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Abstract— A new method, which integrates multivariable con-
sisting of soil moisture (SM) active passive (SMAP)-derived SM
and vegetation optical depth, the water seasonality, geolocation,
digital elevation model (DEM), slope, and biomass as inputs
and adopts the technique of bootstrap aggregation of regression
trees (BARTs), is proposed for retrieving monthly surface water
fraction (SWF) at a spatial resolution of 0.025◦ from cyclone
global navigation satellite system (CYGNSS) data. The model is
trained using surface water microwave product series (SWAMPS)
data with a coarser resolution of 25 km and then applied
to CYGNSS data with an enhanced resolution of 0.025◦ to
generate high-resolution water maps. The resulting CYGNSS
SWF (CSWF) maps are evaluated by comparing them with
other water data sources, namely, SWAMPS, global surface water
(GSW), and global surface water dynamics (GLADs), as well
as ground measurements. A quadruple collocation (QC) analysis
indicates that the CSWF results exhibit the lowest error variance
among the four SWF datasets. Furthermore, additional testing
with water level (WL) measurements demonstrates a strong
correlation with station data and clear seasonal patterns. Notably,
the CSWF estimates significantly improve spatial coverage com-
pared to both optical data (GSW and GLAD) with enhanced
spatial resolution and the coarser SWAMPS data. This study
underscores the effectiveness and efficiency of CSWF estimates,
highlighting their potential as a valuable complement to existing
microwave- and optical-based surface water products.

Index Terms— Cyclone global navigation satellite system
(CYGNSS), global navigation satellite system-reflectometry
(GNSS-R), global surface water (GSW), global surface water
dynamic (GLAD), surface water.
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I. INTRODUCTION

SURFACE water is of utter importance due to its tight
conjunction with greenhouse gas emissions [1], biodi-

versity [2], and various forms of lives [3]. However, it is
vulnerable to climate changes and human activities [4].
In addition, the presence, extent, and amount of surface water
can be highly variable in both space and time. Therefore,
it is critical but challenging to monitor surface water and its
spatiotemporal evolution in an accurate, effective, and prompt
manner.

Remote sensing (RS) provides an efficient means of contin-
uously observing surface water data across regional and global
scales. In general, there are two types of RS sensors primarily
used to map surface water: optical and microwave. The for-
mer is characterized by high spatial resolution. For instance,
datasets such as global surface water (GSW) [5] and Global
surface water dynamics (GLAD) [6] that are based on Landsat
optical imagery have a spatial resolution of 30 m. However,
optical RS is hampered by clouds and vegetation, which results
in fewer cloud-free satellite images accessible during wet sea-
sons than dry seasons [5]. This leads to a lack of data and lim-
ited applicability for the tropical region, especially during the
wet seasons. Fig. 1 demonstrates the temporal coverage rate at
a monthly scale for the aforementioned two datasets and shows
a relatively low revisit frequency over the tropical regions and
South Asia. Moreover, the spectral properties of waterbody
surfaces are complex at the global scale as they vary with
the depths, dissolved material, and amount of chlorophyll [5].
In contrast, microwave RS is less affected by these constraints,
offering all-day and all-weather surveillance. Passive radiome-
ters are typically associated with coarse spatial resolutions
(25–50 km). Conversely, active microwave platforms, such
as synthetic aperture radar (SAR) and radar altimeters, have
suitable spatial resolutions, but their revisit periods are usually
lengthy. Taking Sentinel-1 as an example, its spatial resolution
ranges from several to tens of meters depending on the oper-
ating mode, and its revisit time is six days at the equator and
increases at higher latitudes [7]. The surface water microwave
product series (SWAMPS) dataset [8] is one of the longest
(over 20 years) records of global water coverage obtained
through combining passive and active microwave observations.
The revisit time and spatial resolution of the data are approx-
imately three days and 25 km, respectively. Although it has
found various successful applications, its low level of detail
makes it unsuitable for fine-scale or regional water mapping.
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Fig. 1. Temporal coverage rates (i.e., monthly revisit rates) of (a) GSW [5]
and (b) GLAD [6] data for the pan-tropical regions over the period from
August 2018 to December 2021.

Recently, global navigation satellite system-reflectometry
(GNSS-R) has gained widespread recognition as a valuable
RS tool. Working in a multistatic mode, spaceborne GNSS-R
opportunistically collects forward scattered signals from a
surface area surrounding the specular point (SP). The ground
track of SPs is quasi-random due to the orbiting motion
of both the transmitter and receiver. Unlike traditional RS
satellites that sample data in large swaths, GNSS-R provides
overall wider coverage although small spatial gaps may exist
within certain regions. Taking the first GNSS-R constellation
mission—cyclone GNSS (CYGNSS)—as an example, it can
provide nearly full coverage over the pan-tropical regions at
a spatial resolution of 0.025◦ and at a monthly time scale
(see Fig. 1 as a contrast of incomplete coverage, and more
details can be found in Section IV-C). Moreover, GNSS-R has
been successful in many global applications, e.g., ocean wind
measurement [9], [10], altimetry [11], [12], soil moisture (SM)
estimation [13], [14], and ice sensing [15], [16]. Recently,
GNSS-R also exhibited its extraordinary capacity in surface
water mapping. Notably, GNSS-R adopts L-band signals that
provide a better capability in penetrating through canopies than
higher frequencies. This is evidenced by the sensitivity of
CYGNSS observations to the presence of small Amazonian
tributaries even when water is under dense vegetation [17].
Following this, hydrological applications such as flood detec-
tion [18], [19], [20], wetland observation [21], [22], [23],
and inundation/inland water body mapping [24], [25], [26],
[27], [28], [29], [30], [31] have been extensively carried out.
More importantly, it is worth undertaking a comprehensive
comparison between surface water retrieval products from
CYGNSS and those obtained from alternative instruments.
This investigation will elucidate the distinct advantages inher-
ent in CYGNSS-based products. Chapman et al. [32] evaluated
SAR and CYGNSS-derived entropy and confirmed the signif-
icant sensitivity of GNSS-reflected signal to inundation, even
for wetlands with vegetation. Downs et al. [33] assessed the
sensitivity of CYGNSS normalized signal-to-noise ratio to the
inundation extent along with data from other instruments such
as visible infrared imaging radiometer suite (VIIRS), SAR,
and optical sensors. They argued that CYGNSS presented an

oversensitivity to small water bodies, showing that a simple
thresholding approach was not robust for accurate inland water
mapping.

Though there were successful applications with promising
results, most existing studies primarily focused on classifica-
tion tasks, i.e., labeling pixels into distinct categories (e.g.,
water or land). These investigations exhibit two noteworthy
limitations. First, the classification accuracy can be influ-
enced by biases due to errors in class labeling [6]. Second,
these classification-based methods typically lack the capacity
to incorporate additional information about a pixel except
categorical designation. Therefore, a more comprehensive
approach is required to not only quantify the type of surface
feature but also incorporate its associated characteristics, par-
ticularly those related to surface water properties. This more
holistic approach will allow us to comprehensively understand
the studied area. In particular, Loria et al. [34] studied the
scattering characteristics of CYGNSS signals from inland
water bodies and estimated surface water fraction (SWF) for a
part of the Amazon River Basin as a case study. Unfortunately,
their methods have not yet been examined for a global study,
and the accuracy can be further assessed and improved. Fur-
thermore, Chew et al. [35] developed a dielectric model to map
SWF by considering soil and water conditions. The authors
showed examples of flood maps for four different places
(Amazon, Mozambique, Mali, and Australia) and compared
them with other data sources (e.g. SWAMPS, Dartmouth
Flood Observatory, and GSW). Still, the retrievals have some
uncertainties that affect their accuracy mainly because of the
parameterizations of soil and water surface roughness, causing
an underestimate of SWF, especially over the areas with high
SWF.

This study aims to achieve pan-tropical SWF estimation
with a spatial resolution of 0.025◦ and a monthly interval
using CYGNSS data. A retrieval model based on bootstrap
aggregation of regression trees (BARTs) is developed for this
task. This model is first trained according to SWAMPS with
a spatial resolution of 25 km and then extended to the inputs
rescaled to 0.025◦ for fine-resolution SWF maps. Results are
comprehensively evaluated and compared with the microwave
SWAMPS dataset [8] and two optical datasets (see [5], [6])
along with in situ measurements. The remainder of this article
is organized as follows. The CYGNSS, reference, and ancillary
datasets are described in Section II. The developed SWF
retrieving model based on a BART algorithm is presented
in Section III. The experimental validation and discussions
are shown in Section IV, and the main conclusions are
summarized in Section V.

II. DATASETS

In this section, CYGNSS RS data, referred surface water
data, and other auxiliary inputs are described.

A. CYGNSS RS Data

CYGNSS provides measurement over the region from
38◦S to 38◦N. The 41-month long (from August 2018 to
December 2021) CYGNSS Level 1 (L1) Version 3.1 datasets
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(accessible at https://cmr.earthdata.nasa.gov/virtual-directory/
collections/C2146321631-POCLOUD) are adopted in this
work. In practice, the CYGNSS-derived surface reflectivity
0 can be obtained by assuming that coherent reflections
dominate over land (e.g., [13], [14], [36], [37], and [38])

0 =
σ(Rt + Rr )

2

4π(Rt Rr )2 (1)

where σ is the CYGNSS bistatic radar cross section, and
Rt and Rr are the distances from SP to the transmitter and
receiver, respectively. Such data along with ancillary infor-
mation about the observation and its geometry are provided in
CYGNSS L1 data. Moreover, a delay-Doppler map observable
(pixel number observable, hereafter, PN) that describes surface
roughness [15] is employed as well. The data quality control
scheme follows that in [14]. In addition, data with the quality
flag “SP in the sidelobe” are excluded due to their low confi-
dence in the antenna gain. CYGNSS data are aggregated into
monthly scale with a spatial resolution of 0.025◦

× 0.025◦

grids over regions between 37.5◦S and 37.5◦N according to
the geolocation of SPs.

B. Reference Data

1) SWAMPS Data: SWAMPS data [8] are adopted as train-
ing references. SWAMPS is a gridded dataset of inundation
fraction that is derived from data collected by several different
microwave sensors. It stands out as one of the longest publicly
available microwave RS datasets, with daily data files spanning
the time period 1992–2020. The temporal repeat of the data
is approximately three days, and the data are gridded with
a resolution of 25 km. This dataset is employed as the
training target and serves as a reference for coarse-resolution
evaluation. In addition, SWAMPS data are aggregated from
daily to monthly averages.

2) Optical-Based Data: For fine-resolution assessment, two
different surface water datasets (GSW [5] and GLAD [6])
produced from Landsat optical imagery are employed in this
work. These datasets are among the most comprehensive
sources of surface water data, spanning long time periods
(1984 to 2021 for GSW and 1999 to 2021 for GLAD), with
spatial and temporal resolutions of 30 m and one month,
respectively. However, they may face challenges such as
insufficient coverage due to cloud contamination or heavy
canopies. Data from August 2018 to December 2021 (41
months in total) are selected for analysis. In addition, the
number of valid observations (excluding NaN in the original
data) is counted for each spatial grid, and the ratio of this
number to 41 represents the temporal coverage rate, as shown
in Fig. 1. Slight differences in temporal coverage between
the two datasets are noticeable in Fig. 1. Furthermore, it is
reported that the GLAD dataset identifies more water than
the GSW dataset [6]. Due to the absence of a consensus
regarding which dataset performs better, both GSW and GLAD
are utilized as references in this study.

3) Hydro Station Data: For local-scale validation, two types
of water level (WL) measurement data are utilized. First, daily
WL observations from 1491 gauging stations across Australia
were obtained from the Bureau of Meteorology Water data

online (http://www.bom.gov.au/waterdata/). Although the data
have a high sampling frequency of one day, the measurements
are restricted at specific points.

Second, WL data from 2173 virtual stations (derived
from altimeter) provided by Copernicus global land ser-
vice for the Amazon River regions over [(15◦S–5◦N),
(80◦W–30◦W)] are also used, and they can be downloaded
at https://land.copernicus.eu/global/products/wl. The satellites
can only measure the WL of water bodies that are directly
below them (nadir position). The quality of the measurement
also depends on the size of the water body and its surrounding
landscape, and the revisit time of virtual stations is determined
by the orbital period of the satellite that observes them.
In the Amazon basin, the median correlation between the
time series of the virtual and in situ stations is 0.95, and
the mean temporal sampling rate is 27.9 days. Despite the
good correlation with in situ data, low revisit frequency is a
limitation of virtual station measurements.

C. Ancillary Data

To account for the impacts of geolocation, topography,
canopy attenuation, and surface SM, latitude/longitude, dig-
ital elevation model (DEM)/slope, biomass/vegetation water
content (VWC), and SM data are, respectively, adopted as
auxiliary data, and they are described as follows.

1) DEM: Global land one-kilometer base elevation
(GLOBE) DEM data (available at https://www.ngdc.noaa.gov/
mgg/fliers/globedem.html) are employed. In addition, the sur-
face slope calculated from such DEM data is also utilized.
Both datasets have a spatial resolution of 1 km.

2) Water Seasonality: The GSW seasonality map, down-
loadable from https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/
GSWE/Aggregated/LATEST/seasonality, has a spatial resolu-
tion of 30 m. It provides the number of months water was
present within a year and is derived from the GSW data [5].
This map may underestimate the extent of semipermanent
water beneath vegetation canopies, but it offers valuable a pri-
ori knowledge of where surface water usually exists.

3) Biomass: European Space Agency’s (ESA’s) climate
change initiative (CCI) biomass (available at https://data.ceda.
ac.uk/neodc/esacci/biomass/data/agb/maps/v3.0/) dataset for
the year of 2018 is utilized. These abovementioned ancillary
data are static data that cannot describe actual temporal
variation. The biomass maps have a global coverage but may
be biased at regional scales. In addition, the input data source,
primarily radar backscatter, may not accurately reflect the
complex structure of forest biomass, leading to potential error
in areas with dense understory or significant deadwood.

4) VWC and SM: SM active passive (SMAP) enhanced
L3 radiometer global and polar grid daily 9-km EASE-Grid
SM, Version 5 [39], is also employed. The time span between
August 2018 and December 2021 is considered. Google Earth
Engine (GEE), a cloud computing platform [40], is used to
query and process SMAP data, i.e., daily AM and PM SM
and VWC from August 1, 2018, to December 31, 2021. The
daily AM and PM collections for both variables are aggregated
to a daily scale and then further aggregated to a monthly scale,
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TABLE I
RESOLUTIONS OF ANCILLARY INPUT DATA SOURCES AND REFERENCES

with a spatial resolution of 9 km. The GEE Python application
programming interface (API) is employed to accomplish data
collection and processing [41].

D. Data Collocation

1) Training: During the training stage, all the involved
parameters are projected into the geo-framework provided by
the SWAMPS dataset that is of a spatial resolution of 25 km.
Data are aggregated and averaged on a monthly basis.

2) Fine-Resolution Retrieval: This work aims at providing
SWF retrieval at a spatial resolution of 0.025◦ and a monthly
time step; therefore, the aforementioned data are matched on
such basis accordingly. The fine-resolution DEM, slope, and
biomass data, as well as GSW reference data, are spatially
averaged into grids of 0.025◦. The coarse-resolution SMAP
SM and VWC data are linearly interpolated and reprojected
into the adopted spatial grids. The monthly mean water percent
from GLAD data [6] is directly used. The water mask data
from GSW data [5] are converted to an equivalent parameter
based on pixel counting. These two data are utilized for
comparison. The native resolutions of all the inputs and
reference optical SWF products are summarized in Table I.

III. SWF ESTIMATION METHOD

Regression trees (RTs) [42] can recursively partition the
input space, which, in this context, involves the CYGNSS 0

and PN, SMAP SM and VWC, the water seasonality, geoloca-
tion, DEM, slope, and biomass data and, subsequently, maps
each partition to the desired output, i.e., SWF. However, a sin-
gle RT usually overfits the data. As a solution, Bagging [43]
is utilized to improve both the stability and accuracy of RTs
by reducing their variance and avoiding overfitting. It can also
handle high-dimensional data and complex interactions among
features as the input here contains ten elements.

As such, the bootstrap aggregation (bagging) of regression
trees are adopted here to quantify the relationship between
SWF and devised input (CYGNSS data along with considered
influencing factors). It is worth noting that the BART model
has been successfully applied to several RS applications, e.g.,
downscaling SMAP SM products [44] and SM retrieval [45].
To achieve SWF estimation, given the training set T =

{(x1, y1), (x2, y2), . . . , (xN , yN )} with xi being the i th input
containing ten elements, yi being the i th desired SWF value,
and N being the number of total training samples, this work

implements the BARTs as follows. The overall goal is to
build a model f (x) such that the loss function is minimum as
follows:

object = min(Loss( f (xi ), yi )). (2)

Generally, the loss function is defined as the mean square error
(MSE) between the estimated and targeted outputs

MSE =
1
n

n∑
i=1

( f (xi ) − yi )
2. (3)

Assuming that the designed RTs are allocated with M
leaves, consequently, there will be at most M varying estimates
(or equivalent M units R1, . . . , Rm), and (3) can be updated
with

min
1
n

M∑
m=1

∑
xi ∈Rm

(cm − yi )
2 (4)

where cm is the prediction from the mth leaf. As such, the
splitting parameter and point for each leaf that minimizes (4)
should be recorded. This is achieved through traversing a
parameter p, scanning the splitting point q , and determining
the (p, q) pair that meets

min

min
c1

∑
xi ∈R1{p,q}

(yi − c1)
2
+ min

c2

∑
xi ∈R2{p,q}

(yi − c2)
2

.

(5)

Based on the determined (p, q) pair, one can further calculate
the outputs

ĉm =
1

Nm

∑
xi ∈Rm ( j,s)

yi , x ∈ Rm, m = 1, 2 (6)

with

R1{ j, s} = {x | x ( j)
≤ s}

R2{ j, s} = {x | x ( j) > s} (7)

and Nm is the number of elements for Rm . When the total M
leaves are determined, the overall RT is, thus, in the following
form:

f (x) =



ĉ1, xi ∈ R1( j, s)
ĉ2, xi ∈ R2( j, s)
ĉ3, xi ∈ R3( j, s)

· · ·

ˆcM , xi ∈ RM( j, s).

(8)

For details of the implementation of Bagging, one can refer
to [43]; the formula can be given as

ĥ(x) =
1
T

T∑
t=1

f̂t (x) (9)

where T is the number of new sample sets and f̂t is the
predication from the t th tree.

In summary, the input of the BART model consists of
CYGNSS 0 and PN, SMAP SM and VWC, the water season-
ality, geolocation, DEM, slope, and biomass, while the output
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TABLE II
ACCURACY OF SWF ESTIMATES AT 25 km-RESOLUTION

(* INDICATES THAT p-VALUE IS <0.05)

is SWF. It should be clarified that variables of different types
(e.g., SWAMPS inundation fraction and CYGNSS 0) can be
used interchangeably as inputs to the BART model during the
training and application stages. The model construction and
analyses here are performed based on the regression learner
toolbox of MATLAB R2021b software.

IV. EXPERIMENTS AND EVALUATION

Here, the proposed scheme for retrieving CYGNSS SWF
(CSWF) is implemented and evaluated using multisource data,
including SWAMPS [8], rescaled GSW [5], and GLAD [6]
global products, as well as field measurements.

A. Model Training

Although the SWAMPS data have a coarse resolution
of 25 km, it is able to penetrate clouds providing obser-
vation absent in the GSW/GLAD datasets. As such, the
SWAMPS dataset was adopted as the training target here.
However, it should be noted that SWAMPS may underes-
timate SWF for areas with dense canopy and have limited
seasonal changes [8], [23], [46], potentially affecting the
retrieval accuracy in this study. By the date when this study
began, the SWAMPS dataset up to December 2020 was
available, and its overlap with CYGNSS data was 29 months.
To ensure the model’s robustness in capturing different
seasonal dynamics, the first 24-month data were selected
as a training set and the rest as a testing set for the
BART model (see details in Section III). To reduce the
overall computational complexity, the pan-tropical regions
under investigation (a latitudinal span of ±37.5◦) were
divided subject to the subbasin breakdowns level 2 (see
https://www.hydrosheds.org/products/hydrobasins), and the
training process was operated for each subarea individually.
The training and test performance in terms of root MSE
(RMSE) and coefficient of determination (R2) between all of
the CSWF and SWAMPS results is summarized in Table II.
For both sets, R2 exceeds 0.96, and RMSE is lower than 0.018.
Slight variations between the training and test sets indicate the
proposed model’s generalizability. The heat map showing the
overall good consistency is displayed in Fig. 2.

B. Coarse-Resolution Test

First, the retrieval results in the SWAMPS geo-frameworks
(25-km resolution) are compared. The high-resolution GSW

Fig. 2. Scatter plot of SWF results: CSWF versus SWAMPS.

TABLE III
DECREASE OF PERFORMANCE BY REMOVING VARIABLES

and GLAD products are upscaled accordingly. An example
of these four datasets for December 2020 is illustrated in
Fig. 3. Overall, there are consistent spatial patterns across
all four products, and the accuracy statistics are summa-
rized in Table II. To assess the errors of these four SWF
products, the quadruple collocation (QC) analysis [47] was
adopted. Their spatial distribution (see Fig. 4) indicates that the
CYGNSS-derived result has the lowest error variance globally.

In addition, to evaluate the importance of the time-evolving
parameters associated with CYGNSS and SMAP satellites,
feature selection was also performed for input sets without
CYGNSS 0 and PN and for that excluding SMAP SM
and VWC. Both schemes experienced obvious performance
degradation (original RMSE = 0.0153 and R2

= 0.974), and
the former (without CYGNSS data, generating an RMSE =

0.0532 and R2
= 0.778) dropped more than the latter

(RMSE = 0.0470 and R2
= 0.792), indicating the higher

impacts of CYGNSS data. For the contribution of static data,
we also implemented a variable importance analysis by exclud-
ing the DEM/slope, latitude/longitude, biomass, and water
seasonality data from the inputs one by one and measuring
the decrease in the accuracy of retrieved results for each
model. The overall contribution of each input product can be
evaluated from the associated performance degradation shown
in Table III, from which it can be seen all variables made
improvements to the performance, and the water seasonality,
CYGNSS, and topographic data had the highest influences.

C. Fine-Resolution Examination

Through applying the devised BARTs to the 0.025◦-
gridded data, SWF maps with increased detail were generated.
Here, the equivalent products computed from the GSW and
GLAD datasets were adopted for comparison. The degree
of agreement among them regarding R2 and RMSE is tab-
ulated in Table IV. The CYGNSS-based results demonstrated
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Fig. 3. 25 km-resolution SWF for December 2020. (a) CSWF. (b) SWAMPS. (c) GSW. (d) GLAD.

Fig. 4. Error variance of SWF based on (a) CSWF, (b) SWAMPS, (c) GSW, and (d) GLAD data from August 2018 to December 2020.

TABLE IV
CONSISTENCY BETWEEN 0.025◦-GRIDDED SWF MAPS

(* INDICATES THAT p-VALUE IS <0.05)

Fig. 5. Heat maps of SWF differences in terms of water seasonality. (a) GSW.
(b) GLAD versus CSWF.

reasonable consistency with the optical-based ones, despite the
differences in data sources. Furthermore, the achieved RMSE
and R2 between the CYGNSS and optical SWFs show similar
values at two different spatial scales, indicating the stability
of CYGNSS results downscaled from 25 km to 0.025◦.

Fig. 6. Heat maps of SWF with respect to biomass. (a) CSWF. (b) SWAMPS.
(c) GLAD. (d) GSW. The mean SWFs for regions with high biomass (over
100 Mg/Ha) are 4.81%, 3.87%, 1.05%, and 0.62%, respectively.

Differences between the optical- and CYGNSS-based SWFs
are calculated with respect to the water seasonality (introduced
in Section II-C2) are presented in Fig. 5. Compared with
both optical results, CYGNSS tends to underestimate SWF
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Fig. 7. Examples of maximum SWF and biomass over two regions: (a) geolocation, (b) biomass, (c) SWAMPS, (d) GSW, (e) GLAD, and (f) CSWF in
Amazon, and (g) biomass, (h) SWAMPS, (i) GSW, (j) GLAD, and (k) CSWF in Congo.

for permanent water whose seasonality is 12 months. This can
be due to imperfectly resolved surface roughness issues over
these regions as in [35]. It is worth mentioning that the zero
seasonality did not impede CYGNSS from producing nonzero
SWF values implying the capability of CYGNSS in detecting
semipermanent water bodies that may not be discovered by
optical sensors under high biomass. To further assess this, the
maximum SWFs are calculated, and the density plots with
respect to biomass are presented in Fig. 6, from which higher
SWF estimates are observed from CSWF. The averaged SWF
values over regions with biomass above 100 Mg/ha are 4.81%,
3.87%, 1.05%, and 0.62% for CSWF, SWAMPS, GLAD, and
GSW, respectively. Two examples of SWF estimates over
regions with high biomass (see Fig. 7) also demonstrate the
capability of CSWF in mapping surface water under dense
canopy.

It is worth reiterating that the GSW and GLAD data are
based on Landsat optical imagery and can have numerous
data gaps due to cloud contamination, as indicated by the
overall temporal coverage shown in Fig. 1. Furthermore, it is

Fig. 8. Missing data rates (i.e., the average spatial fraction of areas that
do not contain data during the period from August 2018 to December 2021)
calculated from the GLAD [6] dataset for the pan-tropical regions over four
regions. (a) East Asia. (b) South Asia. (c) Nigeria. (d) Amazon.

illustrated that data gaps are particularly prominent during
flood seasons. Taking the GLAD data as an example, the
missing rates over time in the four selected regions, i.e., Ease
Asia, South Asia, Nigeria, and Amazon, are plotted in Fig. 8.
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Fig. 9. SWF maps. (a) Study area, (b) CSWF (0.025◦) before interpolation (BI), (c) GSW (0.025◦) BI, (d) GLAD (0.025◦) BI, (e) SWAMPS (25 km),
(f) CSWF (0.025◦) after interpolation (AI), (g) GSW (0.025◦) AI, and (h) GLAD (0.025◦) AI and corresponding water masks: (i) SWAMPS, (j) CSWF,
(k) GSW, and (l) GLAD for August 2018.

Fig. 10. (a) Biomass and water masks from (b) CSWF, (c) GSW, and (d) GLAD for January 2019.

Without loss of generality, the Nigeria region (Area C in
Fig. 8) is treated as a case study here. Fig. 9(e)–(h) displays the
four SWF maps of August 2018 (flood season). It is evident
that both the GSW and GLAD results are affected by data
gaps, whereas the microwave CYGNSS and SWAMPS data
remain immune to such issues. In addition, in comparison
with the 25-km resolution SWAMPS data, the 0.025◦-gridded
CYGNSS retrieval results offer more detailed information
with clearer textures. Fig. 9(i)–(l) presents the water masks
through thresholding the SWF results with a threshold of
0.1. Fig. 10(b)–(d) depicts the derived water masks (water:
SWF ≥ 0.1) for January 2019 (nonflood season), during which
the optical-based products obtained good spatial coverage but
captured less water extents than those based on microwave
sensors (see red circles; the water mask from SWAMPS is
similar to Fig. 9(b) and, thus, is neglected here). This may be
due to the high biomass that leads to an underestimation in
optical-based SWF.

It should also be noted that the initial spatial coverage rate
of all four products was around 90%. However, employing a
simple and effective 10 × 10 moving window for gap filling
resulted in a coverage rate of approximately 100% for CSWF.
In contrast, the improvement for the GSW and GLAD datasets
was relatively limited. This discrepancy can be attributed to
the large gaps between swaths and the presence of clouds in
Landsat imagery, while CYGNSS data randomly sample the
Earth’s surface with a wide extent and small gaps. An example
depicting the difference between the results obtained using

TABLE V
COVERAGE RATE FOR OF 0.025◦ SWF PRODUCTS

data with/without gap filling can be seen in Fig. 9(b)–(d)
and (f)–(h), and the comparison of overall coverage is tab-
ulated in Table V. Furthermore, the filled CYGNSS-based
data showed a similar performance to the original ones
(see Table IV).

D. Case Studies in Amazon and Australia: Seasonality and
Validation With WL Measurement

For illustration, seasonal patterns of retrieved CSWF in the
Amazon Basin and Australia are displayed in Figs. 11 and 12
for January, April, July, and October 2019. The results, when
subtracted by their mean across multiple years, are also
presented. Notably, distinct seasonal cycles are evident, and
different regions exhibit varying patterns. For example, the
Orinoco River shows an opposite trend against the Madeira
River, while the Amazon River displays a relative lag (see
Fig. 11), which can be caused by the oscillation of Inter
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Fig. 11. Retrieved monthly CSWF maps in Amazon Basin for (a) 2019.01, (b) 2019.04, (c) 2019.07, and (d) 2019.10 along with their corresponding values
being subtracted by the yearly mean: (e)–(h).

Tropical Convergence Zone. The seasonal difference in SWF
across the Australian continent (see Fig. 12) clearly indicates
that there are considerable spatial and temporal variabilities in
SWFs in regions such as the Great Artesian Basin (GAB).
This can be explained by the nonperennial nature of the
water bodies across the GAB, as a result of diverse climates
and variable connections between surface and groundwater
storages. For instance, the tropical climate in the northern part
of the GAB (e.g., the Cape York Peninsula) leads to most
rainfall occurring in summer, leading to an above average SWF

[see Fig. 12(b)]. For the arid southern part of the GAB (e.g.,
Lake Eyre and the Cooper River), the groundwater recharge
creates a water source for surface water even during dry
periods. Nonetheless, the seasonal variation presented by the
proposed CSWF can be underestimated due to the limitation
of SWAMPS data in representing seasonal changes [23].

To verify the seasonality of SWF data and its application
at the regional scale, the WL records collected by stations
were taken as another reference. Although WL is not a direct
measurement of SWF, they are highly correlated [48]. Two
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Fig. 12. Monthly CSWF retrievals in Australia for (a) 2019.01, (b) 2019.04, (c) 2019.07, and (d) 2019.10 along with their values being subtracted by the
yearly mean: (e)–(h).
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Fig. 13. Distribution of WL (virtual) stations in (a) Amazon River and (b) Australia and examples of WL/SWF data in both regions. Locations of (c)–(l)
are circled in (a) and (b).

field data sources from the Amazon River and Australia were
employed, the former is provided by a radar altimeter (which
measures water surface height above the reference datum),
and the latter is derived from continuous monitoring stations.
The distribution of these stations (marked by dots) and exam-
ples (labeled by circles) of WL and SWF measurements for
41 months in both regions are demonstrated in Fig. 13. Each
mark in the time-series plots represents a sample of WL.
The sampling rates of WL stations in Australia and Amazon
are 1 day and tens of days, respectively. Consequently, the
WL records in Australia appear denser than those in Amazon

[see Fig. 13(c)–(l)]. Amazon experiences seasonal variations
in WL, specifically with a swelling (i.e., increase in WL)
in river extent during the wet season, and a shrinkage (i.e.,
decrease in WL) in the dry season. Australia also undergoes
seasonal cycles in WL but with water scarcity during the dry
season, particularly in the inland arid regions. Regarding the
monthly SWF time series, SWAMPS results are not presented
here due to its coarse spatial resolution (25 km) and a short
concurrent period (29 months) with CSWF. CSWF provides
continuous observations, while GLAD and GSW exhibit data
gaps in both regions. For examples in Amazon, CSWF exhibits
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Fig. 14. Standardized WL measurements and SWF estimates. (a) Australia.
(b) Amazon river.

TABLE VI

DETERMINATION COEFFICIENT R2 BETWEEN SWF AND
WL (* INDICATES THAT p-VALUE IS <0.05)

clear seasonal variations similar to those of WL. For some
examples in Australia, seasonal patterns of WL may not be so
clear, but CSWF provides good consistency. It should be noted
that using data from only two annual cycles to fully capture
seasonality in SWF dynamics may be challenging. This is
because some regions may exhibit consistent seasonal patterns
over consecutive years, but some can experience significant
interannual variability due to a multitude of factors such as
climatic anomalies, land use changes, and extreme weather
events. In addition, by taking monthly means, the obtained
SWF products may lose some short-term variability presented
in WL data.

To further quantify the agreement between SWF and WL,
the WL measurements were rescaled to monthly data with a
spatial resolution of 0.025◦ for both Amazon and Australia.
The derived SWF products have a spatial resolution of 0.025◦

at a monthly interval. Therefore, the point measurements
by gauge data are aggregated into monthly time series and
mapped into the 0.025◦-grid as a representative value for
corresponding pixels. In addition, there may be multiple
stations within a grid cell, and then, data from those gauges
are averaged under such conditions. In addition, both SWF
and WL were normalized by subtracting their mean values
and then divided by the corresponding standard deviation. The
spatially averaged time series of normalized SWF and WL

Fig. 15. Box plot of R2 between SWF estimates and WL measurements in
(a) Australia and (b) Amazon River.

during the 41-month period for both regions with WL station
data is displayed in Fig. 14, and the R2 values are summarized
in Table VI. CSWF shows the best correlation with WL.
In Fig. 14, it is noted that between August 2018 to mid-
2020, both WL and SWF showed negative values, indicating
severe drought conditions over Australia, which is in line with
the findings in [49]. On the other hand, an upward trend in
both WL and SWF has been observed since the beginning
of the year of 2021. This is also supported by the fact that
2021 is the wettest year since 2016 with a national total rainfall
of 9% higher than the 1961–1990 average [50]. The pixel-
level comparison was also conducted for each 0.025◦ grid by
calculating R2 between corresponding WL and SWF. The box
plots of R2 based on each individual 0.025◦ pixel for both
regions are shown in Fig. 15. It is clear that the performance in
Australia is satisfactory for all three SWF estimates, while in
the Amazon River region where vegetation and cloud covers
are dense, CSWF (microwave) exhibits enhanced agreement
than the Landsat-based (optical) GLAD and GSW.

V. CONCLUSION

In this work, a new scheme is proposed for estimating
SWF from the CYGNSS L1 data via BARTs. The developed
model incorporates DEM, slope, latitude, longitude, biomass,
water seasonality, SMAP SM and VWC, CYGNSS 0, and
observable. The model is trained with SWAMPS data, which
has a low level of detail (25 km), and then applied to
CYGNSS data that have a higher resolution (0.025◦) to make
finer SWF maps. Comprehensive evaluation demonstrated
the robustness and effectiveness of this method. The overall
agreement between the global reference and the correspond-
ing derivatives was satisfactory, with an overall r of up to
0.987 and an RMSE of 1.53% compared with the 25-km
SWAMP set. Intercomparison among the GSW, GLAD, and
CYGNSS results at both 25-km and 0.025◦ shows reasonable
consistency, thus ensuring the robustness of the fine-resolution
retrievals. Further investigation using hydrological station data
demonstrates that the CYGNSS-based dataset achieves the best
correlation with WL measurements based on Australian water
station records and satellite altimetry over the Amazon River.
In summary, the advantages of CYGNSS-based SWF in terms
of an improved spatial coverage rate over the optical-based
data and an enhanced spatial resolution against the SWAMPS
are also illustrated. i The accuracy of the dataset relies on
the quality and accuracy of the training reference (SWAMPS),
which may underestimate SWF for areas with dense canopies
and present limited seasonal variation. Ensuring reliable and
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accurate validation is a significant challenge in these regions.
In the future, a better suitable reference can be considered,
and assessment with more ground-truth data and independent
validation sources and other alternative existing methods (such
as the radiometric model approach [35]) will be performed.
As a future direction, this method will be improved for even
finer spatiotemporal resolutions so that the SWF estimates
can be better employed in hydrological modeling and so on.
This can be achieved through integrating data from other
GNSS-R missions since involving more data allows enhanced
spatiotemporal coverage. In addition, this work employed
and interpolated the 9-km SMAP data as auxiliary data; it
may introduce some uncertainties. Using SM/VWC data with
improved resolution may be helpful. While the current study
relies on static data (e.g., biomass) due to the constraint of
data availability, future research can benefit from using higher
temporal resolution data when they become accessible.

ACKNOWLEDGMENT

The authors are grateful to the reviewers for their construc-
tive feedback and insightful comments on this article.

REFERENCES

[1] M. A. Holgerson and P. A. Raymond, “Large contribution to inland
water CO2 and CH4 emissions from very small ponds,” Nature Geosci.,
vol. 9, no. 3, pp. 222–226, Mar. 2016.

[2] S. M. Haig, S. P. Murphy, J. H. Matthews, I. Arismendi, and M. Safeeq,
“Climate-altered wetlands challenge waterbird use and migratory con-
nectivity in arid landscapes,” Sci. Rep., vol. 9, no. 1, Mar. 2019,
Art. no. 4666.

[3] A. Karpatne, A. Khandelwal, X. Chen, V. Mithal, J. Faghmous, and
V. Kumar, “Global monitoring of inland water dynamics: State-of-
the-art, challenges, and opportunities,” in Computational Sustainability.
Cham, Switzerland: Springer, 2016, pp. 121–147.

[4] C. J. Vörösmarty, P. Green, J. Salisbury, and R. B. Lammers, “Global
water resources: Vulnerability from climate change and population
growth,” Science, vol. 289, no. 5477, pp. 284–288, Jul. 2000.

[5] J.-F. Pekel, A. Cottam, N. Gorelick, and A. S. Belward, “High-resolution
mapping of global surface water and its long-term changes,” Nature,
vol. 540, pp. 418–422, Dec. 2016. [Online]. Available: https://www.
nature.com/articles/nature20584

[6] A. H. Pickens et al., “Mapping and sampling to characterize global
inland water dynamics from 1999 to 2018 with full Landsat time-series,”
Remote Sens. Environ., vol. 243, Jun. 2020, Art. no. 111792.

[7] User Guides—Sentinel-1 SAR—Revisit and Coverage—Sentinel
Online—Sentinel Online. Accessed: Feb. 1, 2024. [Online]. Available:
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/revisit-
and-coverage

[8] K. Jensen and K. Mcdonald, “Surface water microwave product series
version 3: A near-real time and 25-year historical global inundated area
fraction time series from active and passive microwave remote sens-
ing,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 9, pp. 1402–1406,
Sep. 2019.

[9] M. P. Clarizia, C. S. Ruf, P. Jales, and C. Gommenginger, “Spaceborne
GNSS-R minimum variance wind speed estimator,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 11, pp. 6829–6843, Nov. 2014.

[10] G. Foti et al., “Spaceborne GNSS reflectometry for ocean winds: First
results from the UK TechDemoSat-1 mission,” Geophys. Res. Lett.,
vol. 42, no. 13, pp. 5435–5441, Jul. 2015.

[11] E. Cardellach et al., “Consolidating the precision of interferometric
GNSS-R ocean altimetry using airborne experimental data,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 8, pp. 4992–5004, Aug. 2014.

[12] W. Li, E. Cardellach, F. Fabra, S. Ribo, and A. Rius, “Assessment
of spaceborne GNSS-R ocean altimetry performance using CYGNSS
mission raw data,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1,
pp. 238–250, Jan. 2020.

[13] C. C. Chew and E. E. Small, “Soil moisture sensing using spaceborne
GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil
moisture,” Geophys. Res. Lett., vol. 45, no. 9, pp. 4049–4057, May 2018.

[14] Q. Yan, W. Huang, S. Jin, and Y. Jia, “Pan-tropical soil moisture mapping
based on a three-layer model from CYGNSS GNSS-R data,” Remote
Sens. Environ., vol. 247, Sep. 2020, Art. no. 111944.

[15] Q. Yan and W. Huang, “Spaceborne GNSS-R sea ice detection using
delay-Doppler maps: First results from the UK TechDemoSat-1 mis-
sion,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9,
no. 10, pp. 4795–4801, Oct. 2016.

[16] Q. Yan and W. Huang, “Sea ice thickness measurement using spaceborne
GNSS-R: First results with TechDemoSat-1 data,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 13, pp. 577–587, 2020.

[17] C. S. Ruf et al., “A new paradigm in Earth environmental mon-
itoring with the CYGNSS small satellite constellation,” Sci. Rep.,
vol. 8, no. 1, pp. 1–13, Dec. 2018. [Online]. Available: https://www.
nature.com/articles/s41598-018-27127-4/

[18] C. Chew, J. T. Reager, and E. Small, “CYGNSS data map flood
inundation during the 2017 Atlantic Hurricane season,” Sci. Rep., vol. 8,
no. 1, pp. 1–8, Jun. 2018, doi: 10.1038/s41598-018-27673-x.

[19] P. Ghasemigoudarzi, W. Huang, O. De Silva, Q. Yan, and D. T. Power,
“Flash flood detection from CYGNSS data using the RUSBoost
algorithm,” IEEE Access, vol. 8, pp. 171864–171881, 2020.

[20] S. Zhang et al., “POBI interpolation algorithm for CYGNSS near
real time flood detection research: A case study of extreme pre-
cipitation events in Henan, China in 2021,” Adv. Space Res.,
vol. 71, no. 6, pp. 2862–2878, Mar. 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0273117722010389

[21] N. Rodriguez-Alvarez, E. Podest, K. Jensen, and K. C. McDonald,
“Classifying inundation in a tropical wetlands complex with GNSS-R,”
Remote Sens., vol. 11, no. 9, p. 1053, May 2019.

[22] M. Morris, C. Chew, J. T. Reager, R. Shah, and C. Zuffada, “A novel
approach to monitoring wetland dynamics using CYGNSS: Ever-
glades case study,” Remote Sens. Environ., vol. 233, Nov. 2019,
Art. no. 111417.

[23] C. Gerlein-Safdi, A. A. Bloom, G. Plant, E. A. Kort, and C. S. Ruf,
“Improving representation of tropical wetland methane emissions with
CYGNSS inundation maps,” Global Biogeochem. Cycles, vol. 35, no. 12,
pp. 1–14, Dec. 2021.

[24] C. Gerlein-Safdi and C. S. Ruf, “A CYGNSS-based algorithm for the
detection of inland waterbodies,” Geophys. Res. Lett., vol. 46, no. 21,
pp. 12065–12072, Nov. 2019.

[25] P. Ghasemigoudarzi, W. Huang, O. De Silva, Q. Yan, and D. Power,
“A machine learning method for inland water detection using CYGNSS
data,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.

[26] M. M. Al-Khaldi et al., “Inland water body mapping using CYGNSS
coherence detection,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 9,
pp. 7385–7394, Sep. 2021.

[27] W. Li, E. Cardellach, S. Ribó, A. Rius, and B. Zhou, “First space-
borne demonstration of BeiDou-3 signals for GNSS reflectometry from
CYGNSS constellation,” Chin. J. Aeronaut., vol. 34, no. 9, pp. 1–10,
Sep. 2021.

[28] P. Zeiger, F. Frappart, J. Darrozes, C. Prigent, and C. Jiménez,
“Analysis of CYGNSS coherent reflectivity over land for the charac-
terization of pan-tropical inundation dynamics,” Remote Sens. Environ.,
vol. 282, Dec. 2022, Art. no. 113278. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0034425722003844

[29] B. Liu et al., “Statistical analysis of CyGNSS speckle and its applications
to surface water mapping,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 5803915.

[30] Q. Yan et al., “Inland water mapping based on GA-LinkNet from
CyGNSS data,” IEEE Geosci. Remote Sens. Lett., vol. 20, pp. 1–5, 2023.

[31] E. Loria et al., “Comparison of GNSS-R coherent reflection detection
algorithms using simulated and measured CYGNSS data,” IEEE Trans.
Geosci. Remote Sens., vol. 61, 2023, Art. no. 5105216.

[32] B. D. Chapman et al., “Comparison of SAR and CYGNSS surface water
extent metrics,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 15, pp. 3235–3245, 2022.

[33] B. Downs, A. J. Kettner, B. D. Chapman, G. R. Brakenridge,
A. J. O’Brien, and C. Zuffada, “Assessing the relative performance of
GNSS-R flood extent observations: Case study in South Sudan,” IEEE
Trans. Geosci. Remote Sens., vol. 61, 2023, Art. no. 4201213.

[34] E. Loria, A. O’Brien, V. Zavorotny, B. Downs, and C. Zuffada,
“Analysis of scattering characteristics from inland bodies of water
observed by CYGNSS,” Remote Sens. Environ., vol. 245, Aug. 2020,
Art. no. 111825.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on May 12,2024 at 04:04:41 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1038/s41598-018-27673-x


5800914 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

[35] C. Chew, E. Small, and H. Huelsing, “Flooding and inundation maps
using interpolated CYGNSS reflectivity observations,” Remote Sens.
Environ., vol. 293, Aug. 2023, Art. no. 113598.

[36] H. Carreno-Luengo, A. Camps, J. Querol, and G. Forte, “First results of
a GNSS-R experiment from a stratospheric balloon over boreal forests,”
IEEE Trans. Geosci. Remote Sens., vol. 54, no. 5, pp. 2652–2663,
May 2016.

[37] M. P. Clarizia, N. Pierdicca, F. Costantini, and N. Floury, “Analysis
of CYGNSS data for soil moisture retrieval,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 12, no. 7, pp. 2227–2235,
Jul. 2019.

[38] O. Eroglu, M. Kurum, D. Boyd, and A. C. Gurbuz, “High spatio-
temporal resolution CYGNSS soil moisture estimates using arti-
ficial neural networks,” Remote Sens., vol. 11, no. 19, p. 2272,
Sep. 2019.

[39] P. E. O’Neill et al., SMAP Enhanced L3 Radiometer Global and Polar
Grid Daily 9 km EASE-Grid Soil Moisture, document Version 5, 2021.
[Online]. Available: https://nsidc.org/data/SPL3SMP_E/versions/5

[40] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and
R. Moore, “Google Earth Engine: Planetary-scale geospatial analysis
for everyone,” Remote Sens. Environ., vol. 202, pp. 18–27, Dec. 2017.

[41] Q. Wu, “Geemap: A Python package for interactive mapping with
Google Earth Engine,” J. Open Source Softw., vol. 5, no. 51, p. 2305,
Jul. 2020.

[42] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Evanston, IL, USA: Routledge, Oct. 1984.

[43] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, Aug. 1996.

[44] S. Chakrabarti, J. Judge, T. Bongiovanni, A. Rangarajan, and S. Ranka,
“Spatial scaling using temporal correlations and ensemble learning to
obtain high-resolution soil moisture,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 3, pp. 1238–1250, Mar. 2018.

[45] Q. Yan, S. Gong, S. Jin, W. Huang, and C. Zhang, “Near real-time soil
moisture in China retrieved from CyGNSS reflectivity,” IEEE Geosci.
Remote Sens. Lett., vol. 19, pp. 1–5, 2022.

[46] Z. Zhang et al., “Development of the global dataset of wetland area
and dynamics for methane modeling (WAD2M),” Earth Syst. Sci. Data,
vol. 13, no. 5, pp. 2001–2023, May 2021.

[47] N. Pierdicca, F. Fascetti, L. Pulvirenti, R. Crapolicchio, and
J. Muñoz-Sabater, “Quadruple collocation analysis for soil moisture
product assessment,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 8,
pp. 1595–1599, Aug. 2015.

[48] C. Prigent, C. Jimenez, and P. Bousquet, “Satellite-derived global
surface water extent and dynamics over the last 25 years (GIEMS-2),”
J. Geophys. Res., Atmos., vol. 125, no. 3, pp. 1–18, Feb. 2020.

[49] B. Fang, P. Kansara, C. Dandridge, and V. Lakshmi, “Drought moni-
toring using high spatial resolution soil moisture data over Australia in
2015–2019,” J. Hydrol., vol. 594, Mar. 2021, Art. no. 125960.

[50] (2021). Annual Climate Statement 2021: Wetter and Warmer Than
Average—Social Media Blog—Bureau of Meteorology. [Online].
Available: https://media.bom.gov.au/social/blog/2669/annual-climate-
statement-2021-wetter-and-warmer-than-average/

Authorized licensed use limited to: ShanghaiTech University. Downloaded on May 12,2024 at 04:04:41 UTC from IEEE Xplore.  Restrictions apply. 


