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Abstract— This work presents a novel scheme to retrieve soil
moisture (SM) from the Cyclone Global Navigation Satellite
System (CyGNSS) data, which is accomplished by using a bagged
regression trees (BRT) algorithm with the inputs being the
CyGNSS-derived products, the corresponding geolocation, and
associated climate type. This algorithm is validated with the
in situ hourly SM data acquired by China’s automatic SM
observation stations throughout the year 2018. High consistency
between the retrieved SM results and the measured SM is
achieved, with a correlation coefficient of 0.86 and a root-mean-
square error of 0.05 cm3/cm3. The results obtained in this work
indicate that the proposed BRT-based method can effectively
estimate SM from CyGNSS data in different scenarios of various
station locations and climate types in a near real-time manner.

Index Terms— Bagged regression trees (BRT), climate type,
cyclone global navigation satellite system (CyGNSS), global
navigation satellite system-reflectometry (GNSS-R), soil moisture
(SM).

I. INTRODUCTION

SOIL moisture (SM) is critical for the hydrological, geo-
physical, and agricultural processes due to its significance

in the Earth’s water cycle [1]. Thus, the knowledge of SM
is vital for hydrologists, ecologists, agriculturalists, and cli-
matologists to improve hydrological and environmental mod-
els/predictions. Remote sensing techniques have been widely
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adopted as an excellent tool for obtaining SM data in a cost-
effective and efficient way.

Recently, Global Navigation Satellite System (GNSS)-
Reflectometry (GNSS-R) has emerged as a promising remote
sensing approach, which is able to provide all-day and all-
weather surveillance. It has successfully demonstrated its
capability in sea surface wind speed estimation [2], altime-
try [3], sea ice sensing [4]–[6], tsunami detection [7], and
wetland classification [8]. Due to the launch of the Cyclone
GNSS (CyGNSS) mission in 2016, massive data with fine
spatial and temporal resolutions are available for the public.
In particular, the study of SM retrieval from CyGNSS data
has been a topic of interest [9]–[14]. The fluctuations in
the CyGNSS signal-to-noise ratio (SNR) were found to be
correlated with the SM Active Passive (SMAP) SM results in
[9]. An SM estimation method based on the relative SNR was
presented in [10]. Clarizia et al. [11] proposed a reflectivity-
vegetation-roughness (R-V-R) algorithm and achieved SM
retrieval using a trilinear regression function. SM estimation
through time-series analysis was performed in [12]. It is
worth noting that these studies were evaluated with SMAP
SM products of coarse spatial resolutions. To demonstrate the
capacity of CyGNSS for retrieving SM at high spatiotemporal
scales, an artificial neural network (ANN)-based approach was
designed in [13] and the results were assessed with field data
of fine resolution, and its extended work was presented in [14]
and validated over larger and more diverse data sets (from
over 100 International SM Network sites in the Continental
United State). However, these two studies heavily rely on
a bunch of ancillary data. In this work, we propose an
effective model that incorporates the CyGNSS-derived surface
reflectivity (�), bistatic radar cross section (BRCS or σ ),
and coherence flag as well as the corresponding geolocation,
and its climate type for estimating hourly SM. Furthermore,
we validate this model with the in situ SM data obtained by
China’s automatic SM observation stations (with more than
1700 sites). The assessment is proceeded on an hourly basis
demonstrating the capacity of CyGNSS for near real-time SM
retrieval.

This letter is organized as follows. Section II introduces
the employed CyGNSS and reference SM data. Section III
describes the proposed bagged regression trees (BRT)-based
SM estimation scheme. The experimental evaluation and asso-
ciated discussions are presented in Section IV. Section V gives
a summary and possible future work of this study.
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II. DATA DESCRIPTION AND STUDY REGION

In this section, the acquisition of CyGNSS remote sensing
data is first described. Next, the processing of the reference in
situ SM data along with the study region is introduced.

A. CyGNSS Remote Sensing Data

The CyGNSS constellation consists of eight microsatellites,
and each of them is able to provide four GNSS-R measure-
ments from different locations simultaneously. Since the data
are processed every second, 32 separate measurements can
be obtained per second. In addition, the achievable revisit
time is within several hours. Therefore, CyGNSS is capable
of monitoring SM with extensive spatial coverage and high
temporal resolution within latitudes between ±38◦. The data
employed in this work span the year 2018.

The CyGNSS metadata include the BRCS and SNR at each
specular point (SP) as well as their associated information
about the measuring geometry and navigation message, such as
the incidence angle, coordinates of SP, distances from SP to the
transmitter and receiver, and so on. In this work, data collected
over land with an SNR over 0 dB at SP are retained. It is worth
mentioning that the CyGNSS BRCS is stored in a signal box
with 17 delay × 11 Doppler bins. The peak power position
is varying due to the change of terrain elevation. To ensure
that the error in the CyGNSS SP location estimation is within
a reasonable range, only the BRCS data with a peak position
between the 4th and 15th bins in the delay axis are persevered.
A similar process has been done in, e.g., [13].

B. Reference Data

In situ SM data collected by China’s automatic SM obser-
vation stations are used as the reference data. This observation
network is composed of more than 2600 sites, and about
1900 of them are spread over the area with CyGNSS’s cover-
age (see Fig. 1). Each site provides hourly SM measurement
from 0 to 100 cm depth below the soil surface with an interval
of 10 cm. The penetration depth of the GNSS-R signals in
soils can vary from several centimeters up to about 20 cm,
depending on SM and soil type [15]. Therefore, this work
uses 10-cm SM data that are regarded as the “optimum” value
as it covers down to 0.1 cm3/cm3 of SM. The hourly data
in each day are utilized and regarded as the ground truth in
this study. In addition, the geolocation information (including
latitude, longitude, and altitude) of the site is also provided and
employed as input after the data collocation that is described
in Section IV-A.

Considering the coverage of CyGNSS and the distribution
of SM observation stations in China, the study region goes
from 18◦ to 38◦ N and 75.9◦ to 132.5◦ E. Due to the wide
terrain within China, there are several different climate types,
and each of them has a distinct characteristic in the temporal
and spatial variability of, e.g., temperature and precipitation,
which eventually affects SM. Thus, the impact of climate
type on SM retrieval is evaluated in this work, and such data
are adapted from [16]. The climate types in the study region
include the mountain plateau climate (MPC), tropical monsoon

Fig. 1. Distributions of automatic SM observation stations and the climate
types in China.

climate (TrMC), temperate monsoon climate (TeMC), sub-
tropical monsoon climate (SMC), and temperate continental
climate (TCC). Their spatial distribution is shown in Fig. 1.
Topography at the sites mainly includes plain, plateau, and
basin.

III. ESTIMATION METHOD

In this section, a detailed procedure for estimating SM
from CyGNSS data is described, including deriving surface
reflectivity � along with coherence flag and implementing the
BRT-based SM retrieval.

A. Derivation of Reflectivity From CyGNSS

It is widely accepted that the signals at microwave frequen-
cies are sensitive to the dielectric constant of soil that is a
function of SM [17], which indicates the connection between
the Fresnel reflection coefficient (�) and SM. For a flat and
smooth region covered by vegetation, the surface reflectivity
� can be modeled as [18], [19]

�(θ) = �(θ)2γ 2 exp(−4k2s2 cos2(θ)) (1)

where θ is the incidence angle, the transmissivity γ accounts
for the attenuation of signal propagation by vegetation, and
the exponential term represents the surface roughness effects
with k being the signal wavenumber and s being the surface
root-mean-squared height. In this work, the effect of surface
roughness is considered using the coherence flag that describes
power spreading in CyGNSS data (see more details in [20]).
Although the impact of vegetation cover can be strong and
vary significantly from site to site [21]. However, in this
work, the retrieval is based on each site by inputting its
specified geolocation. At each site, the impact of vegetation
is insignificant since it only alters the retrieval performance
statistics by about 1% [12], and for this reason, the impact of
vegetation cover is neglected.

By following the assumption of coherent reflections over
smooth land for (1) [9], [11], [13], the surface reflectivity �
can be readily derived from CyGNSS BRCS σ , through [22]

� = σ(Rt + Rr )
2

4π(Rt Rr )2 (2)
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where Rt and Rr are the distances from the transmitter and
receiver to SP, respectively. As mentioned in Section II-A,
these parameters are accessible from the CyGNSS data. It is
suggested in [23] that both the surface reflectivity and the
normalized BRCS (NBRCS) should be used for land GNSS-
R applications considering the duality of possible physical
reflection/scattering mechanisms. Here, the peak value of
BRCS is taken to represent the CyGNSS NBRCS (and for �)
as done in [23]. In addition to the CyGNSS-derived �, BRCS,
and coherence flag, their corresponding geolocation (latitude,
longitude, and altitude) and associated climate type are also
adopted as input in the present work.

B. BRT-Based SM Retrieval Model

The BRTs are deployed here to model the relationship
between the devised input and the SM data. It is worth
noting that the BRT algorithm has been successfully applied
to downscaling SMAP SM products in [24].

Regression trees (RTs) [25] are able to recursively par-
tition the input space, which contains the CyGNSS �, σ ,
and coherence flag along with the ancillary geolocation and
climatology data, and consequently map each partition to the
desired output, i.e., SM in this study. However, a single RT
tends to overfit the data. Bagging (or bootstrap aggregation)
[26] is able to improve both the stability and the predictive
power of an RT. This technique resamples the original training
data to form several new data sets of the same size as the
original training set. Each bootstrapped sample is fitted with
a new RT, and the averaged output of all generated RTs is the
final result.

In summary, the input of the BRT-model consists of the
CyGNSS �, σ , and coherence flag as well as the associated
site locations (latitude, longitude, and altitude) and climate
type, whereas the targeted output is SM. Each RT is created
from a replicate of the training data set that is generated using
the bootstrapping method. Finally, the input is regressed using
the trained trees and the averaged output of these is the desired
SM. The detailed description of implementing BRT can be
found in [24]. The analyses and model development in this
study are performed using the regression learner toolbox of
MATLAB R2019b software.

IV. EXPERIMENTS

A. Data Collocation Scheme

In this work, the CyGNSS data and ground truth were collo-
cated on an hourly basis. In terms of the spatial match-up, dif-
ferent CyGNSS measurements were averaged where its SP was
within a certain distance from a site. However, there is no such
standard distance for collocating the field data and CyGNSS
results. In this study, to better explore the optimal match-
up strategy for CyGNSS-based SM sensing, the performance
of the model was tested using different collocation distances
(from 1 to 15 km, with a step size of 1 km). The performance
statistics in terms of root-mean-square error (RMSE) and
correlation coefficient (R) was found to be similar when the
collocation distance was above 2 km. Nonetheless, it should
be noted that the number of available samples rose with

Fig. 2. Density plot showing the alignment between the CyGNSS-derived
SM and the ground truth. (a) Training (75% of total data). (b) Test (25% of
total data) sets. The colorbar indicates the sample number (in log).

increasing collocation distances. Here, the collocation distance
was set to 7 km that produced the lowest RMSE. To mitigate
the impact of inland water body, which tends to result in
high CyGNSS � and errors in SM estimation, we excluded
CyGNSS � greater than 0.1 [27]. In summary, the same-hour
CyGNSS data (�, σ , and coherence flag) whose SPs were
within 7 km from a certain site were averaged. Such values
along with the site location (latitude, longitude, and altitude)
and the corresponding climate type were regarded as input,
whereas the associated hourly SM value was the target.

B. Results and Discussion

By using the abovementioned collocation scheme, we
obtained 305 529 samples from 1733 different stations for
the year 2018. These data were randomly divided into two
separate groups that contain 75% and 25% of the total data for
the model training and test, respectively. Through validating
the prediction produced by the proposed model against the
ground truth (see Fig. 2), we obtained an overall R of about
0.86 and an RMSE of 0.05 cm3/cm3, and the performances of
training and tests are shown in Table I. The clear consistency
between the reference and retrieved SM products indicates the
effectiveness of the proposed model, and its generalizability
is proved by the negligible drop in accuracy for the test set.
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TABLE I

PERFORMANCE STATISTICS FOR SM RETRIEVAL

Fig. 3. Annually averaged SM for each site: (a) ground truth, (b) prediction,
and (c) their deviation.

Fig. 4. Deviation between the annual mean reference and estimated SMs in
terms of land use.

In addition, we examined the proposed model in terms
of spatial variability. The SM results assessed in this work
were grouped and averaged according to site locations, which
are presented in Fig. 3. It is clear that these mean SM

values derived from the ground-truth and retrieval results
agree well with each other and their discrepancy (with a
mean value of 5 × 10−5 cm3/cm3 and a standard deviation
of 0.01 cm3/cm3) is generally insignificant. Still, a very small
amount of high discrepancies occurred (with an absolute dif-
ference value above 0.08 cm3/cm3) and were mostly resulted
from forests (see Fig. 4), by referring to the land use data (from
http://data.ess.tsinghua.edu.cn/fromglc10_2017v01.html).

The average number of collocated points per hour is gener-
ally low (about one or two), but it can reach an order of tens
if daily collocation is used. For the latter case, the impact of
the number of averages has been analyzed in [27] and, thus,
is not evaluated here.

The impact of climatologic ancillary data is investigated
here. It is commonly known that different climate types are
characterized by varying temperatures and precipitations that
have great impacts on SM. The representative annual mean
temperatures and precipitations (based on 30-year averaged
data from http://en.weather.com.cn/) for the five examined
climate types are presented in Table I, and it is clear that both
temperatures and precipitations increase in the sequence of
TCC, MPC, TeMC, SMC, and TrMC. The correlation between
the average precipitation and SM can be noticed, except that
the mean SM of SMC is higher than that of TrMC. This
may be due to the higher temperature of TrMC that results in
more evaporation of SM than SMC. Furthermore, the accuracy
measures for different climate types are all plausible (see
Table I), which demonstrates the robustness of the proposed
method in terms of different climate types. Through testing
various combinations of ancillary data, the minimum amount
of ancillary data required for satisfactory retrieval is three.
The exclusion of climate type causes a drop of performance,
specifically, an increase of 0.006 cm3/cm3 in RMSE and a
decrease of 0.05 when the geolocations are not provided.

V. CONCLUSION

In the present work, we developed a BRT-based model
for retrieving SM from the CyGNSS data with auxiliary
geolocation and climatology information. The retrieved SM
results were assessed with field data from China’s automatic
SM observation stations during the year 2018. Different data
collocation strategies were performed, and the one with the
best accuracy was selected. Satisfactory agreement between
the prediction and ground truth showed the efficiency of
this proposed model that was demonstrated by a correlation
coefficient of 0.86 and an RMSE of 0.05 cm3/cm3. The hourly
synchronized validation indicated the potential of CyGNSS-
based near real-time SM monitoring.

In the future, this model will be tested with more in situ data
from stations over the globe. In addition, the resulting products
can be compared with other satellite-based SM results (such
as SMAP data) and employed to improve their spatial and
temporal resolutions.
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