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Abstract

Autonomous navigation of Mars probe is a main challenge due to the lack of dense ground tracking network measurements. In this
paper, autonomous navigation of the Mars probe Orbits is investigated using the X-ray pulsars. A group of X-ray pulsars with high
ranging accuracy are selected based on their properties and an adaptive extended Kalman filter is developed to incorporate the Mars
probe dynamics and pulsar-based ranging measurements. Results of numerical experiment show that the three-dimensional positioning
accuracy can achieve 750m in X-axis, 220m in Y-axis and 230m in Z-axis, which is much better than the positioning results by current
Very Long Baseline Interferometry (VLBI) or Doppler observations with the accuracy of 150 km or several kilometers, respectively.
� 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Mars exploration is an important step for deep space
exploration, including space environments, origin, forma-
tion and evolution, internal structure and possible life of
planets. Navigation and positioning of Mars probes are
essential for implementing Mars exploration successfully.
The probe failure of “Phobos-Grunt” just launched by
Russia demonstrates the importance of the autonomous
navigation of Mars probe. Traditional methods used for
the deep space exploration need ground based stations
for tracking, observation and communication, such as
VLBI and Doppler tracking for lunar probe, while the
positioning accuracy is about 150 km and several km
respectively (Li et al., 2010; Cao et al., 2010) . On the
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other hand, the distance between Mars probe and Earth
is a great challenge for VLBI and Doppler tracking. So,
autonomous navigation of Mars probe is currently urgent
and also compensates the defects of the traditional tech-
niques, e.g., reducing the dependence on ground tracking
stations and increasing the successful navigation for Mars
exploration.

X-ray pulsar navigation and positioning technology
has a huge potential as the dawn of the deep space
probe’s autonomous navigation. In this paper, the auton-
omous navigation of Mars probe based on X-ray pulsars
is investigated. The related coordinate systems and their
interconnections will be introduced in Section 2. A group
of X-ray pulsars with high ranging accuracy will be
selected based on their properties and an adaptive
extended Kalman filter will be developed to incorporate
the Mars probe dynamics and pulsar-based ranging mea-
surements in Section 3. Numerical experiment and test
results will be presented in Section 4 and finally conclu-
sions are given in Section 5.
rved.
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2. Related coordinate systems

Coordinate systems involved in autonomous navigation
based on X-ray pulsars include the Barycentric Coordinate
System (SSB), Mars-centered Mean Equator and Equinox
Coordinate System (SMCI), and Mars-Centered Inertial
Coordinate System (SECI). The specific definition of the
coordinate systems mentioned above can be referred to
(Wei and Xu, 2009; Brukhart 2006). The interconnections
of these coordinate systems are given by Eqs. (1)–(3).

RSB ¼ RECI þ RM ð1Þ
RECI ¼ RMCI2ECI RMCI ð2Þ
RMCI2ECI ¼ R2ðF Þ � RxðIÞ � RzðEÞ ð3Þ
where RMCI2ECI is the interconnection matrix from SMCI to
SECI. RSB is the position vector of the probe in SSB. RECI is
the position of the probe in SECI. RMCI is the position of
the probe in SMCI. RM is the position of the center of Mars
in SSB, which can be obtained from JPL’s DE414. F, I and
E are the Euler angles from RMCI to SECI, which can also
be obtained from DE414.

As the dynamic model of Mars probe is described in
RMCI but the observation of pulsars is described in SECI,
the time prediction model of the pulsar must be trans-
formed from the barycenter of solar system to the center
of Mars and the accuracy of the transformation is 0.1 ls
(Sheikh, 2005). Figure. 1 shows the geometry of spacecraft
navigation using X-ray Pulsars (Chiaradia et al., 2008),
where SSB is the solar system barycenter, RM is the vector
from SSB to the centre of Mars, RMCI is the vector from
the center of Mars to the Mars probe, and RSB is the vec-
tor from SSB to the center of Mars.

3. Adaptive extended Kalman filter

The blending of probe state dynamics and pulse ranging
measurement can be implemented using an extended Kal-
man filter technique. This filter, referred to as the Naviga-
tion Kalman Filter, recursively incorporates pulse ranging
measurements with an estimate of the orbit state. The esti-
mated states are based upon a numerically propagated
position and velocity solution. In order to achieve better
accuracy of the solution and faster convergence, method
of adaptive extended Kalman filtering is used for the
autonomous navigation.
Fig. 1. Geometry of Mars probe navigation u
3.1. The dynamic model

The problem of dynamical orbit determination of Mars
probe in the Mars orbit is essentially nonlinear. The orbital
components are described in the inertial frame SMCI by a
set of ordinary differential equations.

€r ¼ � lMr

r3
þ aþ W ð4Þ

where r is the position component vector of the probe (x, y,
z), lM is the gravity parameter of Mars, W is the white
noise vector with a covariance of Q, and a is the modeled
perturbing accelerations. Because the Martian J2 is the ma-
jor perturbing factor (Liu and Tang, 2008), in this dynamic
model, only J2 perturbing accelerations are taken into ac-
count as.
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Thus, the state vector to be estimated is defined as
following

X ¼ ½r; t�T ð7Þ

where t is the velocity vector of Mars probe. Thus, the dy-
namic model can be expressed:

_X ¼ f ðX ; tÞ þ W ð8Þ

Under an initial state of the probe, the next state can be
numerically integrated with Eq. (8). The system described
by Eq. (8) is non-linear which makes it impossible to apply
one of the well-known methods of sequential linear estima-
tion, the Kalman Filter. The extended Kalman filter is a
Kalman filter version applicable for non-linear problems
such as this one, composed by a time-updated and a mea-
surement updated cycles. After linearization the sensitive
equation can be written as (Shuai et al., 2010):

d _X ðtÞ ¼ F ðtÞdX ðtÞ þ W ðtÞ ð9Þ

where F ðtÞ ¼ @f ½X ðtÞ;t�
@X ðtÞ jX ðtÞ¼X̂ nðtÞ, F(t) is the Jacobian Matrix of

the system, and X̂ nðtÞ is the one step optimal estimation of
sing X-ray pulsars (Graven et al., 2008).
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state calculated by numerical propagation at t. By discret-
ization, Eq. (9) can be rewritten as:

dX k ¼ Uk;k�1dX k�1 þ W k�1 ð10Þ

where Uk;k�1 is the Transition matrix which relates the state
between tk and tk-1.

3.2. Calculation of transition matrix

Due to the limitation of the computing speed and mem-
ory of on-board computer, here the Markley’s method is
applied for calculating the Transition matrix. Components
for the calculation of Transition matrix used in Markley’s
method are the status of the probe in time tk and time tk-

1, lM, J2, Dt, the radius of the Mars, and so on. The effect
of the Mars’ oblateness is the most influent factor in the
process. Markley’s method consists of one approximation
for the Transition matrix of the state vector based on the
Taylor series expansion at short intervals of propagation,
Dt. According to Markley’s Method, the Transition matrix
of the state with some simplifications is given as

Uðt; t0Þ �
Urr Urt

Utr Utt

� �
6�6

ð11Þ

where Uðt0; t0Þ ¼ I is the initial condition, and

Urr ¼ Iþ ð2G0 þ GÞ ðDtÞ2

6
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There are no problems in the calculation of these matri-
ces because the gradient matrix G in the end of the propa-
gating interval is a function of the final state, which is
known after numerical propagation (Markley, 1986; Chia-
radia and Kuga, 2012). If only J2 of the center body is con-
sidered (Moraes, 2007), the matrix G can be given by
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In Eq. (13), a(r,t) is the acceleration of the probe. The
partial derivatives are
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where Rm is the radius of the Mars; r = (x,y,z)T,
t ¼ ð _x; _y; _zÞT are the position and velocity of the
probe in RMC, and lM is the gravity parameter of
Mars.

3.3. The measurement model

The measurement model of the Kalman filter algorithm
is expressed as:

Zk ¼ HkX k þ V k ð16Þ

where Z is the observation of pulsars and V is the white
noise vector that represents the random errors of the mea-
surements modeled by

E½V k� ¼ 0 ð17Þ
EðV kV T

j Þ ¼ Rkdkj ð18Þ

where dkj is the Kronecker delta equals to 1 when k = j and
zero otherwise, V can be given by the accuracy of the rang-
ing measurement based on X-ray pulsars and R is the
covariance of V. Hk is the function of state Xk, according
to the theory of X-ray pulsars navigation, which can be ex-
pressed by

H k ¼

nT
1 RMCI2ECI RMCI1 01�3

nT
2 RMCI2ECI RMCI2 01�3

nT
3 RMCI2ECI RMCI3 01�3

� � � � � �
nT

j RMCIjECIRMCIj 01�3

26666664

37777775 ð19Þ

where nT is the direction vector of the pulsar in SECI. For
the long distance from the pulsar to the Mars, nT in SECI

can be considered the same as in SSB, and RMCI2ECI is as
Eq. (3).
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3.4. The adaptive extended Kalman filter

In order to achieve better accuracy of the solution and
faster convergence, method of adaptive extended Kalman
filtering is used in this paper. The process of the adaptive
extended Kalman filter is showing below.

The one step optimal predicting state is calculated bybX k=k�1 ¼ bX k�1 þ f ðbX k�1; tk�1ÞDt ð20Þ

The covariance of the one step optimal predicting state
is calculated by

P k=k�1 ¼ Uk=k�1P k�1U
T
k;k�1 þ Qk�1 ð21Þ

where Q is the covariance of W. The adaptive factor is cal-
culated by

rk ¼
trðQ̂RÞ
trðQRÞ

" #1
2

ð22Þ

where Q̂R and QR are the covariance of the predicted resid-
uals and the theoretical residuals of the observations,
respectively. The optimal Kalman gain matrix is calculated
by

Kk ¼
1

ak
P k=k�1H T

k

1

rk
H kP k=k�1HT

k þ Rk

� ��1

ð23Þ

The optimal filtering state is calculated by

X̂ k ¼ bX k=k�1 þ Kk½Zk � hðbX k=k�1; kÞ� ð24Þ

The covariance of the optimal filtering state is calculated
by

P k ¼ ðI� KkHkÞP k=k�1ðI� KkH kÞT þ KkRkKT
k ð25Þ
4. Numerical experiment

To verify the performance of the autonomous naviga-
tion based on X-ray pulsars, numerical experiment is car-
ried out based on the adaptive extended Kalman filter
mentioned above.
Fig. 2. Relationship between observa
4.1. Analysis of ranging accuracy

In order to select the pulsars for the autonomous navi-
gation of the Mars probe, the ranging accuracy of pulsars
has been analyzed based on their properties. Ranging accu-
racy of the pulsar can be expressed as (Chiaradia et al.,
2012):

rr ¼ crTOA ð26Þ

r2
TOA ¼

W 2
50%

ðSNRÞ2

¼ ½Bx þ F X ð1� pfÞ�ATdþ F X ApfT

ðF X Apf TÞ2
W 2

50% ð27Þ

where rr is the ranging accuracy of the pulsar, rTOA is the
TOA measuring accuracy of the pulsar, SNR is the Signal
to Noise Ratio of the pulse signal, BX is the X-ray back-
ground radiation flux, FX is the observed X-ray photon
flux, A is the area of the detector, T is the observation
time, pf is the pulsar’s parameter of pulsed fraction, d

is the duty cycle of the pulsar,W%50 is the half width of
the pulse, and c is the speed of the light. Here, 25 ms pul-
sars are selected for the analysis of the ranging accuracy,
which are from ATNF pulsar database, Chandra ACIS
Detector pulsar database and XNAVSC (Sheikh, 2005).
The parameters of pulsars in experiment are from pulsar
databases (Ray et al., 2008; Kargaltsev et al., 2012; Barry
et al., 2012). In the analysis, A is set to 4m2, and BX is set
to 0.005ph/cm2/s which is a common value. With analy-
sis, seven pulsars with better ranging accuracy are se-
lected as the navigation stars in the numerical
experiment. The ranging accuracy of the seven pulsars
is shown as Fig. 2.

Table 1 lists the ranging accuracy of the seven pulsars.
Analysis shows the ranging accuracy is becoming better
when the observation time is longer. Taking into account
that long time predicting without correction of the observa-
tions may cause too large deviation of the state solution of
the probe, in the numerical experiment, the observation
time will be set to 500 s.
tion time and ranging accuracy.



Table 1
Ranging accuracy with observation time.

Obs time (s) B1937 +21 (m) B1821 –24 (m) B0531 +21 (m) B0540 –69 (m) B1957 +20 (m) B0614 +091 (m) B1636 –536 (m)

500 860 156 54 1493 932 282 151
1000 608 1107 38 1056 659 199 106
1500 496 904 31 862 538 163 87
2000 430 783 27 746 466 141 75

Table 2
Mars parameters for observations simulation.

Central body Gravity model Planet eph Gm (106km3/s2) J2 (10�6) Radius (km)

Mars GMM2B DE414 0.3986 1960.45 3397

Table 3
Initial orbital elements of the Mars probe.

e a i X w M0

15000 km 0.005 30� 30� 30� 0�
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4.2. Observations simulation

The parameters of Mars (Lemoine et al., 2001) used for
observations simulation is listed in Table 2.

The probe’s orbit for X-ray pulsar observation is simu-
lated with the Satellite Tool Kit (STK). And the orbit sim-
ulated with STK is also considered as the nominal orbit for
Fig. 3. Position bias between RKF

Fig. 4. Velocity bias between RKF
the outer accuracy assessment. The initial orbit elements of
the Mars probe for observations simulation is listed in
Table 3.

In the observation simulation, the error of on-board
clock and the error of transformation of the pulsar time
model from the barycenter of Solar System to the center
of Mars are taken into consideration. The clock bias and
transformation error are set to 10�9 s and 10�7 s, respec-
tively (Sheikh, 2005).
4.3. Filtering

Based on the adaptive Kalman filter model derived
above and the simulated pulsar observations, numerical
7(8) orbit and nominal orbit.

7(8) orbit and nominal orbit.



Fig. 5. Position bias between filtering orbit and nominal orbit.
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experiment is taken to verify the performance of the auton-
omous navigation based on X-ray pulsars. The initial
parameters of the filtering are set with R0 ¼
diag½ð860mÞ2ð1560mÞ2ð54mÞ2ð1493mÞ2ð932mÞ2
ð282mÞ2ð151mÞ2�, Q0 ¼ diag½ð0:54mÞ2ð0:5mÞ2ð0:5mÞ2
ð0:005m=sÞ2ð0:0001m=sÞ2ð0:0001m=sÞ2� and P 0=0 ¼
diag½ð100mÞ2ð100mÞ2ð100mÞ2ð0:1m=sÞ2ð0:08m=sÞ2
ð0:05m=sÞ2�

The numerical propagator for the one-step status pre-
diction in this paper is RKF7(8). Fig. 3 is the 3-dimensional
position bias between the orbit predicted by RKF7(8) and
STK nominal orbit and Fig. 4 is the 3-dimensional velocity
bias between the RKF7(8) orbit and the STK orbit, which
both show that the orbit bias increases heavily with epoch
increasing.
Fig. 6. Position accuracy

Fig. 7. Velocity bias between filte
Fig. 5 shows the 3-dimensional position solution after
adaptive Kalman filtering indicating that with the epoch
increasing, the bias between filtering position and nominal
position is less than 1 km in X-axis, 200 m in Y-axis and Z-
axis. Fig. 6 is the accuracy of the 3-dimensional position
solution after adaptive Kalman filtering. It illustrates that
with the epoch increasing, the accuracy of the position is
less than 750 m in X-axis, 220 m in Y-axis and 230 m in
Z-axis.

Fig. 7 describes the 3-dimensional velocity solution after
adaptive Kalman filtering and illustrates that with the
epoch increasing, the bias between filtering velocity and
nominal velocity is within 0.16 m/s in X-axis, 0.10 m/s in
Y-axis and 0.08 m/s in Z-axis.
of the filtering orbit.

ring orbit and nominal orbit.



Fig. 8. Velocity accuracy of the filtering orbit.

Fig. 9. Position bias between filtering orbit with initial error and nominal orbit.

Fig. 10. Position accuracy of the filtering orbit with initial error.

Fig. 11. Velocity bias between filtering orbit with initial error and nominal orbit.
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Fig. 12. Velocity accuracy of the filtering orbit with initial error.
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Fig. 8 is the accuracy of velocity solution after adaptive
Kalman filtering, showing that with the epoch increasing,
the accuracy of the velocity is within 0.07 m/s in X-axis,
0.075 m/s in Y-axis and 0.06 m/s in Z-axis.

In most situations, the initial state of the probe cannot
be completely accurate. For investigating the influence of
the initial state error on the autonomous navigation based
on X-ray pulsars, 10 km initial position error on each axis
and 0.5 m/s initial velocity error on each axis are set as the
initial state of the probe. Fig. 9 is the position bias between
filtering orbit with initial error and nominal orbit and
Fig. 10 is the accuracy of the position solution after adding
10 km initial position error. It demonstrates that after
about 5 or 6 epochs, the accuracy of the position solution
converges rapidly to 750 m in X-axis, 220 m in Y-axis and
230 m in Z-axis.

Fig. 11 is the velocity bias between filtering orbit with
initial error and nominal orbit and shows that as epoch
increasing, the velocity bias is decreasing at the first 50
epochs, but then, becomes steadily within 0.1 m/s.

Fig. 12 is the accuracy of the velocity solution with ini-
tial error, which demonstrates that with epoch increasing,
the accuracy of the velocity solution is getting better and
better. Finally, the accuracy is achieved 0.07 m/s in X-axis,
0.043 m/s in Y-axis and Z-axis. It also shows that it takes
longer time for convergence than the accuracy of position
solution.
5. Conclusions

Theoretical analysis and numerical simulation above
show that autonomous navigation of the Mars probe in
the Mars orbit based on X-ray pulsar performs well. The
results demonstrate that the accuracy of the position after
filtering can achieve 750 m in X-axis, 220 m in Y-axis and
230 m in Z-axis, which is much better than VLBI or Dopp-
ler positioning solution with the accuracy of about 150 km
or several km, respectively. The perturbations of the Mars’
atmospheric, solar radiation pressure and higher order
gravity field of Mars are not taken into account in the
dynamical model of the Mars probe in the Mars orbit. In
the future, to increase the accuracy of the autonomous nav-
igation of the Mars probe based on X-ray pulsar, we will
further carefully consider those perturbations effects.
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