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Abstract
Seasonal signals in satellite geodesy time series are mainly derived from a number of loading sources, such as atmospheric 
pressure and hydrological loading. The most common method for modeling the seasonal signal with quasi-period is to use the 
sine and cosine functions with the constant amplitude for approximation. However, due to the complexity of environmental 
changes, the time-varying period part is very difficult to model by the geometric or physical method. We present a machine 
learning method with Gaussian process to capture the quasi-periodic signals in the geodetic time series and optimize the 
estimation of model parameters by means of maximum likelihood estimation. We test the performance of the method using 
the synthetic time series by simulating the time-varying and quasi-periodic signals. The results show that the fitting residu-
als of the new model show a better random fluctuation, while the traditional models still leave the clear periodic systematics 
signals without being fully modeled. The new model illustrates a higher reliability of linear trend estimation, and a lower 
uncertainty and model fitting RMSE, even in time series with shorter time span. On the other hand,  it shows a strong capacity 
to restore the missing data and predict the future changes in time series. The method is successfully applied to modeling the 
real coordinate time series of the GNSS site (BJFS) from IGS network, and the equivalent water height (EWH) time series in 
North China obtained from gravity satellites. Therefore,  it is recommended as an alternative for precise model reconstruction 
and signals extraction of satellite geodesy time series, especially in modeling the complex time-varying signals, estimating 
the secular motion velocity, and recovering the large missing data.

Keywords Geodetic time series · Gaussian process · Quasi-periodic signals · GRACE · GNSS

Introduction

With the continuous development of satellite geodesy tech-
nology, it has become the most effective space observation 
technique for monitoring global change and crustal motion 
and provides valuable basic data for the research of geo-
physical phenomena at different spatio-temporal scales 

(Tregoning et al. 2009; Xu et al. 2019). The geodetic time 
series contain rich information, including tectonic and non-
tectonic movement signals, such as ground mass load (e.g., 
ocean tide, atmosphere, snow, soil water, and nontidal load 
of the ocean) and model residuals (e.g., physical model 
residual, nonmodeling error). The seasonal signals may be 
quasi-periodic due to the complexity of environmental fac-
tors, which include not only the period signal of constant 
amplitude but also the time-varying signal with amplitude 
variation from year to year (Bogusz and Figurski 2014; 
Tregoning et al. 2009). According to recent research, the 
seasonal changes in the various regions worldwide are not 
consistent in different years, and the response of GNSS sta-
tions to environmental change in a seasonal scale is irregu-
lar (Kreemer and Blewitt 2021). In the meantime, the noise 
in geodetic time series is extremely complex, including the 
white noise, the colored noise, the flicker noise, the power 
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law noise, and the random walking. If any seasonal signal or 
residual periodicity is not properly modeled and removed, 
it will move the stochastic part to much more correlated 
noise causing the uncertainties to be artificially overesti-
mated (Bogusz and Klos 2016; Ren et al. 2023). Previous 
research has shown that ignoring the colored noise will 
overestimate the velocity error by 2–3 times (Kreemer and 
Blewitt 2021; Williams 2003). The above complex nonlinear 
and time-varying characteristics in the satellite observation 
series are very difficult to model, whether using geophysical 
or geometric models. Furthermore, due to the various irre-
sistible reasons such as satellite signals disturbance, instru-
ment antenna damage, equipment failure, and replacement 
upgrading or updating of satellite sensors as well as data 
loss, most geodetic time series contain a lot of missing data, 
which may destroy the evenly spaced symmetry and thereby 
the nature of the covariance matrix (Shen et al. 2014). For 
example, the aging of Gravity Recovery and Climate Recov-
ery (GRACE) satellite components led to its retirement in 
2017 and the launch of the next generation gravity satel-
lite GRACE-FO in 2018, resulting in a data gap for about 
one year between GRACE and GRACE-FO observations. 
Therefore, it is important to find an alternative method to fill 
the data gap between GRACE and GRACE-FO. Although a 
small number of missing data can be compensated easily by 
data interpolation, large data gaps are difficult to interpolate 
across, which brings certain difficulties to the interpretation 
and extraction of subsequent signals in time series.

Classic modeling methods usually regard seasonal signals 
as having constant amplitude (Bevis and Brown 2014; Wu 
et al. 2015), which can no longer satisfy the nonstationary 
behavior of practical geophysical phenomena. A number of 
methods have been proposed to detect the quasi-periodic 
variability in geodetic time series.

(1) Time–frequency analyses methods, such as Jumps 
Upon Spectrum and Trend JUST (Ghaderpour and 
Vujadinovic 2020), Least-Squares Wavelet Analysis 
(LSWA) (Ghaderpour and Pagiatakis 2019), Anti-
Leakage Least-Squares Spectral Analysis (ALLSSA), 
or Least-Squares Spectral Analysis (LSSA) (Ghader-
pour and Ghaderpour 2020). LSSA and ALLSSA can 
accurately estimate the periodic signals but cannot 
explain the nature of the estimated signals and how the 
frequencies and amplitudes of components of interest 
change over time. LSWA can determine periodic and 
aperiodic signals and show how the signal amplitudes 
and frequencies change over time. However, alias-
ing remains a critical issue when estimating signals 
at high frequencies in coarsely sampled time series 
(Ghaderpour and Ghaderpour 2020). In JUST, its short-
coming is its sensitivity to the segment size. In certain 
applications, when there is significant variability of 

frequency and amplitude within the seasonal compo-
nent over time, the window size may be defined to have 
variable sizes for different frequencies to account for all 
the irregularities.

(2) Filtering methods, such as the Kalman filter (Didova 
et al. 2016), wavelet decomposition (Bogusz 2015; 
Ghaderpour and Pagiatakis 2019), and semi-para-
metric model-based Chebyshev polynomials (Bennett 
2008) and Wiener filter-based approaches (Klos et al. 
2019), have excellent performance for high signal-to-
noise ratios in capturing the varying seasonal signal, 
but the precision of SSA deteriorates for higher noise 
levels (Klos et al. 2018). The spatiotemporal filtering 
methods, considering the spatio-temporal correlation 
among stations, such as Empirical Orthogonal Function 
(EOF)/Principal Component Analysis (PCA) (Dong 
et al. 2006; Shen et al. 2014) and Independent Compo-
nent Analysis (ICA) (Hyvärinen and Oja 1997), mul-
tichannel singular spectrum analysis (MSSA) (Chen 
et al. 2013; Kondrashov and Ghil 2006), Singular Value 
Thresholding (SVT) (Bao et al. 2021), Kriged Kalman 
Filter (Liu et al. 2017), mainly emphasize the smooth-
ing or extracting of common mode errors (CME) or 
filling of the missing data in time series; little atten-
tion is paid to the separation of the varying seasonal 
signal and subtle deformation in geodetic time series. 
The result is that the filtered residuals may still contain 
an artificial signal driven by colored noise and un- or 
mismodeled geophysical signals. Xu and Yue (2015) 
emphasize that the seasonal signals filtered may con-
tain an artificial signal. Therefore, some of the power 
may be artificially removed from power spectra of the 
residuals, leading to imprecise estimates. Only recently, 
Koulali and Clarke (2021) use the Gaussian processes 
to capture the quasi-periodic signals in the time series, 
but no special attention is paid to the missing data in 
time series.

Therefore, we apply machine learning method  with 
Gaussian process (GP) to modeling the complex time-vary-
ing characteristics, simultaneously, recovering the missing 
data in the satellite geodesy time series. We first introduce 
the implementation process of the methodology of GP for 
machine learning. Then, a lot of simulation experiments 
are performed to demonstrate the abilities of the approach 
in modeling the time-variable and quasi-periodic signals 
from simulated GNSS time series with different time spans, 
emphasizing the secular velocity and its uncertainty estima-
tion. We also demonstrate the performance in recovering and 
predicting the missing data. Finally, we apply the method to 
the real GNSS coordinate time series and GRACE gravity 
time series in North China.
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Methodology

Gaussian process is a machine learning method developed 
based on statistical learning theory and Bayesian theory. 
It is a nonparametric modeling method generally used for 
modeling nonlinear functions. The difference between 
the Gaussian process and neural network is that a lot of 
Bayesian regression models based on neural networks can 
converge to the Gaussian process, in the case of infinite 
networks. Therefore, the Gaussian process can solve non-
linear problems (Matthias 2008). The key to the Gaussian 
process is constructing the mean function and covariance 
kernel function. The mean function is used to depict the 
relatively long-term changes, while the kernel function is 
used to capture the quasi-periodic signals in time series. 
The model parameters are estimated based on Bayesian 
theory.

It is assumed that the collected observation data 
Data = [t, Y].t = [t1, t2,⋯ , tn]

T  , representing the obser-
vation epoch vector; Y = [y1, y2,⋯ , yn]

T  , representing 
the observation value corresponding to each observation 
epoch. The observation and random model of time series 
are written as:

where �i is the observation noise; �n represents the uncer-
tainty of the position solution of the time series.

The time series is regarded as the Gaussian process; 
then, the observation value Y  satisfies the following mul-
tivariate Gaussian distribution:

where � and � is the hyperparameter of the mean function � 
and the covariance matrix Σ , respectively.

The mean function is expressed with the seasonal sig-
nals with constant amplitude:

where h(t) is basis matrix, h(t) = [1 t sin(2�t) cos(2�t)]

.�  is basis coefficient (hyperparameter vector), 
� = [m n a b]T . m is intercept; n is the linear rate; a 
and b is the signal amplitude of the annual sine and cosine 
functions. The above parameters together constitute the 
hyperparameters of the mean function.

Each element of the covariance matrix Σ can be 
obtained by means of the covariance kernel function � . 
The kernel function is the core of a Gaussian process, 
which determines the properties of a GP. There are vari-
ous kernel functions, such as RBF kernel, Matern kernel, 
and exponential kernel. We here employ Matern 3/2 as the 
kernel function (Zhang et al. 2018):

(1)Yi = f (ti) + �i, i = 1,⋯ , n �i N(0, �
2
n
)

(2)p(Y|t, �, �) = GP(�(t, �),Σ(t, �))

(3)�(t, �) = h(t)�

where r =
√

(ti − tj)
T (ti − tj) , �y(ti, tj) = �(ti, tj) + �2

n
�ij , � ij 

represents Dirac function and its value is 1 when i = j , or is 
0. Parameters �2,� and �n form the hyperparameter vector �
.

The predicted epochs are set as t∗ , and its corresponding 
predicted set function values f (t∗) still conform to GP. Then 
the joint probability distribution of the observation set func-
tion values Y  and f (t∗) can be represented as:

where In is the identity matrix; �(t, t) is the GP covariance 
matrix of n × n dimensions.

The posterior probability density of f (t∗) still obeys the 
Gaussian distribution:

where �y = �(t, t) + �2
n
In,�t∗ is regarded as the predicted 

results. It can be found that the mean value �t∗ is actually 
a linear function of the known observation vector. The first 
part of the covariance term Σt∗ is a priori covariance, and the 
last part represents the reduction of the uncertainty of the 
function distribution.

We use the method of maximum likelihood estimation to 
optimize the hyperparameters. The marginal log-likelihood 
function of GP model can be represented as

where N  is  the number of the training data 
points;R = Y − �(t, �) , representing the difference between 
the observed value and the mean function.

Test by synthetic time series

To test the performance of the GP model proposed in the pre-
vious section, we produced a synthetic position time series 
including a long-term linear rate, a constant annual signal, and 
a sinusoidal variation representing the time-variable part of 
the quasi-periodic signal. The comparisons are made between 
the modeled value from of three different model, including 

(4)�(ti, tj) = �2

�
1 +

√
3r

�

�
exp

�
−

√
3r

�

�

(5)

[
Y
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]
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]
,
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(7)
�t∗ = �(t∗, t)T�−1

y
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Standard (St) model, the Bennett model, and GP model, and 
the simulated value.

Data generation

Based on the trajectory motion model as Eq. (9), the synthetic 
time series with quasi-periodic signals is simulated, as shown 
in Fig. 1.

where A,B represents the amplitudes of the annual signal; 
m(t) sin

(
2�

T
t + q

)
 represents the time-varying part of the 

quasi-periodic signal, which is defined as a sine function 
with a period of 5 years and an amplitude of 2.4 mm . The 
long-term linear rate v is set as 5mm∕yr . It is generally 

(9)
y(t) = vt + A sin

(
2�

T
t
)
+ B cos

(
2�

T
t
)
+ m(t) sin

(
2�

T
t + q

)

believed that the optimal random model of the noise charac-
teristics of GNSS position time series is white noise + flicker 
noise (Jiang et al. 2014; Mao 1999; Williams and Simon 
2004); therefore, in the synthetic time series, we add the 
noise composed of white noise and flicker noise with the 
amplitude of 0.9 mm and 2.0 mm/yr1/4, respectively.

Results of modeling the quasi‑periodic signals

In order to validate the performance of the GP model, 
we perform the comparisons with the two other methods: 
(i) Standard model (St model) with the constant periodic 
amplitude; (ii) Bennett model considering the time-varying 
seasonal signal. The combination of the Generalized Gauss 
Markov (GGM) and white noise model is used to parameter-
ize the noise (Koulali and Clarke 2021). The parameters can 
be estimated by maximum likelihood estimation (MLE) (Bos 
et al. 2013). Figure 2 shows the fitting results of the three 
models for the synthetic time series with time spans of 2, 
3.5, 5.5, and 7 years. The GP model shows a better fitting 
effect for the different time spans than the other two models. 
With the increase of the time span, the fitting effect of the St 
model becomes worse and worse, while the GP and Bennett 
model are more stable.

Figure 3 shows the model residuals corresponding to the 
synthetic time series with a time spans of 7 years. The resid-
uals from the GP model show random fluctuation, while the 
Standard model result shows obvious periodicity remained 
in the residual series. This may be due to inadequate mod-
eling of seasonal signals in the Standard model. Although 
the residual effect of the Bennett model is better than that of 
the Standard model, it still shows clearer periodic charac-
teristics than the GP model, suggesting that the covariance 
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Fig. 1  Composition of the synthetic time series

Fig. 2  Modeling comparison for 
the synthetic time series with 
different time spans based on 
Standard model, Bennett model, 
and GP model
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kernel function of GP model is more flexible and can capture 
the quasi-periodic signals in the time series.

In order to demonstrate the impact of time-varying sea-
sonal signals on estimation of linear motion velocity, we 
compare the estimated linear velocity from three models and 
the simulated real value ( 5mm∕yr ); the results are as shown 
in Table 1. The Model_ RMSE (Root-Mean-Square Error) 
is employed as the evaluation index of model fitting results, 
calculated with the observation and model val-
ues,Model_RMSE =

�
1

N

∑N

t=1
(observedt − predictedt)

2 . It 
can be found that whether short or long time span, the veloc-
ity estimation effect of the GP model is better than the 
Standard model and Bennett model. With the increase of 
time span, the reliability of the velocity estimation of the 
three models has improved to different degrees; however, the 
uncertainty of the GP model is much smaller, and its model 
fitting RMSE is more stable for short- or long-term time 
spans. This may be related to ignoring the seasonal variation 
in the Standard model and inadequately modeling quasi-
periodic signals in the Bennett model because any not prop-
erly modeled and removed seasonal signal or residual perio-
dicity may move the stochastic part to much more correlated 
noise, causing the uncertainties to be artificially overesti-
mated. It should be noted that the differences of the 

estimated velocity and its uncertainty from the three models 
are more significant for the short time series. For the time 
series with the time span of 2 years, compared with the 
simulated true value (5 mm/yr), the error of the estimated 
velocity from the Standard model, the Bennett model, and 
the GP model is 0.5, 0.4, and 0.3 mm/yr, respectively. The 
estimation accuracy of the GP model is improved by 42.1% 
and 29.5% compared with the other two models. Previous 
research has shown that when the observation time of the 
GPS continuous observation station time series is less than 
2.5 years, the influence of the seasonal term (periodic term) 
on the velocity field estimation will be enlarged, which will 
reduce the reliability of the results (Bevis and Brown 2014; 
Blewitt and Lavallée 2002). Nevertheless, GP model shows 
a great advantage of modeling time series spanning short 
periods.

Results of recovering and predicting the missing 
data

Obtaining a reliable and continuous time series is of great 
significance for analyzing geophysical events; however, a 
lot of data are usually missing in geodetic time series. To 
validate the recovery performance of the missing data from 
the GP model, we simulate the synthetic time series with 
the different data-deleted proportions of 10, 20%, 30%, and 
40% in the interior and the end of the sequence, respectively. 
The recovery and prediction results of the missing data are 
shown in Figs. 4 and 5. The GP model can better reflect 
the variety of characteristics of the deleted data even when 
40% of the data are missed. The recovery effect is less good 
with the increased proportions of missing data; however, the 
model RMSE at the missing-data epochs varies very little, 
with the maximum differences of 0.8 and 0.6 mm for recov-
ery and prediction (see Fig. 6), respectively. The GP model 
shows few differences in recovering the interior and the end 
for the same percentage of data missing. Thus, the quantity 
and distribution of the training samples significantly impact 
the recovery and prediction of the missing data.
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Fig. 3  Model residuals for synthetic time series based on various 
models

Table 1  Linear rate estimation results and model RMSE for the synthetic time series with the different time spans based on the Standard model, 
Bennett model, and GP model

Time spans 2 years 3.5 years 5.5 years 7 years

Modeling results Velocity (mm/yr) Model 
RMSE 
(mm)

Velocity (mm/yr) Model 
RMSE 
(mm)

Velocity (mm/yr) Model 
RMSE 
(mm)

Velocity (mm/yr) Model 
RMSE 
(mm)

Standard model 5.5 ± 0.5 1.2 5.4 ± 0.7 1.5 5.0 ± 0.8 1.6 5.0 ± 0.7 1.6
Bennett model 4.6 ± 1.6 1.0 5.1 ± 0.1 1.1 5.3 ± 0.4 1.4 5.2 ± 0.3 1.4
GP model 5.3 ± 0.3 0.9 5.0 ± 0.2 1.0 5.1 ± 0.1 0.9 5.0 ± 0.1 1.0
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Applications in real geodetic time series

To testify our method, in the following sections, we take 
North China for research region. We adopt a long-time 
series for BJFS site from the International GNSS Service 
(IGS) observation net from 2000 to 2022. In the meantime, 
we also model the GRACE time series with the same time 
span in this region for comparisons.

Fig. 4  Recovery results of the 
different missing data propor-
tions (10, 20, 30, and 40%) 
based on GP model
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Fig. 5  Prediction results for the 
different time length (10, 20, 30, 
and 40%) based on GP model
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GNSS position time series

With the rapid development of GNSS satellite geodesy 
technology, it has been widely used in monitoring crustal 
deformation and revealing the dynamics mechanism. GNSS 
observation time series contain all kinds of geophysical 
phenomena, including surface and crustal movement, such 
as the linear variation trend caused by tectonic movement 
among plates or blocks and the nontectonic deformation 
caused by the seasonal changes from the atmosphere and 
hydrosphere loading. It is as yet a challenge to separate the 
multiple source signals. Most GNSS observation sites show 
discontinuities and quasi-periodic position signals in the 
time series, which are usually retained in the time series 
when estimating velocity fields (Bennett 2008). We selected 
the GNSS site BJFS, located in North China, from the Inter-
national GNSS Service (IGS) network for demonstration. 
The daily coordinate solution for 24-year time span (from 
October 1999 to July 2022) is obtained by GIPSY/OASIS 
software (Webb and Zumberge 1993). Figure 7 shows the 
original coordinate time series of the vertical component 
and the modeling results. The original time series of this site 
shows a significant seasonal variation characteristic; how-
ever, the GP model can effectively reproduce the complex 

quasi-periodic seasonal signals much better than others. This 
may be attributed to the consequence of the kernel function 
because GP covariance function absorbs not only the quasi-
seasonal periods but also other short-term systematics.

Fitting residuals from three models (St model, Bennett 
model, and GP model) are shown in Fig. 8. The Standard 
model and Bennett model fail to fit the time series, and there 
are clear systematics left in the residuals, whereas the GP 
model captures the quasi-periodic signal so well that the 
residual shows a good random distribution.

Table 2 shows the linear rate estimation value and model 
RMSE of three models. Although the estimated velocity 
values from different models are closer, the uncertainty and 
RMSE differences among three models are very significant. 

Fig. 7  Modeling comparison of 
the vertical time series for BJFS 
site based on three models

Fig. 8  Model residuals of the 
vertical time series for BJFS site 
based on three models (Stand-
ard model, Bennett model, and 
GP model) -30
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Table 2  Linear rate estimation and model RMSE for GNSS time 
series

Model Velocity (mm/yr) Model 
RMSE 
(mm)

Standard model 1.2 ± 0.1 5.8
Bennett model 1.2 ± 0.1 5.7
GP model 1.1 ± 0.0 2.7
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GP model shows a higher reliability of the velocity. Its 
accuracy is improved by 82 and 80%, and the model fitting 
RMSE is reduced by 54 and 52%, respectively. The small 
differences of the estimated velocity may be mainly attrib-
uted to two aspects: One is that the time span is long enough 
(24 years), which results in less effect on the estimation of 
long-term motion velocity, and another is that the motion 
velocity magnitude itself is indeed small in the region.

GRACE gravity time series

GRACE gravity satellite data can help analyze the balance 
of water quality and water exchange among the atmosphere, 
land, ocean, and ice sheet and estimate the global or regional 
changes in land water storage. Due to the massive exploita-
tion of groundwater, there has been a serious problem of 
water supply and demand in North China, which affects 
the human living environment and leads to serious vertical 
motion, seawater intrusion, ecological environment degrada-
tion, and perennial rivers drying up or becoming seasonal 
rivers. Therefore, obtaining the long-term change trend of 
land water storage is of great practical significance. GRACE 
time series also contain a significant natural inter-annual 
change in addition to the prominent seasonal cycles, result-
ing in a great deviation when estimating the long-term linear 
trend of quality change or loading deformation. We here 
apply the GP model to the equivalent water height (EWH) 
time series in North China (from April 2002 to March 2022) 
from satellite gravity observations to estimate the long-term 
linear change trend of land water storage and recover the 
data blank for 11 months between GRACE and GRACE-FO. 
We first use the first-order term calculated by Chambers to 
replace the first-order term in the spherical harmonic coef-
ficient and then employ the data provided by SLR to replace 
the second-order term. Finally, the decorrelation method of 
the Duan sliding window removes the north–south stripe 
error, and the Gaussian filter suppresses the high-order 
noise with a smoothing radius of 300 km. The calculated 
EWH time series its spectral analyses are shown in Fig. 9. 

Obviously, the EWH series contains the complex quasi-
periodic signals and the trend variability.

Figure 10 shows the modeling comparison and model 
residuals for the EWH time series based on the three differ-
ent models. Although the noise characteristics and sampling 
rate of GRACE are different from GNSS observations, the 
GP model can still capture the time-varying signals very 
well. The residuals do not show significant periodicity com-
pared to the Standard and Bennett models.

We obtain a linear rate of −7.9 ± 0.8 mm/yr and model 
RMSE of 4.8 mm based on the GP model, which is signifi-
cantly better than the other two models with the linear rate 
of −6.3 ± 1.7, −6.3 ± 1.5 mm/yr and model RMSE of 36.0, 
33.8 mm (Table 3). Its accuracy is improved by 53% and 
47%, and the model fitting RMSE is reduced by 87 and 86%, 
respectively. Obviously, the quasi-periodic characteristics 
in the GRACE EWH time series are well reproduced by 
the GP model, so it has a much better fitting effect, lower 
RMSE, and higher reliability of linear rate estimation. In the 
meantime, the missing data for about 11 months between 
GRACE and GRACE-FO were recovered effectively. It can 
be clearly seen from Fig. 10 that the shallow groundwater 
level in North China has risen for two consecutive years 
(2021–2022) after continuous decline and deficit for about 
20 years. Thus, we conclude that the shallow groundwater is 
reaching a balance of production and replenishment, which 
can mainly be attributed to the implementation of China’s 
South to North water diversion project.

Interpretation of the quasi‑periodic signals in GNSS 
and GRACE time series

The change of surface hydrological loading may be an 
important factor causing regional seasonal surface defor-
mation. To demonstrate the seasonal and inter-annual vari-
ation extracted by our model, we first obtain the residuals 
by removing the long-term linear changes from the original 
GNSS and GRACE time series based on the GP model and 
then calculate the vertical mass load deformation derived 

Fig. 9  EWH time series from 
GRACE data in North China 
(top) and its spectral analyses 
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from GRACE time series for comparison. Due to the lack of 
spherical harmonic coefficients of about 11 months between 
GRACE and GRACE-FO, the deformation value during the 
corresponding time period cannot be effectively inverted. 
Therefore, we use the GP model to recover the missing 
data of GRACE deformation, as shown in Fig. 11. It can be 
clearly seen that the GNSS vertical displacement time series 
fitted by the GP model and the surface vertical deforma-
tion time series retrieved by GRACE have a good synchro-
nization fluctuation, indicating that the variation of GNSS 

station coordinate time series in North China is mainly due 
to the mass loading deformation.

It is worth noting that there is a certain disagreement in 
the amplitude between the both, which may be mainly attrib-
uted to the thermoelastic displacements, temperature varia-
tions, discrepancy of spatial resolution, atmospheric, oceanic 
tides, and other effects except for continental water quality 
changes. For example, Horwath et al. (2010) find orbit mis-
modeling, such as solar radiation pressure or Earth albedo, 
to be the most likely source for inducing large-scale residual 
patterns. Tregoning et al. (2009) suppose that local pro-
cesses or site-specific analysis errors dominate their GNSS 
height estimates as the main error sources. Not consider-
ing the atmospheric tides can also cause certain semiannual 
and annual signals in time series (Tesmer et al. 2011). The 
annual amplitude in vertical direction caused by temperature 
variation can reach ~ 2 mm (Wei et al. 2015). Further, due to 
the fact that short-wavelength loads dominate the signal in a 
small scale. GNSS is more likely influenced by local effects, 
such as local site instability, compaction, and decompaction 
associated with aquifer drawdown and recharge. GRACE, 

Fig. 10  Modeling comparison 
(top) and model residuals (bot-
tom) of the EWH time series 
from GRACE data in North 
China
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Table 3  Linear rate estimation results and model RMSE for GRACE 
time series

Model Velocity (mm/yr) Model 
RMSE 
(mm)

Standard model −6.3 ± 1.7 36.0
Bennett model −6.3 ± 1.5 33.8
GP model −7.9 ± 0.8 4.8

Fig. 11  Modeling comparison 
between the vertical time series 
for BJFS site and the deforma-
tion time series from GRACE 
data in North China
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on the other hand, produces a broader but lower-amplitude 
vertical deformation field driven by long-wavelength average 
of mass load variations. Our GNSS solutions here show a 
higher amplitude than the GRACE.

Figure  12 compares the modeled EWH change time 
series with the surface water quality change from the Global 
Land Data Assimilation System (GLDAS) with the trend 
removed and the precipitation product from North China's 
Tropical Rainfall Measuring Mission (TRMM). There is 
a significantly high correlation among the three, with the 
peak value of EWH well corresponding to the peak value of 
precipitation, indicating that the seasonal and inter-annual 
change is mainly derived from the hydrological loading 
and water reserve change. In fact, EWH time series from 
GRACE is terrestrial water storage (TWS) change, includ-
ing surface and ground water, while GLDAS only represents 
surface water. The seasonal fluctuation and annual change 
may be synchronous, but both trends have significant dis-
crepancies. In order to more clearly show the annual fluc-
tuations and the time-varying period signals at the seasonal 
timescale, we here removed the trend at long-term scale 
from the modeled EWH and GLDAS time series.

A large number of studies have shown that in addition to 
the colored noise, there are also CME with unknown sources 
of space–time correlation between different GNSS reference 
stations (Xu et al. 2022). The CME may be the main source 
of GNSS time series error, affecting satellite geodetic time 
series analysis and speed estimation and signal extraction 
(Bian et al. 2021). So far, there are few studies on the genera-
tion mechanism, cycle and other characteristics, and influ-
encing factors of common mode error.

Discussion

Satellite geodetic time series have been widely used to inter-
pret geophysical phenomena. However, there are usually 
large discontinuities and complex quasi-periodic position 
signals that remain in the time series that geometric or geo-
physical models cannot well explain. GP model proposed in 
this paper can be used as an alternative to the deterministic 

method. The method has been successfully applied to model 
reconstruction and signal extraction of GNSS station posi-
tion time series and GRACE gravity time series, demonstrat-
ing a great advantage in modeling quasi-periodic signals, 
estimating the long-term motion velocity, and recovering 
the missing data.

The original purpose of the research is to model the com-
plex quasi-periodic signals in the geodetic series and opti-
mize the trend parameters estimation and precision evalu-
ation. This is the topic of the paper; therefore, the special 
attention is paid to the modeling of quasi-periodic signals 
and parameters estimation in the paper. The advantage of 
GP model is that it is a nonparametric modeling method, 
which can flexibly model the complex nonlinear signals 
without obtaining the signal form in advance. The mean 
function depicts long-term trend change, while the quasi-
periodic and the other spurious signals in time series are 
reproduced by the covariance kernel function. Meantime, 
model parameters are estimated by Maximum Likelihood 
Estimation and the accuracy is evaluated based on the error 
propagation law. The new approach demonstrates better per-
formance and effectiveness with a higher reliability of linear 
rate estimation, a lower uncertainty, and model fitting RMSE 
with respect to the conventional models. It can be used as an 
alternative to the deterministic method to extract long-term 
motion change in geodetic time series with missing data and 
time-varying seasonal signals, thus impacting maintenance 
of geodetic reference frames, geodynamics, geophysics, and 
crustal deformation analysis.

However, some aspects of the GP model warrant further 
research. Just as a multivariate normal distribution, the 
Gaussian process is fully determined by a mean function 
and a covariance function. The mean function has a vital 
impact on obtaining the long-term changes of the time 
series, and the covariance kernel function is the core of the 
Gaussian process, which determines the effect of repro-
ducing the seasonal variability. Different mean vectors 
and covariance kernel matrices may significantly impact 
modeling the time series and estimating the hyperparam-
eters. Therefore, the custom mean and kernels need to be 
specified according to the need of the practical application.

Fig. 12  Comparison between 
the modeled EWH time series 
from GRACE, GLDAS, and 
precipitation
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The approach is only based on training and learning of 
individual components. In fact, three components of the 
GNSS time series are mutually correlated. Furthermore, 
all stations are spatially coherent for a regional observa-
tion net. If this correlated information can be fully used, it 
will be great in analyzing signals composition and filling 
missing data. Due to this spatio-temporal nature, machine 
learning with large datasets training in both time and space 
domains are explored; hence, better performance can be 
expected. It will be our further research work. The GP 
model proposed is not restricted to GNSS and GRACE 
observation time series but can also apply to any geodetic 
time series type. The potential research direction is explor-
ing the possible application of the Gaussian model in the 
extraction of tectonic signals, for example, separating 
the common mode errors or quasi-periodic signals from 
the satellite geodetic time series, improving the signal to 
noise ratio of observation data, including other aspects of 
geodetic time series modeling such as transient deforma-
tion signals and slow slip of faults (Xu et al. 2019, 2015). 
Hines and Hetland (2018) have used Gaussian process 
regression to detect transient strain resulting from slow 
slip events in the Pacific Northwest.

In addition, in the processing of modeling, we also 
found the model can be used to restore the missing data 
or predict the forward series. We try to test the predic-
tion effectiveness only by the simulated experiments (the 
real value is as known). The feasibility of GP model in 
restoring and predicting the missing data is preliminarily 
proved, thus enhancing and extending the applications of 
the model in GNSS time series analysis for geodesy and 
geodynamics. Future research may extend the adoption 
of the various models to restore and predict GNSS time 
series for three coordinate components and other types of 
geodetic time series. This will be another topic; various 
methods have been proposed to reconstruct the missing 
data such as Singular Spectrum Analysis (SSA), Princi-
pal Component Analysis (PCA), Wavelet Decomposition 
(WD), Kalman Filter (KF).Least Squares (LS) fitting, 
Boosting Tree (BT), Gradient Boosting Decision Tree 
(GBDT), Long Short-Term Memory(LSTM), Support Vec-
tor Machine (SVM). The effectiveness of reconstructing 
the missing data has a strong dependence with the percent-
ages of missing data and noise levels of time series. It may 
enable the inclusion of more and different impact factors 
or features for individual sites or data types and generate 
more complete knowledge about using GP approaches for 
geodetic data analytics and applications.

Conclusion

Due to the influence of the complex environment and observa-
tion error, the amplitude of seasonal signals is time-varying 
from year to year, which brings certain difficulties and chal-
lenges in modeling and recovering the satellite geodetic time 
series. Here, we propose an excellent method for modeling 
the quasi-periodic signals based on the Gaussian process for 
machine learning. The experiment results based on the syn-
thetic and real time series show that the fitting effect of the 
GP model is significantly better than the traditional Standard 
model with the periodic signals by the constant amplitude 
and the existing Bennett model with time-varying signals. 
The accuracy of parameter estimation is improved by more 
than 80%, and the model fitting RMSE is reduced by more 
than 52%. The residual of the GP model shows random dis-
tribution, while the traditional method still leaves the clear 
periodic systematics not fully modeled, which means the noise 
on the velocity estimation for GP model observes little influ-
ence. The GP constitutes an excellent approach for modeling 
complex seasonal signals and noise, especially in mitigating 
biases associated with complex quasi-periodic signals when 
estimating secular velocities or other signals. It also shows a 
great advantage in the recovery or prediction of large missing 
data in geodetic time series.
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