
Delivered by Ingenta
IP: 128.223.71.54 On: Fri, 02 Sep 2022 17:40:31

Copyright: American Society for Photogrammetry and Remote Sensing

Long-Term Changes of Land Use and  
Land Cover in the Yangtze River Basin  

from 1990–2020 Landsat Data
Junyuan Yao and Shuanggen Jin

Abstract
Economic development and climate change drive the land use and land 
cover (LULC) change globally. Annual robust maps of LULC are critical 
for studying climate change and land–climate interaction. However, 
the current existing methods for optimizing and expanding the publicly 
available China land cover data set (CLCD) are limited. In this article, 
30-m annual LULC changes are obtained from 1990 to 2020 in the 
Yangtze River basin (YRB). The results show an overall accuracy rate 
of 82.66% and better performances on Geo-Wiki test samples when 
compared to similar products. Based on our 30-m annual LULC data 
set, the drastic LULC changes are found in YRB over a 30-year period, 
where impervious surface area more than tripled, cropland area 
decreased by 6.12%, and water area decreased by 6.09%. In addi-
tion, through the geographically and temporally weighted regression 
method, a fitting model with a goodness of fit of 0.91 well reveals 
that human activity plays a driving role in the LULC change of YRB.

Introduction
Land use and land cover (LULC) change has a close relationship with 
social and economic development, ecosystem carrying capacity, surface 
energy balance, and material circulation (Foley et al. 2005; Gibbard et 
al. 2005; Vorosmarty et al. 2010; Houghton et al. 2012; Haddeland et 
al. 2014; Findell et al. 2017). The Yangtze River basin (YRB) covers 
several major cities and nature reserves in China, which is of great 
importance in economic development and ecological conservation. 
Recently, there have been serious problems in YRB in terms of water 
environment pollution and ecological damage due to excessive recla-
mation and economic development (Yang et al. 2021a). Therefore, it is 
essential to map the LULC change in YRB to explore the processes and 
drivers within the basin over the past 30 years. Effective environmental 
governance and development planning depends heavily on accurate 
LULC products and effective quantitative analysis of LULC changes.

Remote sensing is the most efficient way to monitor large-scale 
LULC change. In recent years, the free access to a huge volume of 
remote sensing satellite data (e.g., AVHRR, MODIS, Landsat, and 
Sentinel-2) and high-performance cloud computing platforms such 
as Google Earth Engine (GEE) have greatly promoted large-scale 
and long-term remote sensing studies on LULC (Gorelick et al. 2017; 
Zhu et al. 2019). With the GEE platform, Qu et al. (2021) used the 
k-means method to optimize the sample quality and generated LULC 
products from 1992 to 2015 for three provinces in the Yangtze River 

delta region using the random forest (RF) classification method. Liu et 
al. (2020a) built a training sample based on OpenStreetMap data and 
used classifiers of RF and the classification and regression tree (CART) 
for LULC mapping in the middle YRB from 1987 to 2017. However, 
these works have built completely new training sample sets to train the 
classifiers, which was certainly a huge amount of work (Jin and Zhang 
2016). In addition, these results are difficult to apply directly in our 
region due to uncertain stability.

In addition, a number of open-access LULC data sets were used in 
YRB LULC change. Chen et al. (2020) used the LULC map data from 
the Resource and Environment Data Cloud Platform of the Chinese 
Academy of Sciences and reclassified it for the same 20 LULC cat-
egories as IGBP-MODIS to examine the influence of land urbanization 
on meteorology and air quality in the Yangtze River delta. Yang et al. 
(2021b) selected the MOD12Q1 data product from 2001 to 2018 with 
a spatial resolution of 500 m and reclassified the LULC maps into eight 
dominant categories to analyze the influence of LUCC on net primary 
production in YRB and its causes. However, the spatial resolution of 
1000 or 500 m is relatively coarse, which is not sufficient for fine-scale 
LULC monitoring due to the uncertainty inherent of coarse-resolution 
data (Sulla-Menashe et al. 2019). Recently, Landsat data, with their 
high resolution and long history, have been widely used in large-scale 
LULC mapping (Liu et al. 2020b). Leveraging the data and comput-
ing power of the GEE platform, many global land cover products have 
been released, such as FROM_GLC30 (finer-resolution observation and 
monitoring of global land cover) (Gong et al. 2013), GlobeLand30 
(global land cover mapping) (Chen et al. 2015), and GLC_FCS30 (global 
land cover product with fine classification system) (Zhang et al. 2021). 
Compared to these global LULC products, the China Land Cover 
Dataset (CLCD) (Yang and Huang 2021) provided longer-time-series 
and higher-precision-validated LULC in the China’s region for each 
year. Since its training samples are sufficient and reliable by combin-
ing stable samples extracted from China’s land use/cover data sets (Liu 
et al. 2014), the accuracy of CLCD reaches a high level by both visual 
interpretation sample and third-party sample accuracy tests.

Despite the high-accuracy performance of CLCD, there are still 
several problems when applying it to the YRB. Considerable siltation 
occurs in the middle YRB and results in riverbed uplift and mudflats in 
many places that are more pronounced after the numerous construction 
of dams and water diversion for agriculture in the upper YRB (Chen 
et al. 2001; Yang et al. 2015). Unfortunately, the LULC in these areas 
is mostly misclassified as impervious surfaces in the CLCD. Further, 
Dongting Lake, Poyang Lake, and Middle River Bay are important 
wetland distribution areas in YRB formed by sediment accumulation 
due to the action of water flow and indirect coverage by water in dif-
ferent hydrological periods (Yang et al. 2005; Yang et al. 2018). These 
were also not represented well in the CLCD, in large part because it 
used the 50th-percentile value of each spectral band as the basic data 
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for training and classification, which made the classification results 
based on combinations of image elements at different times throughout 
the year. This approach undermined the recognition of land types like 
wetlands with varying within 1 year. In addition, there was also some 
misclassification in the mountain shadows of western Sichuan and 
northern Chongqing. Although the CLCD work flow can improve the 
overall classification accuracy, there are still some challenges for high-
precision mapping of LULC in YRB. Therefore, it is necessary to correct 
the CLCD and obtain the high-accuracy LULC maps for large-scale YRB. 
This reclassification process should be an effective, efficient, econom-
ic, and operational approach.

In this article, 30-m annual LULC changes are obtained and analyzed 
in YRB, including (1) obtaining the 30-m annual LULC mapping of YRB 
from 1990 to 2020 by intercomparing the CLCD with thematic-class 
products (GFC global forest change, GSW global surface water, and GISA 
global impervious surface area) (Hansen et al. 2013; Pekel et al. 2016; 
Huang et al. 2021) and detecting and reclassifying the disputed areas 
of the CLCD in YRB by using the RF classifier with a smaller number 
of visually interpreted samples on GEE, (2) analyzing the process and 
trend of LULC change in YRB over 30 years with explaining the causes 
of change, and (3) proposing a time-series model of land use degree 
and exploring the drivers of the LULC change in YRB by using the geo-
graphically and temporally weighted regression (GTWR) model (Huang 
et al. 2010). The changes and drivers of the LULC in YRB can provide 
valuable information for local decision makers and stakeholders.

Data and Methods
Study Area
The Yangtze River Basin (about 1.8 million km2) is located between 
90°33′ and 122°19′ E and 24°27′ and 35°54′ N in China, starting from 
the Qinghai-Tibet Plateau and going eastward into the East China 
Sea (Figure 1). Most areas in YRB belong to the subtropical monsoon 
climate zone with the average annual rainfall from 692 to 1611 mm 
and the average air temperature ranges from 9°C to 18°C (Zhang et 
al. 2019). Suitable climatic conditions have created a rich variety of 

vegetation types, and the differences in sea–land and elevation have 
resulted in many topographic features in the basin, such as mountains, 
plateaus, basins, hills, and plains. The large areas of plain and basin, as 
well as the rich water resource, have led to rapid industrial and agricul-
tural development in YRB. Large cities in the basin, such as Shanghai, 
Nanjing, Wuhan, and Chongqing, have experienced rapid economic 
development in the past three decades, and urban expansion has 
brought about frequent land use modifications (Li et al. 2021). Human 
activities and climate change have threatened the unique ecological 
structure and have polluted water quality, which has led to the national 
policies of a 10-year ban on fishing and environmental remediation in 
the basin (Sun et al. 2017; Wu et al. 2021).

Data
CLCD
The CLCD contains 30-m annual LULC in China from 1990 to 2019. 
CLCD’s classification system includes nine major LULCs: cropland, 
forest, shrub, grassland, water, snow and ice, barren, impervious, and 
wetland. CLCD used sufficient training samples from combining stable 
samples extracted from China’s land use/cover data sets and visually 
interpreted samples from satellite time-series data. The classification 
method was stable because they used spectrum, spectral index, phenol-
ogy, and geographic location as input features to the RF classifier, and 
a postprocessing process was proposed incorporating spatial-temporal 
filtering and logical reasoning. The overall accuracy reached 79.31%, 
and two third-party verifications (Geo-Wiki and GLCVSS) achieved 
54.57% and 65.46% accuracy, proving its superiority over similar 
products. The data of YRB were directly downloaded from https://doi.
org/10.5281/zenodo.4417810, and the results in 2020 were obtained 
using the 2019 data as training.

Remote Sensing Data Sources
The GEE platform (https://earthengine.google.com) provides the 
Landsat data set of the U.S. Geological Survey (USGS, https://www.
usgs.gov), and the Landsat surface reflectance data used in this 
study have conducted systematic atmospheric and terrain correction. 
Considering the quality of the Landsat data, we chose the Landsat 
8 OLI data after 2013 and combined TM and ETM+ data before 2013. 
Images from June to September of each year were used to filter the 
production of training data. There are 157×8 Landsat scenes per year 
for the entire study area, and in practice, it will be less than this amount 
because of missing images. The Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Built Index (NDBI), and Modified 
Normalized Difference Water Index (MNDWI) (Xu 2007; Szabó et al. 
2016) are all calculated based on the original band, and elevation and 
slope are computed from digital elevation model (NASA Shuttle Radar 
Topography Mission Digital Elevation 30 m) data in GEE. The themat-
ic-class products (GFC global forest change, GSW global surface water, 
and GISA global impervious surface area) are obtained on GEE and from 
http://irsip.whu.edu.cn. These thematic-class products are based on 
global Landsat data with a spatial resolution of 30 m with continuous 
updating. Among them, GISA uses a machine learning classification 
framework and postprocessing of luminous data to ensure the accuracy 
of the product. Similarly, GFC and GSW are calculated with the different 
spectral indices and fully take into account the influence of seasons.Figure 1. Study area of the Yangtze River basin.

Table 1. Definition of each category and sample distribution.
Class Definition Number

Cropland Orchards and cropland, including paddy fields and dry fields 620

Forest Forestry land used for growing trees and bamboo etc. 580

Shrub Low shrubs and areas with low vegetation cover 137

Grass All kinds of grasslands that grow mainly herbaceous plants, including shrub grassland and sparse forest grassland 102

Water Land used for natural terrestrial waters and water conservancy facilities 680

Snow/ice Land covered with snow year-round 140

Barren Land that has not yet been used or that is difficult to use 304

Impervious Urban and rural residential areas and other industrial, mining, and transportation land 496

Wetland Land with flat and low-lying terrain, seasonal or year-round accumulation of water, and growing wet plants on the surface 146
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Sample Data
The classification system in this article is the same as CLCD’s classifi-
cation system, including cropland, forest, shrub, grassland, water, snow 
and ice, barren, impervious, and wetland. Due to the excellent basis 
of CLCD, only a small number of samples are needed as training data. 
High-quality training and validation samples are evenly distributed in 
the study area and provided for supervised classification by combining 
the Google Earth HD map and GEE platform sample-making tools. In 
total, 1700 training samples and 1505 validation samples were selected 
independently in 1995, 2005, and 2015.

Anthropomorphic and Natural Data
Natural and social factors have a profound impact on LULC change. 
Seven major potential factors were selected in this study to test their 
impact on LULC change in YRB (Table 2), including population density 
(POP), gross domestic product (GDP), annual average precipitation 
(PRE), annual average temperature (TEM), net primary productivity 
(NPP), Normalized Difference Vegetation Index (NDVI), and digital 
elevation model (DEM). The data were downloaded from the Resource 
and Environmental Science Data Center of the Chinese Academy of 
Sciences (https://www.resdc.cn).

Method
The process was implemented on the GEE platform and ArcGIS, shown 
in Figure 2. First, the categories of forest, water, and impervious 

surface in CLCD were compared with GFC, GSW, and GISA data year by 
year to derive the disputed area. Then the Landsat data of the disputed 
area were used to reclassify by the RF classifier. Next, through using vi-
sually interpreted and third-party validation samples, the classification 
accuracy was calculated and compared to verify the reliability of our 
LULC results; LULC change is also analyzed by quantifying the individu-
al changes and interconversions of each category. Finally, through the 
process of the time-series analysis of land use degree, we transformed 
the LULC categories into 5-year land use degree data, and the natural 
and social drivers are analyzed by using GTWR model on ArcGIS.

Data Processing and Classification
Image data sets and computing services on the GEE platform make the 
cloud removal process easy and efficient to execute by the CFmask 
algorithm (Zhu and Woodcock 2012). We selected data from June to 
September of each year because it is the vegetation growing season 
and the hydrological conditions are stable (Guo et al. 2008).

RF classification algorithm is used for processing large-scale and 
complex data (Belgiu and Drăguţ 2016) and has been widely used in 
LULC classification because it is good at overcoming the noise in the 
data and the overfitting problem of training (Na et al. 2010). Zhang et 
al. (2020) compared the contribution of the auxiliary feature vec-
tors for RF classification in LULC studies (Zhang and Yang 2020) and 
showed that the accuracy of RF classification can be improved more by 
adding auxiliary feature vectors, such as spectral indices and elevation 
information. Taking into account the classification target category of 
this study and the physical geography of the study area, five auxiliary 
feature vectors (NDVI, MNDWI, NDBI, DEM, and slope) and the origi-
nal spectral band are added as the input features to the RF classifier 
(Hoshikawa and Umezaki 2014). After experimental comparison, 
stable classification performance can be obtained when the number of 
decision trees of the RF classifier is set to 200.

Accuracy Assessment
To assess the accuracy of our results, we use a visually interpreted test 
set (1505 in total) and a third-party test set (Geo-Wiki) (4226 in total). 
Based on our results, the data (CLCD, GFC, GISA, and GSW) are verified 
to be very stable each year. The accuracy validation in 1995, 2005, and 
2015 proves the stability of our products, which allows the comparison 
with other data products in 2015. In addition, we also validated our 
results with CLCD, FROM_GLC, and GLCFCS30 on the validation sample 
of Geo-Wiki. Furthermore, the accuracy of our results was validated 
by confusion matrixes, including producer’s accuracy (PA), user’s ac-
curacy (UA), overall accuracy (OA), and kappa coefficients.

Table 2. Anthropomorphic and natural data∗. 
Data 
Name Time Spatial Resolution (m)

POP 1990, 1995, 2000, 2005, 2010, 2015 1000

GDP 1990, 1995, 2000, 2005, 2010, 2015 1000

PRE 1990, 1995, 2000, 2005, 2010, 2015 1000

TEM 1990, 1995, 2000, 2005, 2010, 2015 1000

NPP 2000, 2005, 2010 500

NDVI 1990, 1995, 2000, 2005, 2010, 2015 500

DEM 2000 30

POP= population density; GDP = gross domestic product; PRE = annual 
average precipitation; TEM = annual average temperature; NPP = net primary 
productivity; NDVI = Normalized Difference Vegetation Index; DEM = digital 
elevation model.

Figure 2. Methodology and flowchart.
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Time-Series Model of Land Use Degree
The land use degree model is commonly used in LULC change analysis, 
which was developed from the original cropland use intensity model 
by Wang et al. (2010). Liu et al. (2020c) proposed a new quantitative 
analysis method for land use degree that has been applied in China 
(Liu et al. 2020c). This method divides the land use degree into four 
levels according to the balance state of the land cover under the influ-
ence of natural/social factors. The setting of the land use degree index 
is shown in Table 3.

The quantitative model of land use degree distinguishes the natural 
land cover and man-made land use by assigning different weight values 
to different land types so that the disordered LULC categories become 
orderly (Liu et al. 2020d). As shown in Figure 3, the LULC results with-
in every 5 years (corresponding to the natural/social factors data) are 
considered as a whole. The land use degree indices over the five years 
are summed up to represent the overall contribution of different LULCs 
over the five years with reducing the effect of classification errors. In 
addition, our method provides more information when compared to the 
direct use of the land use index data for a single year since five to 20 
indexes have more details than one to four indexes.

GTWR Model
The GTWR model is a classical model for the study of spatial hetero-
geneity in long time series. The GTWR model incorporates the time 
dimension into the geo-weighted regression model, which can obtain 
a better fit and make the estimation results more effective (Ma et al. 
2018). Correlation calculations and multicollinearity tests are indis-
pensable processes before being input into the GTWR model (Ran et al. 
2019). Therefore, we calculated the Spearman correlation coefficients 
between the drivers and the land use degree data, which can respond 
to the degree of correlation between land use data and other spatial 
attribute data (Myers and Sirois 2004; Tran et al. 2010). In addition, 
due to different natural/social factors that exist with different temporal 
and spatial resolutions, the uniformization process is done before the 
correlation analysis. Finally, we select the factors with higher correla-
tions and then exclude those with variance inflation factor (VIF) over 
5 as dependent variables into the GTWR model. In this article, the base 

distance is set to the Chinese municipal administrative divisions of YRB 
considering the stability of the GTWR model. The GTWR model devel-
oped in this study depicts the quantitative spatial-temporal relationships 
of the LULC drivers, and its overall structure is described as follows:

	 yi = β0(ui, vi, ti) + Σ
k   

βk(ui, vi, ti) xik + εi	 (1)

where i (i = 1, 2, …, n) denotes a city region; the dependent variable 
yi refers to the LUD for each city; xik represents the driver factors; ui, vi, 
ti are the longitude, latitude, and time, respectively; β0 is the intercept 
value; βk denotes a set of parameter values; and  is the random error.

Results and Analysis
Classification Results and Accuracy Assessment
Partial LULC results are shown in Figure 4, and the study area was 
dominated mainly by forest (46.23%), cropland (28.40%), and grass-
land (18.18%). As in Figure 4, most of the natural forests in the basin 
are located in the middle and upper parts. The Sichuan Basin, the 
Central Plain, and the Yangtze River delta plain are the main agricul-
tural areas. The grassland, barren, and snow land are located in the 
alpine areas of the Qinghai-Tibet Plateau in China. The downstream 
is rich in water resources, and the cities are scattered, with the largest 
urban agglomeration in the Yangtze River delta, including Shanghai 
and Nanjing. Finally, most of the wetlands are located near Taihu Lake, 
Poyang Lake, and Dongting Lake.

Good accuracy of the LULC classification results is an important pre-
requisite for subsequent computational analysis. Based on the valida-
tion sample of visual interpretation in 1995, 2005, and 2015, the overall 
accuracy of this study reached 80%–83%, and the kappa coefficient 
of this study is about 0.79, which proves that the validation results are 
stable and reliable. For each category, forest, snow/ice, and barren have 
the highest classification accuracy of around 90%, while cropland, 
shrubs, water, impervious surface, and grassland are relatively high 
with all accuracy of above 70% as well. The classification of wetland 
categories has also improved considerably after our efforts and reached 
60.71%, which makes up for the lack of other data in this area. In the 
comparison with CLCD, the accuracy of some categories of our product 
remains similar, while the accuracy in cropland, barren, impervious 
surface, and wetland are all improved. Therefore, our results have 
advantages and make up for the shortcomings of the other products.

To verify the effect of our method on CLCD enhancement, we 
intercepted part of the result of CLCD and this study, shown in Figure 
5. It can be seen by comparison with the Google HD map that there is 
an obvious misclassification of mountain shadows into the water in 
CLCD (Figure 5d). By the method of this article (after intercomparison 
and reclassification with GSW), the misclassified part is completely 
removed. On the Google HD map in Figure 5b, we can see that there 

Table 3. Classification values of land use degree.
Types of 
Land

Uncultivated 
Land

Ecological 
Land

Agricultural 
Land

Construction 
Land

LULC Barren, snow

Forest, shrub, 
grassland, 
wetland and 
water

Cropland

Impervious, 
including urban, 
residential area, 
and traffic land

Index 
value 1 2 3 4

LULC = c.

Figure 3. Time-series analysis of land use degree.
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is a large intermittent wetland area that occurs during the dry seasons 
and is inundated during the wet seasons in the middle of the shoreline 
and the lake inundation area (Yang et al. 2020). This area was not well 
classified in the CLCD and was misclassified as cropland, which was 
partially corrected after our reclassification. However, it is still a bit 
flawed because some areas were not involved in the intercomparison, 
and, on the other hand, the spectral characteristics of wetlands are 

easily confused with the spectra of other land types (Mahdavi et al. 
2018). Furthermore, by adding the sample of the exposed riverbed, it is 
also easy to see in Figure 5f that the area that was originally misclassi-
fied as impervious surface is well identified as barren. These com-
parisons show that our work has trustworthy accuracy and effectively 
improves the accuracy of CLCD in YRB.

Figure 4. Land use and land cover mapping of the Yangtze River basin in 1990, 2000, 2010, and 2020.

Table 4. Validation of the results in this article based on visually interpreted test samples in 1995, 2005, and 2015.
Cropland Forest Shrub Grassland Water Snow/Ice Barren Impervious Wetland OA (%)

1995

  PA (%) 71.64 87.35 91.3 67.42 74.17 90.91 90.32 88.73 1
79.55

  UA (%) 94.3 94.57 48.38 94.9 96.43 50 47.73 63 12.09

2005

  PA (%) 80.39 86.95 89.29 70.1 76.16 95.24 91.59 85.86 96.67
82.31

  UA (%) 93.45 96.38 40.32 94.91 93.57 50 55.68 85 31.87

2015

  PA (%) 82.19 89.02 88 71.92 74.71 92 94.78 73.81 60.71
82.66

  UA (%) 92.02 96.38 35.48 92.41 90.71 57.5 61.93 93 30.77

PA = producer’s accuracy; UA = user’s accuracy; OA = overall accuracy.

Figure 5. Google HD maps, China land cover data set (CLCD), and land use and land cover classification of this study.
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Long-Time Spatial-Temporal Change Characteristics
The process and trend of LULC change are calculated for each category 
from 1990 to 2020 based on the LULC generated in this study (Figure 
6). Impervious areas covered 4.28 million ha in 2020, sprawling 
unprecedentedly over the past 30 years and increasing more than three 
times relative to that in 1990, which is also consistent with GISA data. 
In general, impervious areas far exceed other categories in terms of the 
magnitude of change. Cropland area was dropped to 54.65 million ha 
in 2020 with a decrease of 6.12% when compared to 1990. The signifi-
cant increase in forest land area by 4.04% (3.22 million ha) was due 
to China’s positive response to the Grain for Green program (Robbins 
and Harrell 2014), especially in the middle and upper streams, while 
the lower stream remained stable (Xu et al. 2020). The area of surface 
water increased by 6.09% (0.2 million ha), especially after 1995, when 
the development of hydropower was proposed by the Ninth Five-Year 
Plan of China. The increasing reservoir and dam construction were 
some of the reasons accounting for the surface water extension (Ali 
et al. 2019). Barren declined slightly by about 9.00% until 1997, then 
trended steadily upward about 38.11% and grew significantly faster 
after 2015. After the adjustment, the area 
of the exposed riverbank upstream was 
classified in the barren category. YRB 
was flowing fast between 1990 and 2000, 
when a large amount of sediment was 
carried downstream by the current. With 
the construction of the water conservancy 
facilities afterward, the river flow velocity 
decreased, which reduced the amount of 
sand transported by the river (Chen et al. 
2001). In particular, the completion of the 
Three Gorges Dam after 2015 caused more 
than 90% of the sediment to be retained in 
the upper basin of the Yangtze River (Yang 
et al. 2018), thus creating an elevated riv-
erbed and increased barren. The wetlands 
have experienced dramatic changes (some 
of the fluctuations may also come from 
classification errors), with an increase of 
0.03 million ha overall. The fragmentation 
of the wetland landscape in the basin is sig-
nificant (Rui et al. 2017), and the construc-
tion of some wetland parks may account 
for some of the increase. Shrub decreased 
significantly by 50%, and the snow/ice 
land varied in a regular undulating pattern, 
covering an average of 0.33 million ha. 
Grassland continued to decline by 6.99% 
to 36.54 ha in 2020. Since grassland is 
located mainly on the Tibetan Plateau with 
less effect by human activities, the impact 
of climate change on vegetation in vulner-
able areas is the main cause.

The years 1990, 2000, 2010, and 2020 
are chosen to study the land transfer process, 
and 100 major transformations are selected 
to make Sankey diagrams (Figure 10). The 
vegetation cover area (forest, cropland, 
shrub, and grassland) remained largely 
unchanged over the years, but its internal 
transformations were frequent. There is 
a large mutual transfer of cropland and 
forestland, and large deforestation and af-
forestation occur during this time. Also, the 
imaging period error of the image itself and 
the different image quality (Landsat-8 has 
better image quality) have some influence. 
It can be observed that the main origin of 
impervious surface area growth is cropland, 
as is the case with water, which explains the 
decrease of cropland. This is due to the urban 

development that continues to occupy the surrounding cropland, and the 
policy of returning farmland to forests and lakes implemented in China is 
also a reason. The wetland area is small and relatively independent, and its 
transformation is not within the top 100, so it is not reflected in the figure.

Driving Force Analysis
LULC change is a complex process influenced by natural and social 
factors (Fox and Vogler 2005). In this article, the correlations between 
natural/social factors and land use degree were calculated with little 
overall fluctuation, and their average values are shown in Table 5. 
Among them, Correlation coefficients above 0.3 were considered to 
be relevant, while those above 0.6 were considered to be high. Then 
POP, TEM, PRE, and DEM were selected as independent variables input 
to the GTWR model because of the high correlation coefficients, where 
GDP was excluded due to its VIF value being greater than 5 in Table 
6. Finally, our GTWR is set with land use degree as the dependent 
variable; POP, TEM, PRE, and DEM as the independent variables; the 
spatial dimension as the location of each municipality mass center; and 
the temporal dimensions as 1990, 1995, 2000, 2005, 2010, and 2015. 

Figure 6. Statistics of land use and land cover changes in each class.

Figure 7. Sankey diagram of land use transfer flows from 1990 to 2020.
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We finally obtained a GTWR model with a goodness of fit of 0.91, an 
Akaike information criterion of 1281.36, and a spatial-temporal dis-
tance ratio of 0.2688. After a comparison of goodness of fit, the model 
outperformed the geographically weighted regression model (0.81) and 
the ordinary least squares model (0.79).

Using the university kriging interpolation, the GTWR fitting results 
are presented visually, and the coefficients of the respective variables 
are selected for the earliest year (1990) and the latest year (2015), as 
shown in Figure 8. From the distribution of POP coefficient values, 
we can see that human activity plays a driving role in the LULC of 
YRB, being the most obvious especially in the middle region, and the 
no-man’s-land in the highland region can be disregarded. This result is 
also consistent with the results of the driving analysis of LULC changes 
in the Savannah River and Muga watersheds (Zurqani et al. 2018; 
Belay and Mengistu 2019). Meanwhile, natural factors also have a 
strong influence on LULC changes by affecting the growth of natural 
vegetation (Hu and Hu 2019). The DEM, on the contrary, is negatively 
correlated with land use degree in YRB, indicating that the plains at 
low elevation are suitable for land development and utilization, while 
the higher the elevation is, the more difficult it is to develop 
the area. However, the effect of PRE on land use degree is more 
complex, with a large amount of rainfall occurring in the mid-
dle and lower reaches of YRB, so, on the one hand, PRE explains 
well the development of urban areas in the middle and lower 
reaches, while, on the other, the forested land with lower land 
use degree within these areas shows a negative drive. The TEM 
shows an overall positive drive, but there is some counter-drive 
in the downstream and mid-basin regions, and the negative 
drive has expanded in the mid-basin.

Discussion
Accuracy Comparison with Other LULC Products
To better validate the accuracy of our results, we intercom-
pared with CLCD, FROM_GLC, and GLCFCS30 using the Geo-
Wiki validation samples. Since Geo-Wiki does not include 
water and wetland in the validation points of YRB, we excluded 
the statistics of these two in the table. As with the visual inter-
pretation sample validation, the overall accuracy of our results 
in Geo-Wiki was higher than that of the other three products 
(CLCD: 57.91%; FROM_GLC: 54.76%; GLCFCS30: 52.72%) at 
62.45%. In general, it appears that the accuracy of our results is 
better than that of the other products in all categories. Although 

the accuracy is lacking in shrubs and grasses, it is still excellent when 
compared to FROM_GLC and GLCFCS30.

Trends in LULC Change
Landsat images in 1990 and 2020 were selected and did change area 
coloring to highlight the change areas and to show the trends of LULC 
changes in YRB. As shown in Figure 9, five typical LULC changes are 
compared. Figure 9A illustrates the urban expansion of Shanghai, 
which has tripled in size in 20 years, with the rapid expansion of its 
main urban area and surrounding satellite cities taking over areas 
of previously cropland. Figure 9B shows the rapid development of 
fisheries around Chaohu Lake, which is an important component of 
the new cropland. Figure 9C illustrates the open-pit mines from 2011 
and shows the spatial detail at the 30-m resolution scale. Figure 9D is 
the transformation of cropland in the bend of the Yangtze River, which 
occupies the original mudflats and wetlands. Figure 9E shows the 
increase in water surface area upstream of the dam before and after the 
Three Gorges Water Conservancy Project.

Limitations and Future Work
With the GEE platform, we made improvements to the CLCD in YRB 
using three thematic products (GFC, GISA, and GSW). This method 
has been proven to greatly reduce the workload when compared 
to retraining the classifier for the whole basin and to obtain good 

Table 5. Average of coefficients between all the factors.
LUD GDP POP NPP TEM PRE NDVI DEM

LUD
GDP 0.58
POP 0.63 0.93
NPP 0.15 0.43 0.38
TEM 0.51 0.77 0.78 0.45
PRE 0.33 0.52 0.52 0.44 0.64
NDVI 0.04 0.01 −0.06 0.04 0.01 −0.20
DEM −0.57 −0.84 −0.84 −0.44 −0.87 −0.60 −0.03
LUD = Land use degree; GDP = gross domestic product; POP = population 
density; NPP = net primary productivity; TEM = annual average temperature; 
PRE = annual average precipitation; NDVI = Normalized Difference Vegetation 
Index;  DEM = digital elevation model. The p-values for all significance tests 
are much less than 0.001.

Table 6. Variance inflation factor validation for different factors.
Factors GDP POP NPP TEM PRE NDVI DEM

VIF 5.04 3.81 1.13 1.15 2.82 1.04 2.95
GDP = gross domestic product; POP = population density; NPP = net primary 
productivity; TEM = annual average temperature; PRE = annual average 
precipitation; NDVI = Normalized Difference Vegetation Index; DEM = digital 
elevation model; VIF = variance inflation factor.

Figure 8. Coefficient distributions of the respective variables in the 
geographically and temporally weighted regression model.

Table 7. Comparison of mapping accuracy based on Geo-Wiki test samples for 
this study, CLCD, FROM_GLC, and GLCFCS30.

Geo-Wiki

Cropland Forest Shrub Grassland
Snow/

Ice Barren Impervious
OA 
(%)

This study
PA (%) 60.65 72.86 33.33 25.33 100 72.72 69.15

62.45
UA (%) 76.50 84.33 2.17 28.02 3.85 2.95 51

CLCD
PA (%) 58.83 68.93 33.33 25.32 100 72.72 65.90

57.81
UA (%) 78.99 82.61 2.45 29.67 3.84 3.21 49.57

FROM_GLC
PA (%) 62.24 66.57 11.11 18.46 100 50 61.71

54.76
UA (%) 54.02 79.86 4.80 28.99 1.92 11.44 41.5

GLCFCS30
PA (%) 45.71 73.06 5.88 19.60 66.67 75 60.12

52.72
UA (%) 70.41 64.49 0.44 30.82 3.85 4.46 49
CLCD = China land cover data set; OA = overall accuracy; PA = producer’s accuracy; UA 
= user’s accuracy. 
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accuracy. However, CLCD data are missing 
for products from 1986 to 1989 due to 
the commercial preorder acquisition plan 
of Landsat 5 before 1990, which further 
limited its availability in China before 1990 
(Loveland and Dwyer 2012). In addition, 
based on the higher classification accuracy 
of the results in this article, we derived a 
more credible land distribution and change 
in YRB from 1990 to 2020. However, some 
driver data are not openly available, which 
will be the main work of our next study. 
In general, in the future, we would like to 
complement and expand the pre-1990 LULC 
products by combining other sensor data 
and collect more detailed driving factors 
to deeply understand the driving forces of 
LULC changes in YRB.

Conclusions
The YRB is of great ecological and econom-
ic significance to China. Continuous and 
accurate LULC mapping of YRB is important 
for both fine-resolution monitoring and sus-
tainable development within the basin, and 
it is also a basic parameter for studying the 
ecological environment and climate change 
in the basin. In this article, we propose an optimization algorithm 
based on the open-access CLCD data set and produce annual 30-m LULC 
maps of YRB from 1990 to 2020. The results show an improvement of 
accuracy of about 82.66%, which is higher than CLCD’s 77.21% and 
two other global LULC products. Similarly, in the third-party valida-
tion sample, Geo-Wiki, the results of this article also achieved higher 
precision when compared to the other three LULC products. In addition, 
the LULC changes dramatically in YRB between 1990 and 2020. The 
impervious surface has more than tripled, and cropland is decreasing 
and converting to the impervious surface, forestland, and water. Using 
the GTWR model, we found that anthropogenic activities play an impor-
tant role in driving LULC change within YRB, while natural factors do 
the opposite, with both DEM and PRE factors limiting the improvement 
of land use degree. Therefore, it is necessary to develop a rational way 
for sustainable development. Finally, the annual 30-m LULC data from 
1990 to 2020 in this article will be well combined with hydrological 
data for deeper exploration of the environment and climate change for 
YRB.
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