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Abstract— The sensitivity of Cyclone Global Navigation Satel-
lite System (CyGNSS) data to inland water bodies was well
documented, however, its advantage over other sensors has
seldom been reported. In this work, a semantic segmentation
method is adopted for detecting inland water bodies using
the CyGNSS data. The widely used LinkNet with the global
attention mechanism (GAM) and atrous spatial pyramid pooling
(ASPP), namely GA-LinkNet, is equipped to better extract water
distributions. The performance comparison with an existing
method and other deep networks proved the accuracy and
effectiveness of this approach. Satisfactory agreement between
the derived and referenced water masks was achieved, with the
overall accuracy being 0.959 and 0.976, the mean intersection
over union being 0.785 and 0.641, and the F1 scores being
0.879 and 0.781 for the Amazon and Congo regions, respectively.
Furthermore, underestimation of water by the reference data
was shown during evaluation, which proves the usefulness of the
CyGNSS-derived water mask for improving the existing water
mask products.

Index Terms— Cyclone Global Navigation Satellite System
(CyGNSS), Global Navigation Satellite System-Reflectometry
(GNSS-R), inland water mapping, LinkNet, soil moisture (SM).

I. INTRODUCTION

IT IS well known that inland water is a critical part in
offering water resources for lives and supporting vari-

ous human activities, for example, agricultural and industrial
processes [1]. As such, it is of utter importance to fully
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understand the spatio-temporal distribution and variability of
inland water bodies. Remote-sensing (RS) techniques have
emerged as an excellent tool to fulfill this task. Several
water mask datasets derived based on optical sensors, for
example, the global surface water (GSW) product [2], are
with fine spatial resolutions. However, the presence of clouds
and dense vegetation disable effective observations and make
surface water undetectable from optical images. In contrast,
microwave signals at some frequency bands can provide all-
day/-weather surveillance even for regions under canopies due
to their good penetration capability [3]. Passive radiometry
data are usually with low spatial resolutions (25–50 km) that
may not be sufficient for small-scale water body monitoring.
Active sensors, such as synthetic aperture radar (SAR), have
satisfactory spatial resolutions but the instrumental cost is gen-
erally high, limiting the size of constellations and consequently
resulting in long revisit times.

State-of-the-art semantic segmentation methods have
recently demonstrated superb capability in water body clas-
sification from SAR and optical images [12], [13]. Various
networks have been tested, and most of them produced
satisfactory results despite slight differences in accuracy.
Although semantic segmentation has been applied to ver-
satile RS scenes with various data, to the authors’ best
knowledge, its application with Cyclone Global Navigation
Satellite System (CyGNSS) data has not been conducted.
This work aims at achieving accurate inland water classifi-
cation by integrating both GNSS-R and semantic segmenta-
tion techniques, with whose validation a new perspective of
CyGNSS-based RS is raised. Furthermore, the superiority of
CyGNSS in capturing water body presence over other sensors
is demonstrated, offering a valid and necessary complement
to existing water mask products. It should be noted that the
design and modification to semantic segmentation algorithms
can be arbitrary and to find the “optimal” network for the
best accuracy is impractical. Thus, exhausting/listing a bunch
of networks and making intercomparison among them are
beyond the current work’s focus. Nonetheless, endeavors have
been made in testing popular frameworks, and the exciting
results are to be compactly presented. The rest of this letter
is organized as follows. The CyGNSS and reference water
mask data are detailed in Section II. The design of deep
networks for CyGNSS-based inland water mapping is pre-
sented in Section III. Experiments, evaluation, and discussions
are provided in Section IV. Conclusions are summarized
in Section V.
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Fig. 1. Study areas of (a) Amazon and (b) Congo rivers (red boxes).

II. DATASETS

Parts of the Amazon and Congo rivers spanning over
[4◦S, 0◦N][53◦W, 59◦W] and [4◦S, 0◦N][13◦W, 19◦W] are,
respectively, selected and are marked by red boxes in Fig. 1(a).
The detailed procedures for preparing CyGNSS RS data along
with the reference water masks are described as follows.

A. CyGNSS Data

The CyGNSS Level 1 version 3.0 datasets collected in
2019 and 2020 are used in this work (available at https://
podaac - tools.jpl.nasa.gov/drive/ files/ allData/cygnss/ L1/v3.0).
The CyGNSS data provide bistatic measurements that are
acquired from eight spacecraft. For each payload, four
observations can be obtained per second (per 0.5 s after
July 2019) and every measurement represents the average
during its sampling interval. Specular points (SPs) travel on
Earth at a speed of 6 km/s, thus the along-track resolution
is about 6 km (3 km for data starting from July 2019).
The spatial resolution of each measurement varies with the
viewing geometry and the roughness near/at SP. When the
surface is relatively flat, the received signal is deemed to
be coherent and mainly from the Fresnel zone whose size
is about 0.5 km [10]. As such, assuming that the CyGNSS
data are dominated by coherent components, its spatial
resolution can be regarded as 0.5 × 6 km or 0.5 × 3 km
up to the sampling rate. Differing from previous works [9],
[10], [11] that aggregate data merely using the recorded SP,
this work takes along-track samplings into account to better
represent the data acquisition process (see a similar procedure
by 14). In addition, a spatial resolution of 500 m is set in
this work for gridding CyGNSS data and they are annually
batched (with a temporal resolution of one year). However,
the temporal resolution can be improved to weekly, monthly,
or seasonal scales with the sacrifice of spatial resolution (also
noted in [9]).

B. Reference Water Mask

Two datasets providing water masks are employed as refer-
ence water masks here, specifically, the global surface water
(GSW) data [2] and the WorldCover 2020 v100 product (avail-
able online at https://viewer.esa-worldcover.org/worldcover/).
The yearly classification data for the years 2019 and 2020 from
the GSW data [2] are employed, which consist of labels
for land, permanent, and seasonal water. In this work, the
latter two labels are grouped as “water,” together with the
label of land, forming a binary classification task. The spatial

Fig. 2. (a) and (b) Water masks, (c) and (d) CyGNSS SR in log-scale, and
(e) and (f) observable of Amazon and Congo rivers for the year 2020, the left
and right panels are for Amazon and Congo, respectively.

resolution of GSW data is 30 m. One 500 × 500 m grid (the
spatial resolution considered in this work) will be assigned
as “water” as long as it includes one or more 30 × 30 m
water pixels. Such threshold is determined based on visual
inspection that is also affirmed by the sensitivity of CyGNSS
data to fractional water presence [3]. Given the fact that
the GSW data are based on optical sensors, its accuracy in
dense-canopy-covered regions can be demised [10]. Thus, the
WorldCover 2020 v100 data, which are of a spatial resolution
of 10 m and are derived based on the Sentinel-2 data as
well as the Sentinel-1 microwave backscattering measure-
ments, are selected as a complement to GSW data. The
labels of permanent water bodies and herbaceous wetlands
are treated as “water” here. Downsampling such label data
into a 500-m-grid follows the same strategy as the one stated
above. The water masks reproduced from both the GSW and
WorldCover 2020 are combined to represent the reference
data, and more specifically, a 500-m grid is regarded as
“water” when either of these two data is labeled as water
[see Fig. 2(a) and (b)].

III. INLAND WATER CLASSIFICATION METHOD

Here, the proposed approach for extracting inland water
bodies from CyGNSS data is presented, consisting of deriving
CyGNSS measurements and constructing a LinkNet-based
model.

A. Calculation of CyGNSS Observables

Assuming dominated by the coherent part, the CyGNSS
surface reflectivity (SR, �) can be calculated as [4], [5], [8]

� = σ(Rt + Rr )
2

4π(Rt Rr )2
(1)

where σ is the bistatic radar cross section, and Rt and Rr

are the distances from SP to the transmitter and the receiver
respectively, which are accessible in the above-mentioned
CyGNSS L1 dataset. In addition to SR, an indicator of
CyGNSS delay-Doppler map (DDM)’s spread (pixel number
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Fig. 3. Structure of the designed GA-LinkNet, where ReLU is rectified linear
units.

Fig. 4. Block diagrams of GAM. (a) Channel attention (where MLP stands
for multilayer perception). (b) Spatial attention.

observable, hereafter, observable) that depicts surface rough-
ness [15] is employed as well. Both CyGNSS data for the
study area are shown in Fig. 2.

B. Construction of Semantic Segmentation Networks

LinkNet [16] is a widely used semantic segmentation archi-
tecture that can achieve a pixelwise classification task. The
water distribution in an image is complicated. Some water
paths can spread over the full image, some can be thin or
small, while some lakes can be large, and intersections are
always present. To effectively extract the complex distribu-
tion of inland water bodies, the global attention mechanism
(GAM) [17] and atrous spatial pyramid pooling (ASPP) [18]
are integrated into LinkNet in this work, and hereafter, the
designed LinkNet is referred to as GA-LinkNet. GA-LinkNet
contains the encoder, GAM, ASPP, and decoder modules,
and its framework is shown in Fig. 3, for which the upper
and lower brackets represent the encoder and decoder parts,
respectively.

Inputs to GA-Link consist of CyGNSS SR and observable,
and the size is 960 × 1440. Instead of ResNet18 that is
adopted in the original Linknet, VGG11 is selected as an
encoder here and its better performance will be shown later
in Section IV-B. To reduce information loss and acquire more
detailed features, GAM is integrated into the network through
skip connections [16] between the last three blocks of the
encoder and the decoder. GAM contains two submodules of

channel attention (CA) and spatial attention (SA) (see Fig. 4
for illustration and more details can be found in [16]). ASPP
involves a series of dilated convolution blocks that can enlarge
the field of view and obtain multiscale context information.
In this work, ASPP is attached to the ends of the encoder
and the decoder, and its structure follows that in [18]. For a
general introduction to semantic segmentation networks, one
can refer to [19].

IV. EXPERIMENTS AND EVALUATION

A. Network Training

Here, the proposed GA-LinkNet-based inland water map-
ping is performed and evaluated. Data collected in 2020 over
both Amazon and Congo rivers were employed as the training
set since the associated water masks were based on both GSW
and WorldCover data that better-revealed water underneath
dense vegetation. For CyGNSS SR and observable, their
annual medians were utilized at each grid to mitigate the track-
wise noise in original data [20].

The number of maximum training epochs was set as 800 and
the learning rate was set as 3e-4. Moreover, the learning
rate would decrease by half when the total loss stopped
decreasing over three consecutive epochs, and the training
would be terminated if the total loss ceased to reduce during
five continuous epochs. In addition, the Adam optimizer [21]
was deployed as the network optimizer.

B. Overall Test Results

In the subsequent classification phase, the data from
2019 were first accumulated and the median of each grid cell
was selected to produce a new prediction. The estimations
were tested with the GSW 2019 water mask with/without
combining WorldCover 2020. Due to a lack of historical
data from the WorldCover dataset, the 2020 version was
used here. Through the first stage of assessment, the perfor-
mance of various selected methods was compared, specifically,
U-Net, LinkNet (ResNet18), and the proposed GA-LinkNet
(along with its associated ablation experiments) were operated.
In addition, the RUSBoost method [11] was also included in
the appraisal because it outperformed an earlier work [10].
The performance indexes considered here included the overall
accuracy (OA), the mean intersection over union (mIoU), and
F1 score, which can be calculated through

OA = TP + TN

TP + TN + FP + FN
(2)

mIoU = TP

TP + FP + FN
(3)

F1 = 2 × Precision × Recall

Precision + Recall
(4)

Precision = TP

TP + FP
(5)

Recall = TP

TP + FN
(6)

where T/F indicates true/false and P/N represents positive/
negative. The test results judged by both sets of references
are summarized in Table I. The evaluation metrics listed
in Table I also demonstrated that the accuracy of semantic
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TABLE I

OA, MIOU, AND F1 SCORE OF THE RUSBOOST, LINKNET, U-NET, AND MODIFIED LINKNET

Fig. 5. Water masks for Amazon river using (a) GSW 2019, (b) GSW
2019 + WorldCover 2020, (c) RUSBoost, (d) U-Net, (e) LinkNet (ResNet18),
(f) LinkNet (VGG11), (g) LinkNet (VGG11 + GAM), (h) LinkNet (VGG11 +
ASPP), and (i) GA-LinkNet (VGG11 + GAM + ASPP).

Fig. 6. Water masks for Congo region of (a) GSW, (b) GSW + WorldCover,
(c) CyGNSS-based, and (d) WorldCover 2020. Missed detection exists for
both GSW and WorldCover datasets.

segmentation-based methods was comparable to each other
but distinctly higher than RUSBoost. Notably, the effectiveness
and accuracy of the proposed GA-LinkNet were evident by its
highest performance among all using either reference dataset.
In addition, the overall outputs are displayed in Fig. 5 (for
concision, only results for Amazon are presented here), from
intuitive inspection of which, the examined methods all suc-
cessfully generated water masks with similar distribution to the
references. The RUSBoost method produced each estimation
solely depending on its local information, while the semantic

segmentation algorithms utilized the neighboring data (e.g., in
the encoding process) to better extract the contextual features
of water bodies.

V. CONCLUSION

In this work, a GA-LinkNet is designated for mapping
inland water bodies using the CyGNSS L1 data. The net-
work is equipped with GAM and ASPP to better capture
water bodies with various shapes and distribution patterns.
The performance analyses among RUSBoost, U-Net, LinkNet,
and the proposed GA-LinkNet along with its counterparts in
ablation tests demonstrated the validity and efficiency of this
model. The agreement between the derived and referenced
water masks was satisfactory. When compared with GSW
19 (plus WorldCover 2020), the OA was 0.959 (0.965) and
0.976 (0.981), the mIoU was 0.785 (0.817) and 0.641 (0.728),
and the F1 scores were 0.879 (0.899) and 0.781 (0.843) for the
Amazon and Congo regions, respectively. The results were in
better agreement with the combined water masks whose water
coverage was higher. Despite the coarsest spatial resolution
relative to the other two references, the sensitivity of CyGNSS
data to surface water was not compromised. Notably, underes-
timation of water by GSW and WorldCover was reported and
confirmed during evaluation (see Fig. 6), shedding a light on
improving the existing GSW and WorldCover products with
CyGNSS-derived water mask. Still, it is necessary to compare
the results of these methods with in-situ data for validation
purposes.

In the future, the water mask reference data involved in
training will be further processed and corrected for better
agreement and accuracy. In addition, the proposed method
will be extended to the CyGNSS’s full coverage, producing
a pan-tropical inland water distribution map. Moreover, other
algorithms that may be better suited for this task will be tested.
Furthermore, this study is closely relevant to the European
Space Agency (ESA) HydroGNSS mission, an ESA Scout
mission under implementation, to be launched in 2024 and
the focus of which is global land applications of GNSS-R
(with higher spatial coverage than CyGNSS), including wet-
land/water inundation flag [22]. This work could be applied
to the HydroGNSS data for global mapping once they are
available. For global application, various influencing factors
such as roughness, topography, and biomass will be further
considered and other applicable coherence detectors from
GNSS-R data should be tested. It should be noted that time

Authorized licensed use limited to: Henan Polytechnic University. Downloaded on February 03,2023 at 09:45:13 UTC from IEEE Xplore.  Restrictions apply. 



YAN et al.: INLAND WATER MAPPING BASED ON GA-LinkNet 1500305

evolution and dynamical aspects are not investigated here, and
it is worth studying in the future. Efforts will also be put to
detect the extent of flash floods and inundation even under
dense vegetation canopy [23], [24].
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