the different mean and max values of
the recovered model. Without constraints, the mean value is about
0.082 g cm−3, which is much smaller than the true value. Notably,
the largest difference of the mean values between the recovered and
true model is predominantly due to the ‘smoothing’ effect defined in
the model objective function. However, by adding the constraints,
the result is improved and the mean value becomes closer to the
true values of the synthesized model. At the same time, the stan-
dard deviation of the data residuals decreases significantly. The
unconstrained result using regularization parameter of μ = 1.25
increases by an order of magnitude when compared to the result
with a geological constraint using a regularization parameter of

Figure 5. Vertical profile at x = 0 for the unconstrained recovered model,
white rectangle represents the boundary of the theoretical model.

μ = 0.25. In addition, the mean value and the standard deviation of
the residuals with the regularization parameter of μ = 0.25 fit the
random noise much better. This demonstrates that our method can
deal effectively with noise in the data set. This indicates that our
method agrees better with the data set as compared with a method
that does not consider geological constraints.

We found that the best regularization parameter is not located
at the corner of the L-curve but slightly offset to the right with a
smaller data misfit. It fits the observed data better when compared
with the corner value of the regular L-curve. This is shown in Table 4
and demonstrates that the mean constructed values in Fig. 7(b) are
much bigger than those in Fig. 7(a). Therefore, the result of the
constrained inversion more closely agrees with the actual model.

In order to get credible results from a geophysical inversion,
we must acquire as much useful information about the model as
possible. Usually, we can get some extra information about the
model which we are interested in from fieldwork. Therefore, as
compared to the previous case with a wide density range in the
whole reverted area in Fig. 7(b), in this case, we will make an
assumption only for the model cells (corresponding to the grids in
the white rectangle in Fig. 5) which cover a lower density boundary
of 0.2 g cm−3 (≥0.2 g cm−3). These model cells are different with
the surrounding cells with a fixed density of 0 g cm−3.
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Figure 6. L-curve for the constrained inversion.

Figure 7. Vertical profile at x = 0 for the constrained recovered model with
μ = 2.5 (a) and μ = 0.25 (b).

As compared to the constructed density values of less than
0.15 g cm−3 in Figs 7(a) and (b), we can see that the density values
in the white rectangle in Fig. 8 are all larger than the given lower
bound of 0.2 g cm−3. The recovered density distributions are im-
proved by including the specific model constraint and the results
meet the expected default density distribution.

Surface information (such as rock types and physical properties)
can be acquired from field studies and are useful as constraints in the

Figure 8. Vertical profile at x = 0 for the constrained inverted model, using
a lower bound of 0.2 g cm−3 in model area.

inversion. In the third example, we employ this kind of constraint
in our inversion. We introduce a constant density distribution of
0 g cm−3 into the inversion for those cells at the surface of the
inverted area (z = 0 m). The results are presented in Fig. 9.

Fig. 9 shows the recovered density distribution at the surface
without surface information constraints (Fig. 9a) and with surface
information constraints (Fig. 9b). The result of the interior density
distribution is close to the value in Fig. 8 and we do not present
it here, as the aim here is to show the effectiveness of surface
constraint. As seen in Fig. 9(a), the recovered density distribution
shows as a blurred image located in the horizontal projection of
the theoretical model. This is the smooth effect from the model
object function using the L2 norm. After surface density constraints
with a constant value of 0 g cm−3 are employed in the inversion,
the recovered density distribution at the surface is approximately
0 g cm−3 in Fig. 9(b); this shows the reliability of our method
regarding the equality constraint.

In addition to the surface information, a borehole is another
popular technology to gather information from deeper stratum. Our
last example adds two boreholes which drill through the theoretical
model to the density distribution inversion. As can be seen from
Fig. 10, the two boreholes lie on a section at two locations where
x = 0 m, y = −225 m and x = 0 m, y = 225 m, at the same depth,
350 m. We assume the two boreholes have a density boundary of
0.25–0.3 g cm−3 within the white rectangle (the theoretical model)
and the other place outside the rectangle has a density of 0 g cm−3.

In Fig. 10, we show the model reconstructed by incorporating the
borehole density information. We found that the resulting density
values inside the rectangle are more than 0.25 g cm−3 while the
remaining recovered density value along the boreholes is closer to
0 g cm−3. As compared to Fig. 8, the results are almost the same
except for the area that the simulated boreholes drilled through.
The borehole area seems not to be blurred because there is a signifi-
cant density contrast between the given constraint for the boreholes
and the surrounding area. Thus the recovered density values at the
borehole area exactly follow the given constraints. These results
closely match our default density information thus demonstrating
the reliability of our method.

3.2 Observation data set case

The Three Gorges Dam is the largest hydraulic project in the world
and the Huangling Anticline is one of the main geological units in

Table 4. Statistical information of residuals and mean values of the recovered models.

Model Mean of Standard deviation Mean recovered Max recovered
residuals of residuals model value model value
(mGal) (mGal) (g cm–3) (g cm–3)

μ = 1.25 without constraints − 0.0013 0.061 0.082 0.106
μ = 2.5 with constraints − 0.0103 0.084 0.063 0.081
μ = 0.25 with constraints 0.0057 0.026 0.119 0.159
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Figure 9. Surface of the inverted area.

Figure 10. Boreholes drill through the model, the two while lines represent
the location of the boreholes.

that area (Zou et al. 2011; Zhang et al. 2012). Because the dam
is located just above the Huangling Anticline, it is important to
investigate the geological structure.

The Bouguer gravity anomaly shown in Fig. 11 is the residual
anomaly. We removed the regional anomaly using the trend analysis.
The residual anomaly reflects the density distribution of the crust in
the Three Gorges area. The dashed rectangle in Fig. 11 represents
the study area for experimental computation. We can see a relatively
high gravity area around Yichang where the dam is located. An area

with relatively low gravity shaded blue in Fig. 11 in the west called
the Zigui basin.

In this case, we use rock samples with well-determined densities
collected by Mohamed (2008) during his field survey in the area. For
different rock examples, the density distribution can vary widely,
for example, granitic gneiss has the smallest density distribution
in this area, and is about 2.65–2.68 g cm−3. In contrast, amphi-
bolite has the largest density about 2.98–3.17 g cm−3. We apply
this geological information as constraints during the inversion. Li
et al. (2009) gave a P-wave velocity structure of this area using a
seismic tomography method. We use a Gardner empirical relation
(Brocher 2005) between elastic wave speeds and density to convert
the P-wave velocity structure. The depth of 0–2 km was converted
into a surface density distribution constraint and implemented in
the computation. This is additional useful prior information for the
inversion.

By using the residual anomaly data set as well as the prior con-
strained information, we produced an image of the density distri-
bution of the Three Gorges area. Fig. 12 shows the recovered 3-D
density distribution in this area, with a range between 2.63 and
2.695 g cm−3. This is the range we believe to be the key geologi-

Figure 11. The Bouguer gravity anomaly in Three Gorges area, removing regional anomaly.
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Figure 12. Recovered density distribution in Three Gorges area, and we only show a density distribution with range of 2.63–2.695 g cm−3 to highlight the
Huangling Anticline and Gauss–Kruger projection with Beijing 1954 Ellipsoid is used as the coordinate system.

Figure 13. East–west vertical profile of the three Gorges area (31.04◦N)
(1) Zigui Basin; (2) upper crust stratum; (3) Huangling Anticline; (4) Dan-
gyang Basin; (5) high density stratum; (6) Middle crust; stratum. F1, Xinhua
Fault; F2, Yuan’an Fault.

cal Huangling Anticline in the Three Gorges area. Results of this
gravity inversion indicate that Huangling Anticline is a relatively
high density zone. Horizontally, the Huangling Anticline is a huge
U-shaped crystal rock controlled by four main faults.

Fig. 13 shows an east–west vertical profile of the Three Gorges
area at north latitude 31.04◦. The profile cuts through all the main
geological structures in this area. From the profile we found that
Huangling Anticline is a relatively high density anomaly located
in the upper and middle crust. It is separated by the Zigui and
Dangyang Basins by the Xinhua and Yuan’an faults, respectively.
The average depth of Huangling Anticline is between 4 and 10 km,
with the deepest point reaching approximately 15 km. In the deeper
region, the transition of the density distribution occurs, gradually
becoming relatively lower with depth. This high density distribution
of the Huangling Anticline is believed to be an outcome of an uplift
of the crystalline basement, forming in late Jinning epoch during the
southward subduction of the Qinling oceanic crust to the Yangtze
Plate (Ma et al. 2002).

4 C O N C LU S I O N S

The inversion method is fundamental to our understanding of the
Earth’s structure and therefore prior geological information plays
an important role in improving the reliability and accuracy of the
inversion procedure. We presented an effective algorithm that uses
constraints of prior geological information with Lagrangian mul-
tipliers. We demonstrated the reliability of the method using both
simulated and actual observation data. In the case of the simu-

lated data, we found that after we included a geological constraint,
the recovered density distribution was closer to the true value. It
also has a much lower residual noise level (difference between the
gravity effects caused by the recovered model and the synthetic
model) when compared to the traditional inversion without geolog-
ical constraints. At the same time, we found that the regularization
value was offset to the right when compared with inversion without
constraints. This may indicate that the data misfit in this area was
smaller than in the traditional inversion method. As a result, we
achieved a better fit with the simulated data. Then we show three
more examples with model constraints, surface information as well
as the boreholes. All these additional constraints are introduced into
the inversion; the results conformed to our expectations. We also
tested the method with observed data from a block area of the Three
Gorges including an observed gravity anomaly by including the ge-
ological information from rock samples and seismic detection and
obtained the 3-D density distribution of this region for the first time.
In addition, the Huangling Anticline geological structure became
clearly visible. This method could be applied more generally in
magnetism data inversion and in exploratory studies of geological
structures.
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