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A B S T R A C T

In this paper, an effective schematic is developed for estimating soil moisture (SM) from CYclone Global
Navigation Satellite System (CYGNSS) data. Here, a three-layer model of air, vegetation cover, and soil is
considered. In practice, the surface reflectivity (Γ) along with its statistics derived from the CYGNSS data and the
ancillary vegetation opacity (τ) data from Soil Moisture Active Passive (SMAP) are employed. The expression for
empirically retrieving SM from τ, Γ and its corresponding statistics are determined through the linear regression
technique. The CYGNSS data collected over the land surfaces within±37° (latitude) during the whole year of
2018 are investigated. The reference SM data are obtained from SMAP, and are regarded as ground-truth in this
work. Validation and assessment are performed on the pan-tropical daily data collected throughout the annual
circle at a resolution of 36 × 36 km2. Experimental evaluation demonstrates good consistency between the SM
derived from CYGNSS data and the ground-truth, with a correlation coefficient of 0.80 and a root-mean-square
error of 0.07 cm3/cm3. This method succeeds in providing SM estimations on a pan-tropical scale that does not
rely on ongoing knowledge of SM and merely employs the least ancillary data. Furthermore, the intense tem-
poral and spatial coverages of CYGNSS SM results are also illustrated. The use of CYGNSS SM significantly
enhances the pan-tropical coverage of SMAP SM by about 22% on average. The satisfactory outcomes achieved
here prove CYGNSS as an efficient complementary tool for pan-tropical SM sensing on a daily basis.

1. Introduction

Soil moisture (SM) is a key parameter for improving our under-
standing of the hydrological, geophysical, and agricultural processes as
well as weather and climate studies. It has been reported that updating
SM on a daily basis in a numerical weather model is beneficial in in-
creasing precipitation forecast skill (Zhan et al., 2016; Zheng et al.,
2018). Availability of daily SM has potential for improving hydrological
models and predicting water availability, infiltration, percolation,
runoff, plant transpiration, bare soil evaporation, and flood discharge
(e.g., Jin and Henderson, 2011; Seneviratne et al., 2010). Therefore,
knowledge of SM with both temporally and spatially intensive coverage
is important. Remote sensing techniques offer an exciting solution to
acquiring global SM data in an efficient and timely manner.

Global-scale SM data can be obtained via microwave remote sensing
techniques since the signals at microwave frequencies are sensitive to
the dielectric constant of soil that is a function of SM (Dobson et al.,

1985). Existing satellites dedicated for SM estimation include the Soil
Moisture Active Passive (SMAP) (Entekhabi et al., 2010) and Soil
Moisture and Ocean Salinity (SMOS) (Kerr et al., 2001), both carrying
L-band radiometers on-board and measuring brightness temperature.
Both missions provide SM data with a spatial resolution about 40 km
and global coverage every 2–3 days. In particular, the L-band signals
are the optimal for SM sensing because they are more sensitive to SM in
the top 5 cm of the soil column and less affected by the attenuation due
to surface roughness and vegetation (De Roo and Ulaby, 1994). More-
over, L-band signals can effectively penetrate the atmosphere and are
immune from weather conditions, and thus, they can guarantee the all-
day and all-weather surveillance over the regions of interest (Jin and
Komjathy, 2010; Jin et al., 2011). In addition to these passive sensors,
active platforms e.g. Sentinel-1 (Paloscia et al., 2013) and ERRASAR-X
(Aubert et al., 2011) can also provide SM estimation through radar
backscattering measurements.

Global Navigation Satellite System (GNSS)-Reflectometry (GNSS-R)
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that utilizes L-band signals has emerged as another promising tool for
estimating SM. GNSS-R operates in a bistatic configuration, in which
transmitted signals are first scattered by the Earth's surface in the for-
ward direction and then captured by a receiver that is not collocated
with the transmitter. For GNSS-R, numerous transmitters have already
been in orbit as part of the GNSS constellation and thus only the de-
ployment of receivers is needed. Furthermore, a GNSS-R receiver can be
low-cost, low-mass, and low-power. This advantage allows more GNSS-
R campaigns to be carried out based on various platforms, which ulti-
mately improves the spatial and temporal coverages of GNSS-R mea-
surements. After a few early attempts of GNSS-R-based SM sensing by
Masters et al. (2000); Zavorotny and Voronovich (2000a), several field
tests have been performed using ground-based and airborne receivers
(Alonso-Arroyo et al., 2016; Jia et al., 2019; Rodriguez-Alvarez et al.,
2009). A summary of measurements, approaches, and applications
using the conventional and interferometric GNSS-R is provided by
Edokossi et al. (2020). Some early spaceborne data-based research
(Camps et al., 2016; Chew et al., 2016)\focused on developing the
usage of TechDemoSat-1 (TDS-1) data for SM application. Un-
fortunately, the data acquisition of TDS-1 poses severe limitations in
terms of spatial and temporal coverage since the TDS-1 GNSS-R in-
strument is active for only 2 days within each working period (8 days).
Therefore, generating daily SM estimation cannot be realized using the
TDS-1 data. However, this task can be achieved by the CYclone GNSS
(CYGNSS) mission that has been operating daily since March 2017 and
providing a data volume being several orders of magnitude more than
that acquired by TDS-1 (Chew and Small, 2018). Recently, research of
SM sensing from CYGNSS data has been a topic of interest (Al-Khaldi
et al., 2019; Chew and Small, 2018; Clarizia et al., 2019; Eroglu et al.,
2019; Kim and Lakshmi, 2018). Chew and Small (2018) found that the
variations in the CYGNSS signal-to-noise ratio (SNR) were correlated
with the SMAP SM results, and interpreted the correlation by a linear
regression approach. They incorporated the mean SMAP SM values and
the derived SM variations (based on CYGNSS SNR data) to calculate the
SM estimations. Kim and Lakshmi (2018) developed a relative SNR
(rSNR) for SM derivation. Daily SM estimations can be derived by
combining rSNR with SMAP SM values. Clarizia et al. (2019) proposed
a reflectivity-vegetation-roughness (R-V-R) algorithm. The daily SM
estimations can be derived based on the CYGNSS reflectivity along with
SMAP vegetation opacity (τ) and roughness coefficient through a tri-
linear regression function. Al-Khaldi et al. (2019) performed the SM
retrieval through time-series analysis. This method requires both the
maximum and minimum of SMAP SM values to limit their SM retrieval
results. Eroglu et al. (2019) presented an artificial neural network
(ANN)-based method for retrieving daily SM. The inputs for their de-
signed ANN included CYGNSS data and other ancillary data that consist
of normalized difference vegetation index (NDVI), vegetation water
content (VWC), terrain elevation, terrain slope, and h-parameter (sur-
face roughness). Through comparison (see Table 1), the results pre-
sented by Al-Khaldi et al. (2019); Chew and Small (2018); Eroglu et al.
(2019) appear to be advantageous in terms of accuracy by evaluating
root-mean-squared error (RMSE) or correlation coefficient (r). How-
ever, it should be noted that these methods lie on either the direct
knowledge of SM or the heavy-loaded ancillary data. Some other

relevant information about above-mentioned SM applications is sum-
marized in Table 1.

This paper proposes a CYGNSS-based SM retrieval scheme that does
not require ongoing knowledge of SM and employs the least ancillary
data. This work aims at demonstrating CYGNSS's capability to com-
plement the SMAP mission for daily monitoring SM on a pan-tropical
scale. In this work, the received CYGNSS signals are considered to be
affected by SM, surface roughness, and vegetation. The contributions of
SM and surface roughness are resolved by the proposed CYGNSS ob-
servables and the attenuation by vegetation cover is compensated by
SMAP vegetation opacity τ. This proposed method is applicable to all
the land surfaces regardless of different surface elevations, seasonal
changes or local vegetation conditions. Compared with the previous
research, this work presents a simple, effective, and general method for
retrieving soil moisture. The remainder of this paper is organized as
follows: Section 2 introduces the employed CYGNSS and reference
SMAP data. Section 3 describes the proposed SM estimation scheme.
Section 4 presents results and discussions. Section 5 concludes with a
summary and possible future work of this research.

2. Observation data

In this section, the acquisition of CYGNSS GNSS-R data is first de-
scribed. Next, the processing of the reference SMAP data is introduced.

2.1. CYGNSS GNSS-R data

CYGNSS was launched in December 2016 (Ruf et al., 2016), and has
been offering data of free access since March 2017 (available online:
https://podaac.jpl.nasa.gov). CYGNSS has eight micro-sa-
tellites, each of them can provide four GNSS-R measurements (from
four separate ground tracks) at the same time. Since they provide data
every second, a total number of 32 measurements can be acquired si-
multaneously per second. In addition, the achieved revisit time is
within several hours (Ruf et al., 2016). Therefore, CYGNSS is able to
monitor SM with extensive spatial coverage and high temporal re-
solution. The data examined in this work span the year of 2018 and
over the full region covered by CYGNSS (within±37° latitudes).

The CYGNSS metadata include the bistatic radar cross section
(BRCS, or σ) and SNR at each specular point (SP) as well as their as-
sociated information about the measuring geometry and navigation
message, such as, the incidence angle, coordinates of SP, distances from
SP to the transmitter and receiver etc. In this work, data collected over
land and with an SNR over 0 dB at SP are retained. It is worth men-
tioning that the CYGNSS BRCS is stored in a signal box with 17 delay ×
11 Doppler bins. The position of CYGNSS BRCS in a signal box can vary
from each other due to the variations of SP locations. In order to ensure
the main BRCS component to be retained within its signal box, only
BRCS data with a peak position between the 4th and 15th bins in the
delay axis are persevered. In this work, the surface reflectivity is de-
rived from CYGNSS data based on the assumption of coherent reflec-
tions (see more details in Section 3.1). Thus, the highest achievable
resolution is about 7×0.5 km2 (see e.g. Katzberg et al., 2006), by
considering the resolution of a single CYGNSS coherent measurement.

Table 1
Applications of SM sensing using CYGNSS data.

Source Time span Spatial coverage Reference SM Require ongoing SM No. of ancillary data RMSE (cm3/cm3) r

Chew and Small (2018) 1 year Pan-tropical∗ SMAP No 2 0.045 /
Kim and Lakshmi (2018) 1 year Regional SMAP Yes 1 / 0.68/0.77
Al-Khaldi et al. (2019) 6 months Pan-tropical SMAP Yes 1 0.04 0.82
Eroglu et al. (2019) 2 years Regional In situ No 5 0.054 0.90
Clarizia et al. (2019) 5 months Pan-tropical∗ SMAP No 2 0.07 /
Proposed method 1 year Pan-tropical SMAP No 1 0.07 0.80

* Regions with surface elevation exceeding 600 m were not examined.
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2.2. SMAP data

SMAP provides SM estimation on a daily basis and its global cov-
erage for land areas within±45° latitudes can be achieved at a three-
day average interval (Entekhabi et al., 2010). In this work, the SMAP L3
radiometer global daily equal-area scalable earth grid (EASE-Grid)
version 6 SM data (O'Neill et al., 2019) (available on https://
nsidc.org/data/SPL3SMP/versions/6) are employed. This da-
taset has a spatial resolution of 36 × 36 km2. To facilitate the later
comparison and validation, daily CYGNSS data are also gridded over
the same EASE-Grid as adopted by the SMAP data (see also Clarizia
et al. (2019); Chew and Small (2018)).

SMAP daily data contain SM estimation, quality flag, vegetation
opacity τ, and the associated coordinates for both the descending (A.M.)
and ascending (P.M.) overpasses. In this work, the ascending and des-
cending passes are averaged together to represent the 1-day results.
Similarly, in order to produce the globally covered data, an averaging
over three consecutive days is implemented, and hereafter, the corre-
sponding data are denoted as 3-day results.

The SMAP vegetation opacity τ data are treated as ancillary data for
CYGNSS. Therefore, it is only possible to provide CYGNSS-based SM
estimate on the pixels that are also covered with SMAP in this current
work. It is worth mentioning that τ can also be linked to VWC, and the
latter can be calculated from vegetation indices, e.g., NDVI.
Furthermore, NDVI can be obtained from, for example, the Moderate-
resolution Imaging Spectroradiometer (MODIS) data. Thus, τ can be
determined from MODIS NDVI data when the SMAP data are not
available. The obtained SMAP SM estimation is regarded as the ground-
truth for validating CYGNSS results presented later. In addition, the
quality flag of “retrieval successful/unsuccessful” is employed for fil-
tering SMAP data as done by Clarizia et al. (2019).

3. Theory and methods

In this section, a detailed procedure of estimating SM from CYGNSS
data is described. Here, a model similar to the R-V-R algorithm in-
troduced by Clarizia et al. (2019) is employed.

For a flat and smooth region covered by vegetation (see Fig. 1 for
illustration), the surface reflectivity Γ can be modeled as (Choudhury
et al., 1979)

= −θ θ γ k s θΓ( ) ( ) exp( 4 cos ( )),2 2 2 2 2R (1)

where θ is the incidence angle, ℜ is the Fresnel reflection coefficient,
the transmissivity γ accounts for the attenuation of signal propagation
by vegetation, and the exponential term represents the surface rough-
ness effects with k being the signal wavenumber and s being the surface
root-mean-squared height.

Since ℜ is dominated by SM (Dobson et al., 1985), SM is regarded as
a proxy for ℜ. In addition, γ is a function of vegetation opacity τ in the
form of γ = exp (−τ sec θ). For these reasons, the SM is treated as a
function of surface roughness, Γ, and τ. In this work, τ is adopted from
SMAP dataset as auxiliary data while the surface roughness effects and
reflectivity Γ are resolved from the CYGNSS data.

3.1. Derivation of reflectivity from CYGNSS

By following the assumption of coherent reflections over smooth
land for Eq. (1) (that is also made by Chew and Small (2018); Clarizia
et al. (2019); Eroglu et al. (2019)), the surface reflectivity Γ can be
readily derived from CYGNSS BRCS σ, through (Eroglu et al., 2019;
Rodriguez-Alvarez et al., 2019):

=
+σ R R

π R R
Γ ( )

4 ( )
,t r

t r

2

2 (2)

where Rt and Rr are the distances from the transmitter and receiver to
SP, respectively. As mentioned in Section 2.1, these parameters are
accessible from the CYGNSS data. Instead of taking only the peak value
of Γ as done by previous studies (Chew and Small, 2018; Clarizia et al.,
2019; Eroglu et al., 2019; Kim and Lakshmi, 2018; Rodriguez-Alvarez
et al., 2019), the whole frame of Γ results (17 × 11) is investigated to
further exploit the CYGNSS data. Here, the statistical moments of Γ are
employed, including the maximum, mean, variance, skewness, and
kurtosis, which are denoted by Γmax, Γmean, Γvar, Γskew, and Γkur, re-
spectively. Γmax is first extracted and the rest moments that describe the
shape of data distribution are calculated from the Γ divided by Γmax.
This process aims at: 1) obtaining the CYGNSS reflectivity as Γmax and
2) deriving other CYGNSS observables, specifically, Γmean, Γvar, Γskew,
and Γkur to account for the effects of surface roughness. The effective-
ness of the latter step is supported by the fact that surface roughness can
be interpreted from the shape of GNSS-R data (e.g., Clarizia et al., 2014;
Rivas et al., 2010; Rodriguez-Alvarez et al., 2013; Yan et al., 2018; Yan
et al., 2017; Yan and Huang, 2016; Zavorotny et al., 2014; Zavorotny
and Voronovich, 2000b). It should be noted that Γmax is regarded as the
contribution of the first Fresnel zone roughly with a spatial resolution of
7 × 0.5 km2, while the remaining statistical moments are derived from
the full-size BRSC data, whose spatial resolution (also known as the
glistening zone) is about several dozens of km. In the present work, the
roughness within the glistening zone is assumed to be uniform so that
Γmean, Γvar, Γskew, and Γkur can be representatives for the first Fresnel
zone.

As such, the proposed scheme for estimating SM adopts the CYGNSS
Γmax, Γmean, Γvar, Γskew, and Γkur as well as the SMAP τ. The linear re-
gression approach (that is also investigated by Chew and Small (2018);
Clarizia et al. (2019)) is employed to derive CYGNSS SM (or, SMCYGNSS),
through

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +a b c d e f τ gSM Γ Γ Γ Γ Γ ,max mean var skew kurCYGNSS (3)

where coefficients from a to g are to be determined via a training
process that is described in Section 4.2.

4. Results and analysis

In this section, the SMCYGNSS results are presented and evaluated by
comparing with SMAP SM data i.e. SMSMAP. In particular, the feasibility
of daily SMCYGNSS for filling the data gaps of SMSMAP is demonstrated.

Fig. 1. Schematic of GNSS-R signal reflected from a three-layer model of air,
vegetation, and soil. The blue curve represents surface roughness. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Q. Yan, et al. Remote Sensing of Environment 247 (2020) 111944

3

https://nsidc.org/data/SPL3SMP/versions/6
https://nsidc.org/data/SPL3SMP/versions/6


4.1. Data anomaly removal

As noted in Section 2, the daily CYGNSS observables are gridded
over the EASE-Grid with a spatial resolution of 36 km. During this
process, some extremely high values of Γmax are found, which appear
consecutively within a same ground track (see Fig. 2a). This phenom-
enon is also mentioned by Gerlein-Safdi and Ruf (2019), which can be
resulted from variations in GNSS power (Wang et al., 2019). Here, these
anomalies are removed by filtering out Γmax greater than 0.1. Although
this threshold is empirically determined, it can effectively remove those
anomalies and preserve useful data at the same time (see Fig. 2b).

4.2. Training and testing

After removing the anomalies among CYGNSS observables through
evaluating Γmax, these observables along with corresponding global

SMAP τ and SMSMAP are derived on the daily basis throughout the year
of 2018. The employed CYGNSS data are mapped into the EASE-Grid,
generating millions of samples in total; and the detailed data/sample
numbers are summarized in Table 2. Each sample represents one pixel
in the EASE-Grid, corresponding to an area of 36 × 36 km2. For il-
lustration, the yearly averaged values of the CYGNSS observables and
SMAP τ are displayed in Fig. 3.

The overall daily samples are randomly divided into two separate
groups for training and test that have 5% and 95% of the total samples,
respectively. Through the training process, the values of coefficients in
Eq. (3) are determined and tabulated into Table 3. Through inspection,
skewness and kurtosis are found to be highly correlated (with a cor-
relation coefficient of 0.96), which is also evident from Fig. 3. As a

Fig. 2. Removing CYGNSS anomalies: (a) before and (b) after. Examples are shown for regions within [25, 30]° N and [100, 105]° W during the first two months in
2018.

Table 2
Numbers (million) of employed CYGNSS data and resulting samples in the
EASE-Grid.

CYGNSS data Grided samples

1-day-based 115.93 10.93
3-day-based 169.06 16.33

Fig. 3. Annual mean values of: (a) Γmax, (b) Γmean, (c) Γvar, (d) Γskew, (e) Γkur, and (f) SMAP τ. These variables are dimensionless.

Table 3
Coefficients for Eq. (3), determined through the pan-tropical training dataset.

Coefficients Value P-value

a 2.3864 0
b 0.3532 0
c −0.0409 1.8×10−9

d −0.0048 6.6×10−30

e 0.0026 0
f 0.2560 0
g 0.0229 0
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result, only trivial degradation is caused when developing the regres-
sion by eliminating one of these variables. Even so, both variables are
adopted in the current regression model to ensure the best precision.
Furthermore, different combinations of inputs with/without highly
correlated terms are tested, and the achieved correlation coefficients
are similar, proving that the proposed model is insensitive to the col-
linearity problem.

The density plots (in log-scale) showing the comparison between
SMCYGNSS and SMSMAP for both training and test datasets are presented
as Fig. 4. From Fig. 4, good consistency between SMCYGNSS and SMSMAP

can be seen, especially for the most dense data. Specifically, a corre-
lation coefficient of r = 0.79 and an RMSE of 0.07 cm3/cm3 are ob-
tained for both training and test sets. Similar performance achieved for
both datasets indicates the generalizability of the proposed method.
Moreover, these results are generated pan-tropically and throughout
the year, proving the general applicability and robustness of the

proposed method. The obtained accuracy (in terms of RMSE) and fun-
damentals of the proposed method are comparable with those pre-
sented by Clarizia et al. (2019), the main differences of these two
methods lie in the following aspects: 1) The proposed method employs
the statistics of real-time CYGNSS Γ to compensate the surface rough-
ness effect, which reduces the amount of auxiliary data. On the other
hand, the method developed by Clarizia et al. (2019) relies on the
SMAP roughness coefficient that is essentially based on a lookup table
and lacks resistance in temporal variability. 2) An extra step of error
correction is required by Clarizia et al. (2019), while the proposed
method has no such limitation. 3) The developed algorithm is evaluated
with more data that provide longer time span (1 year v.s. 5 months by
Clarizia et al. (2019)) and larger spatial coverage. Relevant comparison
between these two algorithms are is listed in Table 1.

Fig. 4. Density plots (in log-scale) comparing SMCYGNSS and SMSMAP with the
1:1 reference line (magenta): (a) training and (b) test sets. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Pan-tropical daily SM of: (a) SMCYGNSS and (b) SMSMAP. This is an ex-
ample of January 1, 2018. Increased coverage of CYGNSS over SMAP is de-
monstrated in Fig. 8.

Fig. 6. SM time series between CYGNSS and SMAP throughout the year of 2018
for: (a) the average in the Northern and (b) Southern Hemispheres, and (c) the
grid cell centering at (25.22°N,83.46°E).
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For illustration purposes, an example of pan-tropical daily SMCYGNSS

and SMSMAP on January 1, 2018 is presented in Fig. 5. In addition, the
SM time series of SMCYGNSS and SMSMAP during the year are produced
and found to be consistent (see Fig. 6). It is worth mentioning that due
to the different seasonal distribution between two hemispheres, the
mean SM values are separately considered for both the northern and
southern hemispheres and the corresponding r obtained (between the
mean values of SMSMAP and SMCYGNSS) for the north and south are 0.87
and 0.86, respectively. In addition, the time series for the grid cell
centering at (25.22°N,83.46°E) achieves an r = 0.92 (see Fig. 6(c) and
the corresponding location is marked by a black circle in Fig. 9). De-
tailed investigations into the coverage and effectiveness of SMCYGNSS

and ultimately, its feasibility of infilling the data gap for SMSMAP are
presented in the following subsections.

4.3. SMCYGNSS v.s. 3-day averaged SMSMAP

The results shown above focus on exhibiting the general applic-
ability and efficiency of the proposed method for generating SMCYGNSS

estimation. Here, further analyses are provided for studying the pan-
tropical coverage and performance of SMCYGNSS during the annual
circle, to prove the capability of SMCYGNSS for infilling SMSMAP data
gaps.

As previously noted in Section 2.2, SMAP can provide global cov-
erage on a three-day interval. For the sake of intensive spatial coverage,
each of the SMAP SM and τ is re-processed by averaging data over every
three consecutive days, and hereafter, denoted as 3-day data. In addi-
tion, they are ideally treated as the daily representative by neglecting
data variations within the three-day interval. The daily CYGNSS ob-
servables are also re-derived according to the new spatial coverage of
their associated 3-day SMAP data and the 3-day SMAP τ is also em-
ployed as input. The follow-up investigations are based on the daily
CYGNSS and 3-day SMAP data.

After re-producing data with improved spatial coverage, there is a
significant increase on the sample number (see Table 2 for comparison).
Same as the previous 1-day data, each sample covers an area of 36 × 36
km2. By setting the covered area of 3-day SMSMAP as the maximum pan-
tropical coverage, the percentages of actual daily coverages by SMCY-

GNSS and SMSMAP are computed, from the 2nd to the 364th days in 2018.
On average, SMCYGNSS and SMSMAP provide 81% and 66% of the pan-
tropical coverage, respectively.

The derived regression model parameterized by coefficients listed in
Table 3 is also utilized here for estimating SMCYGNSS. Overall results in

the form of density plot are presented in Fig. 7. Through calculation, a
correlation coefficient of r = 0.80 and an RMSE of 0.07 cm3/cm3 are
obtained. The attained results experience no drop in accuracy (instead,
a slight improvement on r, from 0.79 to 0.80) and prove the rationality
of using 3-day averaged data as the daily representative and again, the
generalizability of the proposed method. Additionally, SM time series

Fig. 7. Density plots for comparing daily SMCYGNSS with 3-day SMSMAP.

Fig. 8. Comparison of SM values. Form the top to bottom panels are the 1-day
SMCYGNSS, and 3-day, and 1-day SMSMAP. Regions without data are in white. The
1-day results are for (a) the 182th day in 2018 (July 1, 2018) and (b) the 364th
day in 2018 (December 30, 2018).
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are found to be similar to those obtained with 1-day data presented in
Fig. 6.

Two examples of pan-tropical daily SMCYGNSS are illustrated in
Figs. 8, along with the 3-day and 1-day SMSMAP data as reference. The
higher spatial coverage of SMCYGNSS than 1-day SMSMAP is clear. How-
ever, there exist grid cells not covered with CYGNSS data. This may
cause lack of details in SMCYGNSS.

4.4. Influencing factors evaluation

Although an overall good agreement between SMCYGNSS and SMSMAP

have been achieved, some discrepancy can be noticed from Figs. 4 and
7. Several influencing factors for the accuracy of SMCYGNSS are studied
and evaluated here.

4.4.1. Temporal and spatial correlation
In order to further validate the capability of SMCYGNSS for capturing

the temporal and spatial variability of SMSMAP, the temporal (rtemp) and
spatial (rspa) correlations between the SMCYGNSS and SMSMAP are eval-
uated. rtemp here is calculated as the correlation coefficient of the
SMCYGNSS and SMSMAP time series for each grid cell, and the results are
presented in Fig. 9. It is clear that the consistency varies over different
regions. It should be noted that the SMSMAP data in the Amazon and
Central Africa that are covered by evergreen broadleaf forests (see
Fig. 10 and later discussion) are always flagged by SMAP as not re-
commended for retrieval. However, such reference data are retained in
this work and their low quality for retrieval may be the cause of high
discrepancy. In addition, the variance of the SMSMAP time series for
each grid cell is also calculated and presented as Fig. 11. Similarities
between the variance and rtemp maps are obvious, indicating that good
agreement usually occurs for the region with high variance in local SM
time series. This outcome agrees with the findings by Rodríguez-
Fernández et al. (2015). Moreover, the regions where CYGNSS is
showing SM less than 0.25 cm3/cm3, whereas SMSMAP is greater than
0.75 cm3/cm3 are marked by black pentagrams. Moreover, rspa, i.e., the
time series of pan-tropical daily correlations, are calculated as 1-D

correlation coefficients between the values of SMCYGNSS and SMSMAP for
all grid cells and presented in Fig. 12. The results are relatively con-
stant, ranging from 0.75 to 0.84 and with a mean value of 0.80.

4.4.2. Land type and τ
It is found that except regions covered with water bodies (water and

wetlands), areas with high values of τ usually result in high dis-
crepancies in SM retrieval. Errors in densely-forested regions (e.g.,
broadleaf forests) are generally greater than in regions without vege-
tation (e.g., shrublands and barren or sparsely vegetated regions),
which are quantified and listed in Table 4. The land classification is
based on the most dominant type with more than 50% coverage within
each grid that is provided in SMAP data and an illustration is presented
in Fig. 10. The types are in accordance with the International Geosphere
Biosphere Program (IGBP) classes. The RMSEs of SM retrieval and mean
values of τ in Table 4 are calculated with respect to the dominant land
types, correspondingly. Furthermore, the dependence of rtemp on land
types is clear when visually comparing the similarity between Figs. 9
and 10.

4.4.3. CYGNSS sample number
The sample number of CYGNSS observables within each pixel of

EASE-Grid has a direct impact on the accuracy of SMCYGNSS. It is found
that the higher the sample number is the less discrepancy between
SMSMAP and SMCYGNSS is (see Fig. 13). For one thing, with more
CYGNSS observables being averaged together, some adverse effects, for
example, noise, can be significantly mitigated. For another, with more
samples in one grid, it is more possible for CYGNSS data to cover a
larger spatial area within the grid in order to match better with the
reference SMAP data.

4.4.4. Clay fraction
The accuracy of SMCYGNSS is sensitive to different soils that are

characterized by varying clay fraction values. Through analyses, it is
found that with increasing clay fraction (that is provided together with
SMAP) the relative difference between SMSMAP and SMCYGNSS decreases,
which is evident from Fig. 14. This phenomenon may be attributed to
the reason that the increase in clay content enhances the capacity of soil
in holding moisture for certain soil types (Ismail, 1991).

Some other issues responsible for uncertainty in SMCYGNSS, such as
errors in localization and calibration of CYGNSS data, modeling, and
the use of ancillary data can be found in the work by Clarizia et al.
(2019).

5. Conclusions

In this paper, a scheme for pan-tropical daily soil moisture

Fig. 9. Temporal correlation between daily SMCYGNSS and SMSMAP.

Fig. 10. The dominant land type of each grid cell.
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estimation from CYGNSS data is presented. In particular, this method
does not require ongoing knowledge of SM and employs the least
supplementary data. Here, the surface reflectivity Γ is constructed as a
function of the vegetation opacity, SM, and the effect of surface
roughness. SM estimation is performed through a linear regression
technique. A simple and effective approach is developed to filter out
CYGNSS data anomalies. By comparing the CYGNSS SM with the re-
ference SMAP SM data, good consistency is obtained with a correlation
coefficient of r = 0.80 and an RMSE of 0.07 cm3/cm3. The feasibility of
SMCYGNSS for infilling data gaps in SMSMAP is demonstrated. On average,
daily SMCYGNSS is able to cover 81% of the land surfaces. However, only

66% land is covered by SMAP.
Two sources impacting the performance of the proposed method are

discussed. It is worth investigating more influencing factors and
quantifying their effects on the estimation accuracy in the future. By
doing so, the results can be calibrated by considering those error
sources. In addition, a robust data assimilation scheme can be devel-
oped to merge SMSMAP and SMCYGNSS. This work here focuses on eval-
uating CYGNSS as a complementary tool for SMAP to get denser data.
Nonetheless, validation with in situ SM is meaningful and will be car-
ried out once such data are available in the future. More importantly,
an enhanced SM estimation method without relying on ancillary data
should be developed in the future so that CYGNSS can produce SM data
independently.
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Fig. 11. Variance of SMSMAP time series.

Fig. 12. Spatial correlation between daily SMCYGNSS and 3-day SMSMAP.

Table 4
Error analysis: Impact of land type and τ.

Land type Mean τ RMSE (cm3/cm3)

Water 0.0664 0.2973
Permanent Wetlands 0.0756 0.1537
Evergreen Broadleaf Forest 1.1222 0.0909
Deciduous Broadleaf Forest 0.7807 0.1223
Mixed Forests 0.7506 0.0790
Woody Savannas 0.5247 0.0795
Evergreen Needleleaf Forest 0.4654 0.0769
Cropland/Natural Vegetation Mosaic 0.3799 0.0791
Savannas 0.3520 0.0727
Urban and Built-Up 0.3311 0.0999
Croplands 0.2287 0.0753
Closed Shrublands 0.1877 0.0489
Grasslands 0.1075 0.0776
Open Shrublands 0.0582 0.0460
Barren or Sparsely Vegetated 0.0009 0.0454

Fig. 13. Impact of CYGNSS sample number on the difference between SMSMAP

and SMCYGNSS.
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