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The real-time and high precision positioning of the lunar rover vehicle is an important step for lunar
exploration and science. SBI (same-beam interferometry) is the differential very long baseline inter-
ferometry (VLBI) technology, which can be used in lunar exploration with its high precision and stability.
In this paper, the relative positioning model of the lunar rover vehicle (LRV) to lunar module (LM) based
on the SBI and extended kalman filtering (EKF) is developed and presented. Using the current Chinese
VLBI network and the planed Chang'E-3, SBI observation data with an attainable precision of picoseconds
and a sample interval of 4 s are simulated. The LRV's relative position to the LM is then estimated by the
least squares adjustment, EKF and an adaptive EKF, respectively. Results show that the Adaptive EKF
performs the best real-time solutions with the accuracy of 1.86 m in X direction, 0.33 m in Y direction and
0.09 m in Z direction, which can provide a good reference for real-time positioning of planed Chang'E-3
rover.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Since the successful landing of the Apollo 11 mission in 1969,
exploration of moon has been intensified and carried out by a
number of missions, e.g., recent SELenological and ENgineering
Explorer “KAGUYA” (SELENE), Chang'E-1, Chandrayaan-1, and Lunar
Reconnaissance Orbiter/Lunar CRater Observation and Sensing
Satellite (LRO/LCROSS) (Jin, 2012; Jin et al., 2013). The Chinese lunar
exploration project consists of three stages: surrounding, landing
and returning. Following the successful launch of the Chinese lunar
probes Chang'E-1 (CE-1) and Chang'E-2 (CE-2), the launch of the
Chang'E 3 (CE-3) probe is planned to be launched in the latter half of
2013. There are two probes in the CE-3 mission: LRV and LM, whose
primary objectives are the g eological, geochemical and geophysical
explorations of the landing area, and establishment of the astro-
nomical observatory (Ouyang, 2004). The detecting equipments
onboard require a tracking and controlling system that simulta-
neously manages multi-explorers. Thus, one of key issues is how to
determine the relative position between the LRV and LMwith a high
accuracy (Liu et al., 2010).

SBI is a kind of differential VLBI (very long baseline interfero-
metry) technology, which can provide extremely accurate relative
ll rights reserved.
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position measurements in the plane-of-sky and complement the
line-of-sight information from Earth-based Doppler and range
measurement. The atmosphere, ionosphere, and receiver influ-
ences can be almost removed in SBI observations and the differ-
ence in time delay can be directly obtained with an accuracy of
several picoseconds from the correlation phase (Liu et al., 2010).

Single-frequency SBI has been used in tracking the Apollo 16 and
17 lunar rovers with a relative positioning accuracy of 25 m.
The Japanese lunar exploration mission-SELENE has been launched
on 14 September, 2007 with carrying a tracking system called multi-
frequency same-beam differential VLBI between two sub-satellites,
which can obtain the differential phase delay directly to solve the
ambiguity problem and to provide an accurate result. The contribu-
tions of the SBI in spacecraft precision orbit determination and lunar
gravity field solution have been investigated in the SELENE mission
by GEODYN II/SOLVE. Yan et al. (2011) showed significant improve-
ments in accuracy of low and medium degree coefficients of lunar
gravity field model obtained from combination of two way range
and Doppler and the same beam VLBI measurements than only two
way range and Doppler data, and the accuracy of precision orbit
determination can reach the level of meter. The SBI can also be used
as a tool for the investigation of the lunar interior with three or more
landers on the lunar surface (Gregnanin et al., 2012).

In this paper, the effect of SBI in the relative positioning is
simulated and tested for LRV and LM capsule landing on the moon
during the coming Chang'E-3 mission of Chinese lunar exploration.
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Although scientists have tested the related SBI, but most took the
least squares adjustment during the data processing, which cannot
achieve a real-time solution to provide navigation information.
Here, a newly relative positioning model based on EKF and SBI is
introduced and a series of simulation experiments are performed.
Because the actual positions and velocities are known, the accu-
racy and results of the relative positioning is assessed from the
difference between the actual orbit and the solved one.
2. Theory of relative positioning with SBI

The differential VLBI (ΔVLBI) technique has played a crucial role
in previous lunar exploration because it only needs a downlink
signal with providing a high accuracy for the angle and angle rate.
The previous observations of lunar probes showed that the
measurement accuracy of ΔVLBI depended on the consistent
degree between the radio source and the lunar probe and some-
times the desired nearby radio source could not be found during
the motion of the lunar probe (Li et al., 2010). However, for a lunar
probe on the surface of the moon, the LM can be regarded as the
radio source. In addition, because the LRV and LM are only a few
kilometers apart, their angle distance is smaller than 0.0011. Thus,
the transmission paths of the signals from the LRV and LM are very
similar. Using the difference method, the atmospheric and iono-
spheric delays, clock errors and instrument errors can be greatly
degraded, so SBI can get a high accuracy with several picoseconds.
The basic theory of SBI is shown in Fig. 1 (Dong et al., 2010).

The SBI technique is actually derived from ΔVLBI with two
spacecrafts, whose angle from the earth center is very small, so it
can observe in the same main beam of a VLBI antenna. By using
two VLBI antennas to observe the two spacecrafts simultaneously,
a differential interference observation, called ΔDOR (delta differ-
ential one-way ranging), can be obtained (Thornton and Border,
2000). Due to the high precision of the observation, SBI can
accurately determine the relative position of the LRV and LM.

The DOR delay is mathematically equivalent to the time
difference of the signal wavefront of the LRV arriving at the two
ground VLBI antennas at one reference time. ΔDOR is the delay
difference between the LRV and LM. As Fig. 1 shows, ΔDOR can be
expressed by Eq. (1).

τðtÞ ¼ ðτ4−τ3Þ−ðτ2−τ1Þ ð1Þ
Fig. 1. The geometry of same-beam interferometry.
3. Kinematic positioning model and method

3.1. State and observation equations

The lunar surface detector does not involve a complicated
dynamic model, but a kinematic model for its movement is
constrained to the surface, which makes the establishment of
the state equation much easier. Assume that the system state
vector is as Eq. (2) at the moment k.

X̂ðkÞ ¼ x̂mlðkÞ ŷmlðkÞ ẑmlðkÞ _̂xmlðkÞ _̂ymlðkÞ _̂zmlðkÞ
h iT

ð2Þ

In Eq. (2), the first three items on the left equation are the three-
dimensional relative position of the LRV to the LM and the last three
are the three-dimensional velocities of the lunar rover, which all are
described in the moon-centered–moon-fixed coordinate system.
In this paper, the state equation is deduced based on the simulated
uniform circular motion, and then the state equation from epoch
K−1 to epoch K can be expressed as following Eq. (3)：

X̂ðKÞ ¼

cosðw⋅T ⋅KÞ−1
cosðw⋅T ⋅ðK−1ÞÞ−1 0 0 0 0 0

0 sinðw⋅T ⋅KÞ
sinðw⋅T ⋅ðK−1ÞÞ 0 0 0 0

0 0 1 0 0 0
0 0 0 sinðw⋅T ⋅KÞ

sinðw⋅T⋅ðK−1ÞÞ 0 0

0 0 0 0 cosðw⋅T⋅KÞ
cosðw⋅T ⋅ðK−1ÞÞ 0

0 0 0 0 0 1

2
66666666664

3
77777777775

�X̂ðK−1Þ þWðK−1Þ ð3Þ
where WðkÞ is the system noise vector, w is the angular velocity and
T is the sample interval. Provided than the position vector of the LRV
at time t is r

,
mðtÞ and the position vector of the LM is r

,
lðtÞ, the signal

wavefronts of the LRV and LM arrive at the VLBI antenna 1 after
tr;mand tr;l, respectively. The position vectors of the LRV and LM are
now r

,
1ðt þ tr;mÞ and r

,
1ðt þ tr;lÞ. The same wavefronts arrive at the

VLBI antenna 2 at time t þ tr;m þ τm and t þ tr;l þ τl, then the station
position vectors become r

,
2ðt þ tr;m þ τmÞ and r

,
2ðt þ tr;l þ τlÞ, respec-

tively. So the observation equation at time t is shown as

cΔτðtÞ ¼ ðjr,2ðt þ tr;m þ τmÞ−r,mðtÞj−jr,1ðt þ tr;mÞ−r,mðtÞjÞ

−ðjr,2ðt þ tr;l þ τlÞ−r
,
lðtÞj−jr

,
1ðt þ tr;lÞ−r

,
lðtÞjÞ ð4Þ

where c is the speed of light, subscripts m and l represent the LRV
and LM, respectively. In reality, the delay of the observation is also
subject to a clock error, the instrument delay error, troposphere and
ionosphere delay errors as well as the impact of random error
(Huang, 2006). Assuming that the sum of the aforementioned
impacts is τerror , Eq. (4) can be expressed as follows:

cΔτðtÞ ¼ ðjr,2ðt þ tr;m þ τmÞ−r,mðtÞj−jr,1ðt þ tr;mÞ−r,mðtÞjÞ

−ðjr,2ðt þ tr;l þ τlÞ−r
,
lðtÞj−jr

,
1ðt þ tr;lÞ−r

,
lðtÞjÞ

þðΔerror;m−Δerror;lÞ ð5Þ

For the sake of brevity, the time argument in Eq. (4) is ignored
in the derivation of the next formula. The position vectors of the
VLBI stations 1 and 2, and the LRV and LM, are respectively set as
follows:

r
,
1 ¼ x1 y1 z1

h iT
r
,
2 ¼ x2 y2 z2

h iT
r
,
m ¼ xm ym zm

h iT
r
,
l ¼ xl yl zl

h iT

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ
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The distances between the lunar surface detectors and VLBI
stations are expressed as

d1;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1−xmÞ2 þ ðy1−ymÞ2 þ ðz1−zmÞ2

q
d2;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2−xmÞ2 þ ðy2−ymÞ2 þ ðz2−zmÞ2

q
d1;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1−xlÞ2 þ ðy1−ylÞ2 þ ðz1−zlÞ2

q
d2;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2−xlÞ2 þ ðy2−ylÞ2 þ ðz2−zlÞ2

q

8>>>>>>>>><
>>>>>>>>>:

ð7Þ

So, the observation equation can be expressed as in (8).

cΔτ¼ ðd2;m−d1;mÞ−ðd2;l−d1;lÞ ð8Þ
The above equation is a nonlinear observation equation, so it

can be expanded by Taylor series around the one-step prediction
—X̂ðk=k−1Þ. After ignoring the second order and higher order
terms, it can be expressed as

cΔτ¼ ðd2;m−d1;mÞ−ðd2;l−d1;lÞ
� �jX̂ðk=k−1Þ
þ ∂cΔτ

∂xm
jX̂ðk=k−1Þðx̂mðkÞ−x̂mðk=k−1ÞÞ

þ ∂cΔτ
∂ym

jX̂ðk=k−1ÞðŷmðkÞ−ŷmðk=k−1ÞÞ

þ ∂cΔτ
∂zm

jX̂ðk=k−1ÞðẑmðkÞ−ẑmðk=k−1ÞÞ

þ ∂cΔτ
∂_xm

jX̂ðk=k−1Þð _̂xmðkÞ− _̂xmðk=k−1ÞÞ

þ ∂cΔτ
∂ _ym

jX̂ðk=k−1Þð _̂ymðkÞ− _̂ymðk=k−1ÞÞ

þ ∂cΔτ
∂_zm

jX̂ðk=k−1Þð _̂zmðkÞ− _̂zmðk=k−1ÞÞ ð9Þ

where
∂cΔτ
∂xm ¼ x1−xm

d1;m
− x2−xm

d2m
∂cΔτ
∂ym

¼ y1−ym
d1;m

− y2−ym
d2m

∂cΔτ
∂zm ¼ z1−zm

d1;m
− z2−zm

d2m
∂cΔτ
∂_xm ¼ ∂cΔτ

∂ _ym
¼ ∂cΔτ

∂_zm
¼ 0

8>>>>>><
>>>>>>:

ð10Þ

After the above preparation, a random nonlinear lunar rover
position system is built up as

X̂ðkÞ ¼ AX̂ðk−1Þ þWðk−1Þ
ZðkÞ ¼HðkÞdxþ VðkÞ

(
ð11Þ

where

A¼
cosðw⋅T⋅KÞ−1

cosðw⋅T ⋅ðK−1ÞÞ−1 0 0 0 0 0

0 sinðw⋅T⋅KÞ
sinðw⋅T⋅ðK−1ÞÞ 0 0 0 0

0 0 1 0 0 0
0 0 0 sinðw⋅T ⋅KÞ

sinðw⋅T⋅ðK−1ÞÞ 0 0

0 0 0 0 cosðw⋅T ⋅KÞ
cosðw⋅T⋅ðK−1ÞÞ 0

0 0 0 0 0 1

2
66666666664

3
77777777775

2
66666666664

3
77777777775

ZðkÞ ¼ cΔτ− ðd2;m−d1;mÞ−ðd2;l−d1;lÞ
� �

X̂ðk=k−1Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð12Þ

HðkÞ ¼

∂cΔτ1;2
∂xm

∂cΔτ1;2
∂ym

∂cΔτ1;2
∂zm 0 0 0

∂cΔτ1;3
∂xm

∂cΔτ1;3
∂ym

∂cτ1;3
∂zm 0 0 0

∂cΔτ1;4
∂xm

∂cΔτ1;4
∂ym

∂cΔτ1;4
∂zm 0 0 0

∂cτ2;3
∂xm

∂cΔτ2;3
∂ym

∂cΔτ2;3
∂zm 0 0 0

∂cΔτ2;4
∂xm

∂cΔτ2;4
∂ym

∂cΔτ2;4
∂zm 0 0 0

∂cΔτ3;4
∂xm

∂cΔτ3;4
∂ym

∂cΔτ3;4
∂zm 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð13Þ

where Δτ1;2 represents the observations obtained at the same time
by VLBI antennas 1 and 2, W(k) and V(k) are zero mean white noise
sequences, which represent the dynamic noise vector and the
measurement noise vector. The statistical properties are as follows:

EðWðkÞÞ ¼ 0
EðVðkÞÞ ¼ 0
EðWðkÞVT ðjÞÞ ¼ 0
EðWðkÞWT ðjÞÞ ¼ Q ðkÞδkj
EðVðkÞVT ðjÞÞ ¼ RðkÞδkj

8>>>>>>><
>>>>>>>:

ð14Þ

where Q(k) is the dynamic noise covariance matrix, R(k) is the
measurement noise covariance matrix and δkj is the Kronecker
function, as shown in the following:

δkj ¼
1 ðk¼ jÞ
0 ðk≠jÞ

(
ð15Þ

3.2. Kilter parameters in lunar vehicle dynamic positioning

If the initial estimated value X̂ð0Þ and variance P(0) of the
Kalman filter meet the following Eq. (16), the filtering process of
X̂ðkÞ and P(k) will be unbiased, i.e.

X̂ð0Þ ¼ EðXð0ÞÞ
Pð0Þ ¼ VARðXð0ÞÞ

(
ð16Þ

In essence, if the values of X̂ðkÞ and P(k) are not seriously
distorted, X̂ðkÞ and P(k) will gradually get rid of the impact of the
initial value for a stable filter with the increase of the filtering
time. In the simulation experiment, in order to meet (16), the least
squares estimation is used to obtain the initial value and its
variance as X̂ð0Þ and P(0). According to the state equation, mainly
to ensure the effectiveness of the matrix A, the velocity at the
second epoch is selected as the initial velocity, which can be
expressed as:

_̂xmð0Þ ¼ RL⋅cosðw⋅TÞ−RL
_̂ymð0Þ ¼ RL sinðw⋅TÞ
_̂zmð0Þ ¼ 0

8>><
>>: ð17Þ

where w is the angular velocity, T is the sample interval and the RL
is the radius of the moon, and Pmð0Þ is the error variance of X̂mð0Þ.
If X̂mð0Þ is the true required value, the error variance is zero. Since
X̂mð0Þ is calculated from the sample data, which is accurate, it can
be assumed to be equal to the theoretical value, so Pmð0Þ can be set
as the zero matrix.

From experience obtained in several experiments, the covar-
iance matrix of the state vector is set greater than zero, which will
enable the filter to have a faster convergence. In this experiment,
Pmð0Þ is set as

Pmð0Þ ¼

1 km2 0 0 0 0 0
0 1 km2 0 0 0 0
0 0 1 km2 0 0 0
0 0 0 10−12 km2 0 0
0 0 0 0 10−12 km2 0
0 0 0 0 0 10−12 km2

0
BBBBBBBBB@

1
CCCCCCCCCA

ð18Þ

The Kalman filter not only needs to use X̂mð0Þ and Pmð0Þ, but
also requires the system noise variance Q(k) and the observation
noise variance R(k). Given the observed values of the variance and
covariance matrices, this will be a true reflection of the system
state and will obtain a satisfactory filtering result according to the
VLBI observations (Song, 2006). To accurately set the system noise
variance and observation noise variance is impossible, and some-
times they cannot be obtained. Q(k) and R(k) are usually deter-
mined based on experience or by using the Sage adaptive filtering
method. After several experimental comparisons, in this paper,
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R(k) takes the values as shown in the following:

RðkÞ
6�6

¼
ðc⋅svlbi⋅10−9Þ2 0

⋱
0 ðc⋅svlbi⋅10−9Þ2

0
B@

1
CA ð19Þ

where svlbi is the measurement accuracy of the differential VLBI
data, and c is the speed of light with 299,792.458 km/s.

The system noise variance matrix Q(k) has nothing to do with the
epoch, which needs to be determined according to the characteristics
of the dynamic model and should match the accuracy of the dynamic
model. If Q(k) is too large, the weighted filter in the previous
observations is too large. Therefore, the filter cannot make good
use of the existing observations. If the value of Q(k) is too small, with
the filtering recursive, more model noise will be introduced so that
the filtering error is likely increased or even causes a divergence
phenomenon. The value of Q(k) has a significant impact on the filter
value of the velocity components. In this paper, Q(k) is set as
Q ðkÞ
6�6

¼

10−10 km2 0 0 0 0 0
0 10−10 km2 0 0 0 0
0 0 10−10 km2 0 0 0
0 0 0 10−12ðkm=sÞ2 0 0

0 0 0 0 10−12ðkm=sÞ2 0

0 0 0 0 0 10−12ðkm=sÞ2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð20Þ
In the model of constant velocity, the time interval between
observations will be constant and the transition matrix of the state
will be constant. In this condition, the filter matrix of the Kalman
filter is dependent on Q(k) and R(k). The solution using the EKF
will not be accurate if Q(k) and R(k) are not objective.

The filtering progress is in the moon-fixed coordinate system
and the accuracy of the position of the LM can reach 1 km (Li et al.,
2010), so a 1 km position error is averagely added to the initial
position of the LM and LRV, and the final position is compared to
the actual position with no system error.
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Fig. 3. Position bias between EKF position and actual position in X direction.
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Fig. 2. Position bias between EKF position and actual position.
3.3. The extended Kalman filter

In order to achieve better accuracy of the relative positioning
solution, the extended Kalman filtering (EKF) is used in this paper.
The process of the extended Kalman filter is showing below.

The one step optimal predicting state is calculated by

X̂k=k−1 ¼ X̂k−1 þ f ðX̂k−1; tk−1ÞΔt ð21Þ
The covariance of the one step optimal predicting state is

calculated by

Pk=k−1 ¼Φk=k−1Pk−1Φ
T
k;k−1 þ Qk−1 ð22Þ

The optimal Kalman gain matrix is calculated by

Kk ¼ Pk=k−1Hk
T ðHkPk=k−1Hk

T þ RkÞ−1 ð23Þ
The optimal filtering state is calculated by

X̂k ¼ X̂k=k−1 þ Kk½Zk−hðX̂k=k−1; kÞ� ð24Þ
The covariance of the optimal filtering state is calculated by

Pk ¼ ðI−KkHkÞPk=k−1ðI−KkHkÞT þ KkRkK
T
k ð25Þ
4. Simulation and results

4.1. Numeric simulation

The VLBI stations in Shanghai and Urumqi observed the two
satellites of the Japanese lunar probe, Rstar and Vstar (Iwata et al.,
2001), with a 25 m radio telescope in 2008. The differential phase
delay, with a measurement accuracy ranging from one to several
picoseconds (1 ps corresponds to 3 mm), are obtained via same-
beam VLBI technology (Kikuchi et al., 2009).

In order to simulate SBI observations, the noises are added. In
this paper, differential phase delay observations with initial posi-
tioning error, atmosphere delay and random error are simulated.
The cycle ambiguity is assumed to be known in the stimulation and
the solutions can find in several papers (Liu et al., 2010). For the
accuracy of the landing point can reach 1 km (Li et al., 2010), so
1 km initial positioning error is added to the initial position of the
LM and LRV in the numeric simulation. The biggest distance
between the LM and LRV is just 5 km, which corresponds to
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Fig. 4. Position bias between EKF position and actual position in Y direction.
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Table 1
Comparison of the results from least square adjustment, EKF and Adaptive EKF.

Method Bias

Bias in X direction Bias in Y direction

Maximum bias, absolute
value (m)

Average bias
(m)

RMS
(m)

Maximum bias, absolut
value (m)

LS 139.40 36.10 45.70 9.20
EKF 32.30 −0.28 4.89 1.71
AKF 6.90 −0.28 1.86 0.97
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0.000754 rad, the ionosphere delay of SBI is less than 0.1 mm and
the atmosphere delay is less than 0.05 mm and the total error
caused by ionosphere and atmosphere is less than 0.5 mm (Liu
et al., 2010). Te first order ionosphere phase delay of LRV or LM at
one VLBI station can be shown as

ΔIono
ph ¼ −

1
cos z0

40:3

f 2
VTEC ð26Þ

where ΔIono
ph is the ionospheric refraction, z0 is the zenith angle, f is

the frequency of the signal and VTEC represents the vertical total
electron content, which can be calculated by the IRI 2007 model
(Bilitza and Reinisch, 2008). Here solar flare and geomagnetic
storms effects on the ionosphere are not considered (Jin et al.,
2008), which should be corrected in real SBI observations.
The magnitude of the first order ionosphere delay can be obtained
with several centimeters for the frequency of LRV and LM at the
four observation stations, which can be eliminated by dual fre-
quency observations. The residual ionosphere delay is less than
10−9 m, which is far less than the observation accuracy and can be
ignored.

The effect of the neutral atmosphere is denoted as the tropo-
spheric delay, which can be simulated from the Hopfield model at
the four observation stations in each epoch. The residual error in
the random form, which can be 2% of the whole delay (Kulkarni,
1992), is added in the simulated observation (both the LRV and the
LM) to test the influence on the estimation of parameters.

Finally, the random error with zero mean and normal distribu-
tion is added to the simulated observations according to the
observation accuracy. The random number can be generated by
subroutine random with multiplying the expected standard de
viation of the observation s, and the random noise s is yielded.
The expected standard deviation of the SBI time delay has been
taken 1 ps, 5 ps and 10 ps in this paper. The elevation angle is
calculated in using the Hopfield model. Due to the long distance
between Earth and moon, the elevation angle varies very little, so it
will have very tiny influence on the positioning for choosing
different landing point as long as being visible. For brevity, the
position vectors of the LRV and the LM are r!m ¼ r!1 ¼
½1738:0 km 0:0 km 0:0 km� at the first epoch, and then the LRV
starts to move with a constant peripheral velocity of 3 cm/s.

4.2. Results derived from EKF

According to the equations listed in Section 3.3, the result is
obtained with atmosphere delay, 1 km initial error and 1 ps
random error. The biases of the position derived from EKF and
the true value in X, Y and Z direction are shown in Fig. 2.

In Fig. 2, we can see that the position in the Y and Z direction
are more stable than that in X direction(which is close to the line
of sight direction), which may be due to the SBI observation in line
of sight direction and the residual effect of the atmosphere errors.
Each position bias in X, Y and Z directions is shown in Figs. 3, 4 and 5,
respectively.
Bias in Z direction

e Average bias
(m)

RMS
(m)

Maximum bias, absolute
value (m)

Average bias
(m)

RMS
(m)

2.40 3.10 17.70 4.60 5.80
−0.12 0.41 0.85 −0.09 0.31
−0.27 0.33 0.29 0.01 0.09
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As we can see, the bias value reaches m-level in X direction,
dm-level in Y direction and dm-level in Z direction. The variance
value in X, Y, and Z direction derived from EKF are shown in Figs. 6,
7 and 8, respectively.

When the variance information of the three directions is
plotted in a single figure, the variance value in the first 10 epochs
is several orders of magnitudes bigger than the latter ones and
quickly converges to a stable state. The detail information of
variance in X, Y and Z direction from 10 to 1000 epochs are shown
in Figs. 6–8. As we can see that the variance reaches 10−6 km2 in
X direction, 10−8 km2 in Y direction and 10−8 km2 in Z direction.

The velocity biases in the first 1000 epochs reach 10−18 km and
10−13 km in X and Y directions, respectively and the velocity bias in
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Fig. 9. Position bias between adaptive EKF position and actual position with Initial
error of 1 km.
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Fig. 10. Position bias between adaptive EKF position and actual position with Initial
error of 5 km.

0 200 400 600 800 1000
-0.01

-0.005

0

0.005

0.01

epoch number

un
it(

km
)

X direction
Y direction
Z direction

Fig. 11. Position bias between adaptive EKF position and actual position with Initial
error of 10 km.

Table 2
Comparison of the results from Adaptive EKF with different initial errors.

Method
(km)

Bias

Bias in X direction Bias in Y direction

Maximum bias, absolute
value (m)

Average bias
(m)

RMS
(m)

Maximum bias, absolu
value (m)

AKF-1 6.90 −0.28 1.86 0.97
AKF-5 6.90 −0.29 1.87 0.97
AKF-10 6.90 −0.29 1.87 0.97
Z direction is always zero since the transition matrix is diagonal
matrix and the initial velocity in Z direction is zero. Though the
absolute error in Y direction is five orders of magnitudes bigger
than that in X direction, but when comparing the relative error, the
values in X direction and Y direction are very close with the same
order of magnitude.

4.3. Comparison of different adjustment methods

After getting the simulated time delay according to the obser-
vation function in Section 3.2, the least square adjustment, EKF
and adaptive EKF are applied to get the final position and velocity
information. Adaptive EKF process is introduced here by comparing
with EKF process, the only difference is the gain matrix Kk, which is
calculated by

Kk ¼
1
ak

Pk=k−1H
T
k

1
ak

=HkPk=k−1H
T
k þ Rk

� �−1

ð26Þ

where the symbols are the same with those in Section 3.3 while the
adaptive factor is calculated as (Wei et al., 2013):

ak ¼
trðQ̂RÞ
trðQRÞ

" #1=2

ð27Þ

Then simulate the same scene as the Section 4.1 and the results
from the three different adjustment methods are listed in Table 1,
showing the biases between the actual position and the estimated
position by the three different adjustment methods.
Bias in Z direction

te Average bias
(m)

RMS
(m)

Maximum bias, absolute
value (m)

Average bias
(m)

RMS
(m)

−0.27 0.33 0.29 0.01 0.09
−0.27 0.33 0.29 0.01 0.09
−0.27 0.33 0.29 0.01 0.09
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Fig. 12. Position bias between adaptive EKF position and actual position with
accuracy of 5 ps.

0 200 400 600 800 1000
-0.01

0

0.01

0.02

epoch number

un
it(

km
)

X direction
Y direction
Z direction

Fig. 13. Position bias between adaptive EKF position and actual position with
accuracy of 10 ps.



Table 3
Comparison of the results from adaptive EKF with different initial errors.

Method
(ps)

Bias

Bias in X direction Bias in Y direction Bias in Z direction

Maximum bias, absolute
value (m)

Average bias
(m)

RMS
(m)

Maximum bias, absolute
value (m)

Average bias
(m)

RMS
(m)

Maximum bias, absolute
value (m)

Average bias
(m)

RMS
(m)

AKF-1 6.90 −0.28 1.86 0.97 −0.27 0.33 0.29 0.01 0.09
AKF-5 9.07 −0.49 2.40 1.03 −0.33 0.39 0.34 −0.09 0.13
AKF-10 16.3 −0.08 3.50 1.36 −0.39 0.49 0.35 −0.14 0.17
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It can be seen that with an accurate dynamic model and a priori
statistical knowledge of the parameters, the accuracy of the
solution by the EKF and adaptive EKF are better than that with
the least squares adjustment. The accuracy of the solutions can
reach decimeter in the X and Y direction and millimeter in the
Z direction. The accuracy in Z direction is the best for LRV's tiny
movement in that direction and the assumed initial coordinates of
LRV and LM.

Adaptive EKF is widely used nowadays for its better accuracy of
the solution and faster convergence. In this experiment, the
accuracy of adaptive EKF stays in the same level of accuracy of
EKF for the state equation and the observation equation is accurate
to greatly weaken the function of the adaptive factor. In addition,
the accuracy of Adaptive EKF is better than that of EKF in all three
directions, so adaptive EKF performs better in this numerical
experiment.

4.4. Comparison of different simulating scenes by adaptive EKF

To test the function of EKF and adaptive EKF in different
situations, different scenes are simulated in this section, such as
the different initial error and different observation accuracy
(random error). In Figs. 9–11, different initial errors (1 km, 5 km
and 10 km) are added to the initial position coordinates of LRV and
LM, and the other errors are the same as Section 4.2. We can see
that the initial bias has little effect on the relative positioning, even
when the bias is as large as 10 km, and the positioning bias can be
as little as 1 m. The adaptive EKF performs better with a rapid
convergence velocity by using adaptive factor.

The detail accuracy of AKF is showing in Table 2. As we can see
in Table 2, the results are not affected much by initial errors leveling
at several kilometers and the more precise the initial position, the
higher the accuracy.

Figs. 12 and 13 show the different random errors with standard
deviation 5 ps and 10 ps added to the observation time delay,
respectively, while the accuracy of 1 ps is represented in Fig. 9 and
the other errors are the same as Section 4.2.

Comparing Figs. 9, 12, and 13, we can see that the random error
at the level of several picoseconds has some influence on the
relative positioning. When the random error is as large as 10 ps,
the maximum positioning bias can be 16.3 m, much bigger than
that with random error of 1 ps. The detailed accuracy of AKF is
given by Table 3. As we can see that the results are greatly affected
by observation accuracy leveling at several picoseconds. The more
precise the observation accuracy is, the higher the accuracy of
results can be got. So it is important to improve the observation
accuracy for positioning.
5. Conclusions

The third phase in the Chinese lunar exploration project
intends to gather lunar regolith samples. The LM and LRV on the
moon will provide opportunities for the same beam VLBI observa-
tion. In this paper, a relative positioning model of lunar rover is
presented based on the EKF and SBI. The results of numerical
experiments show that the accuracy of the positioning by EKF and
adaptive EKF is much better than that by the least squares method,
which can achieve the meter level in X direction, decimeter level
in Y and Z directions. It need not store amount of passed
observation data and the advantage of timely solution when new
observations come, the EKF meets the requirements of real-time
high precision positioning of LRV. The results are not greatly
influenced by the initial positioning error of the landing point,
but greatly influenced by the observation accuracy (random error)
at the level of several picoseconds. The accuracy of the solution in
the X-axis is not as good as the Y-axis and Z-axis, which is due to
the character of the VLBI technique with a good restraint in
tangent plane, so different observation techniques joined together
will compensate the defect in line-of-sight direction. With the
continuous progress in lunar exploration, the autonomous naviga-
tion of LRV will lead the trend, and the adaptive EKF will play an
increasingly important role.

Here the moon is treated as a regular sphere without consider-
ing the irregular surface, which in fact will affect the kinematic
models and the positioning results finally. Also the antenna system
bias and the influence from the lunar environment are needed to
further consider. In addition, this paper just simulates and tests
the real-time positioning results of Chang'E-3 rover with the
same-beam VLBI observations. However, to get the more impor-
tant details of the moon's interior structure and physical proper-
ties, it needs three or more Landers on the moon. In the future, we
will further simulate and test the effects of Landers distribution
and number on estimates of the moon's interior structure and
physical properties.
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