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Abstract—A constant value of the Moho density contrast is

often assumed in the gravimetric methods used for determination of

Moho geometry. This assumption might be sufficient in regional

studies with a relatively homogenous lithospheric structure (and,

consequently, small lateral variations in Moho density contrast). In

global studies, however, this assumption is not reasonable, because

not only the Moho depth but also the Moho density contrast vary

substantially, and are, thus, likely to result in systematic errors in

Moho geometry determined globally from gravity data. In this

study we address this issue by investigating the effect of variable

Moho density contrast on Moho geometry. We demonstrate that

assumption of variable Moho density contrast (instead of a uniform

model) substantially improves agreement between the global

gravimetric and seismic Moho models by approximately 30 %.

Key words: Crust, density contrast, gravity, upper mantle,

Moho interface.

1. Introduction

In gravimetric methods for global recovery of

Moho depths a uniform density contrast at the Moho

interface is often assumed (MORITZ 1990; ČADEK and

MARTINEC 1991; BRAITENBERG and ZADRO 1999; BRA-

ITENBERG et al. 2006, 2010; WIENECKE et al. 2007,

SJÖBERG 2009; SAMPIETRO 2011; BAGHERBANDI and

SJÖBERG, 2012; SAMPIETRO et al. 2013; TENZER and

CHEN 2014a, b). An average value of the Moho

density contrast of 600 kg m-3 is typically adopted

(HEISKANEN and MORITZ 1967, p. 135). Several

authors have given different estimates. DZIEWONSKI

and ANDERSON (1981), for instance, adopted the value

of 480 kg m-3 for the global crust-mantle density

contrast in the definition of the preliminary reference

earth model (PREM). This value was derived from

analysis of available global seismic data. TENZER

et al. (2009a) estimated the average value of the

Moho density contrast by minimizing a global spatial

correlation between gravity data and Moho depths

taken from the CRUST2.0 seismic crustal model

(BASSIN et al. 2000). According to their result, the

average value was found to be 520 kg m-3. Later,

TENZER et al. (2012c) and TENZER and BAGHERBANDI

(2013) updated this value to 485 and 441 kg m-3,

respectively, on the basis of more recent datasets and

more accurate numerical models. SJÖBERG and BA-

GHERBANDI (2011) estimated the global average of the

Moho density contrast of 448 ± 187 kg m-3 by

solving the Vening Meinesz–Moritz (VMM) inverse

problem of isostasy (VENING MEINESZ 1931; HEISKA-

NEN and VENING MEINESZ 1958; MORITZ 1990; SJÖBERG

2009, 2013).

Results from seismic and gravimetric studies

revealed that the Moho density contrast varies sub-

stantially (GEISS 1987; MARTINEC 1994; KABAN et al.

2003; SJÖBERG and BAGHERBANDI 2011; TENZER et al.

2012d; TENZER and BAGHERBANDI 2013). GOODACRE

(1972), for instance, reported a continental Moho

density contrast of 200 kg m3 in Canada. MARTINEC

(1994) claimed that a value of 600 kg m-3 agrees

better with the Moho density contrast under the

oceanic crust. He also estimated an average value of

280 kg m-3 for the continental crust by minimizing

the external gravitational potential induced by the

Earth’s topographic masses and the Moho disconti-

nuity under the assumption that the Moho density

contrast is constant. NIU and JAMES (2002) and JORDI

(2007) determined the Moho density contrast

regionally from seismic data using the wave receiver

functions. Their results showed that the density
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contrast varies regionally from 160 kg m3 (for the

mafic lower crust) to 440 kg m-3 (for the felsic lower

crust), with an apparently typical value for the craton

of approximately 440 kg m-3. ARTEMIEVA (2007)

demonstrated that the in-situ density contrast between

the crystalline crust and the lithospheric upper mantle

differs substantially between the Cratonic and the

Phanerozoic crust: approximately 500 kg m-3 for the

crust beneath Western Europe, between 300 and

350 kg m-3 for most of the Precambrian crust, and

by as little as 150–250 kg m-3 for some parts of the

Baltic and the Ukrainian shields.

Much large values of the Moho density contrast

were estimated from gravimetric studies, especially

under orogens with density contrast locally exceeding

even 900 kg m-3. Such high density contrasts are,

however, not compatible with petro–physical models.

SJÖBERG and BAGHERBANDI (2011), for instance, esti-

mated that the Moho density contrast varies globally

from 81.5 kg m-3 (in the Pacific region) to

988 kg m-3 (beneath the Tibetan Plateau). They also

provided the average values of 678 ± 78 and

334 ± 108 kg m-3 for the continental and oceanic

areas, respectively. TENZER et al. (2012d) reported a

similar range of Moho density contrast (taken relative

to the reference crustal density of 2,670 kg m-3) of

between 82 and 965 kg m-3. They also demonstrated

that the Moho density contrast under the oceanic

crust is highly spatially correlated with the age of the

oceanic lithosphere; the density contrast minima are

located along the oceanic rift zones and the corre-

sponding maxima are along the oceanic subduction

zones. TENZER and BAGHERBANDI (2013) investigated

the structure of the crust-mantle density interface

beneath Antarctica. They found large values of Moho

density contrast throughout the central part of East

Antarctica with the extension under the Transant-

arctic mountain range, with values there typically

exceeding 500 kg m-3 and maxima up to

682 kg m-3. In West Antarctica the density contrast

is typically 400–500 kg m-3 (except for local max-

ima up to approx. 550 kg m-3 in the central part of

the Antarctic Peninsula). They also explained the

local minima (400–450 kg m-3) beneath the West-

Antarctic rift zone and Ross Embayment on the basis

of the volcanic composition along this divergent

tectonic zone.

Large density contrast variations at the Moho

interface indicate that assumption of a uniform model

might not be sufficient for accurate determination of

Moho geometry from gravity data, especially in glo-

bal studies and in regions with a complex lithospheric

structure and, consequently, large Moho density

contrast variations. Moreover, geodynamic processes

may regionally alter the crustal composition. In areas

with large magmatic production, for instance, the

lower crust may be affected by under-plating, as found

beneath large igneous provinces in the Parana and

West Siberian basins and in the Deccan Traps (cf.

BRAITENBERG and EBBING 2009; MARIANI et al. 2013;

THYBO and ARTEMIEVA 2013). Furthermore, in oro-

genic roots high-pressure metamorphism may place

highly densified rocks at a lower crustal level.

A possible method of dealing with this problem

was proposed by SJÖBERG and BAGHERBANDI (2011).

They developed and applied a least-squares approach

which combined seismic and gravity data in the VMM

isostatic inverse scheme for simultaneous estimation

of the Moho depth and density contrast. In this study,

we propose an alternative method, which incorporates

the variable Moho density contrast as the a-priori

information in gravimetric determination of the Moho

depth. For this purpose, we reformulate the expres-

sions for the gravimetric forward and inversemodeling

given by TENZER and CHEN (2014a). Their method

assumed a uniform model of the Moho density con-

trast. Here we generalize this concept for the variable

Moho density contrast and compare the results of these

twomethods. We incorporate the global density model

of the upper (most) mantle in the definition of the

variable Moho density contrast. The density hetero-

geneities within deeper mantle structures are

disregarded, because of the absence of a reliable 3D

mantle density model. In the numerical experiment,

we determine the Moho depths globally by using

recent gravity and crustal structure models. The

gravimetric results obtained on the basis of adopting

uniform and variable models of the Moho density

interface are validated against the seismic model.

2. Theoretical Model

Gravimetric determination of crustal thickness

comprises, in principle, two numerical procedures
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(TENZER and CHEN 2014a). Gravimetric forward

modeling is first used to compute the gravity data

(i.e., the consolidated crust-stripped gravity distur-

bances), which are highly spatially correlated with

the Moho geometry (cf. TENZER et al. 2009a, b,

2012a, b). The compensation attraction is then sub-

tracted from these gravity data to obtain the residual

gravity data (i.e., the complete crust-stripped gravity

disturbances). These residual gravity data are used for

a determination of the Moho depth by solving the

inverse gravimetric problem. In this study, we utilize

the expressions for gravimetric forward and inverse

modeling in a frequency domain.

We define two numerical schemes for the gravi-

metric Moho modeling, assuming that the Moho

density contrast is either constant or variable. These

two density contrast models are used to define the

compensation attraction and subsequently in solving

the gravimetric inverse problem.

2.1. Gravimetric Inverse Problem (for a Constant

Density Contrast)

TENZER and CHEN (2014a) formulated the gravi-

metric inverse problem of finding the Moho depth

while assuming a constant value of the Moho density

contrast Dqc=m. They derived the linearized observa-

tion equation in the form:

dgm r;Xð Þ ¼ GM

R2

X�n

n¼0

R

r

� �nþ2
n þ 1

2n þ 1

Xn

m¼�n

FdD
n;m Yn;m Xð Þ;

ð1Þ

where dgm is the complete crust-stripped gravity

disturbance (defined in the sect. 2.3), GM ¼
3; 986; 005� 108 m3s-2 is the geocentric gravita-

tional constant, R ¼ 6; 371� 103 m is the Earth’s

mean radius, FdD
n;m are the Moho-depth correction

coefficients, Yn;m are the surface spherical harmonic

functions of degree n and order m, and �n is the

maximum degree of spherical harmonics. The 3D

position is defined in the spherical coordinate system

r;Xð Þ, where r is the spherical radius and X ¼ /; kð Þ
denotes the spherical direction with the spherical

latitude / and longitude k. The spatial form of the

linearized observation equation was derived by TEN-

ZER and CHEN (2014b). The coefficients FdD
n;m in

Eq. (1) are given by:

FdD
n;m ¼ 3

�qEarth
Xnþ2

k¼0

n þ 2

k

� �
�1ð Þk

Rkþ1
dD kð Þ

n;m; ð2Þ

where �qEarth ¼ 5; 500 kg m-3 is the Earth’s mean

mass density (NOVÁK 2010). The coefficients

fdD kð Þ
n;m : k ¼ 0; 1; 2; . . .g are given by:

dD kð Þ
n ¼ 2n þ 1

4p
Dqc=m

ZZ

U

Dk
0 X0ð Þ dD X0ð Þ Pn tð Þ dX0

¼
Xn

m¼�n

dD kð Þ
n;m Yn;m Xð Þ; ð3Þ

where Pn is the Legendre polynomial of degree n, the

argument t ¼ cosw is defined for the spherical dis-

tance w, dX0 ¼ cos/0 d/0 dk0 is the infinitesimal

surface element on the unit sphere, and U ¼
X0 ¼ /0; k0ð Þ : /0 2 �p=2; p=2½ � ^ k0 2 0; 2pÞ½f g is

the full spatial angle.

The linearized observation equation in Eq. (1)

defines the relationship between the input gravity

data dgm and the unknown (and sought) Moho-depth

correction terms dD0 � dD X0ð Þ. The coefficients

FdD
n;m, which form the design matrix, are generated

by using the a-priori Moho depths D0
0 � D0 X0ð Þ

(typically obtained from an available seismic model)

in accordance with Eqs. (2) and (3). The Moho-depth

corrections dD0 are found by solving the gravimetric

inverse problem. Application of dD0 to the a-priori

(initial) Moho model D0
0 yields the final gravimetric

result D0; i.e., D0 ¼ D0
0 þ dD0.

2.2. Gravimetric Inverse Problem (for a Variable

Density Contrast)

Let us reformulate the gravimetric inverse prob-

lem of finding the Moho depth under the assumption

of the variable Moho density contrast Dqc=m. This
Moho density contrast is defined as the difference

between the (laterally varying) upper mantle density

qm and the (constant) reference crustal density qc, i.e.

Dqc=m Xð Þ ¼ qm Xð Þ � qc: ð4Þ

By analogy with Eq. (1), we then write:

dgm;Dq r;Xð Þ ¼ GM

R2

X�n

n¼0

R

r

� �nþ2
n þ 1

2n þ 1

Xn

m¼�n

FDqdD
n;m Yn;m Xð Þ;

ð5Þ
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where the complete crust-stripped gravity disturbance

dgm;Dq is defined for the variable Moho density con-

trast (discussed in the sect. 2.3). The Moho-depth

correction coefficients FDqdD
n;m are introduced in the

form:

FDqdD
n;m ¼ 3

�qEarth
Xnþ2

k¼0

n þ 2

k

� �
�1ð Þk

Rkþ1
Dqc=mdD

� � kð Þ

n;m
;

ð6Þ

where the coefficients f DqdDð Þ kð Þ
n;m : k ¼ 0; 1; 2; . . .g

are evaluated by discretizing the integral convolution:

DqdDð Þ kð Þ
n ¼ 2nþ 1

4p

ZZ

U

Dqc=m X0ð ÞDk
0 X0ð ÞdD X0ð Þ Pn tð Þ dX0

¼
Xn

m¼�n

DqdDð Þ kð Þ
n;m Yn;m Xð Þ:

ð7Þ

The coefficients FDqdD
n;m of the design matrix are

generated from the a-priori Moho depths D0
0 and the

(laterally varying) values of the Moho density

contrast Dqc=m in accordance with Eqs. (6) and (7).

The inverse solution of a system of observation

equations (defined in Eq. 5) yields the Moho-depth

correction terms dD0.

2.3. Gravimetric Forward Modeling

Computation of the complete crust-stripped grav-

ity disturbances dgm in Eq. (1) is realized in two

steps. First, the consolidated crust-stripped gravity

disturbances dgcs are obtained from the gravity

disturbances dg by applying the topographic correc-

tion and the stripping gravity corrections due to major

known anomalous crustal density structures. This

computation is realized in accordance with the

following scheme (TENZER et al. 2012b):

dgcs ¼ dg � gt þ gb þ gi þ gs þ gc; ð8Þ

where gt is the topographic gravity correction, and gb,

gi, gs, and gc are, respectively, the stripping gravity

corrections as a result of the ocean (bathymetry), ice,

sediments, and remaining anomalous density struc-

tures within the consolidated (crystalline) crust.

Application of the compensation attraction gcmp to

the values of dgcs yields the complete crust-stripped

gravity disturbances dgm (TENZER et al. 2012b)

dgm ¼ dgcs � gcmp: ð9Þ

By analogy with Eq. (9), the complete crust-

stripped gravity disturbances dgm;Dq, used as the input

gravity data for solving the gravimetric inverse

problem in Eq. (5), are obtained from the consoli-

dated crust-stripped gravity disturbances dgcs after

applying the compensation attraction gcmp;Dq. This

compensation attraction is defined for the variable

Moho density contrast Dqc=m (Eq. 4). The expres-

sions for dg, dgcs, gcmp and gcmp;Dq are reviewed next.

2.3.1 Consolidated Crust-stripped Gravity

Disturbances

The gravity disturbance dg at a point r;Xð Þ is defined
as (HEISKANEN and MORITZ 1967):

dg r;Xð Þ ¼ GM

R2

X�n

n¼0

Xn

m¼�n

R

r

� �nþ2

n þ 1ð Þ Tn;m Yn;m Xð Þ;

ð10Þ

where Tn;m are the numerical coefficients, which

describe the disturbing gravity potential T (i.e., the

difference between the Earth’s gravity potential and

normal gravity potentials). These coefficients are

obtained from the coefficients of a global geopoten-

tial model after subtracting the spherical harmonic

coefficients of the normal gravity field.

The gravity corrections applied in Eq. (8) are

computed by use of the numerical scheme developed

by TENZER et al. (2012a). This numerical scheme

utilizes the expression for gravitational attraction g

(defined as a negative radial derivative of the

respective gravitational potential V ; i.e.,

g ¼ �oV=or) generated by an arbitrary volumetric

mass layer with a variable depth and thickness while

having laterally distributed vertical mass density

variations. The gravity correction g at a point r;Xð Þ
is computed as:

g r;Xð Þ ¼ GM

R2

X�n

n¼0

Xn

m¼�n

R

r

� �nþ2

n þ 1ð Þ Vn;m Yn;m Xð Þ;

ð11Þ

where the potential coefficients Vn;m are given by:

Vn;m ¼ 3

�qEarth 2n þ 1ð Þ
XI

i¼0

FlðiÞn;m � FuðiÞn;m

� �
: ð12Þ
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The numerical coefficients fFlðiÞn;m; Fu
ðiÞ
n;m : i ¼

0; 1; . . .; Ig in Eq. (12) are given by:

FlðiÞn;m ¼
Xnþ2

k¼0

n þ 2

k

� �
�1ð Þk

k þ 1þ i

L kþ1þið Þ
n;m

Rkþ1
; ð13Þ

and

FuðiÞn;m ¼
Xnþ2

k¼0

n þ 2

k

� �
�1ð Þk

k þ 1þ i

U kþ1þið Þ
n;m

Rkþ1
: ð14Þ

The terms
Pn

m¼�n Ln;m Yn;m and
Pn

m¼�n Un;m Yn;m

define the spherical lower-bound and upper-bound

laterally distributed radial density variation functions

Ln and Un of degree n , respectively. These spherical

functions and their higher-order terms L kþ1þið Þ
n ;

�

U kþ1þið Þ
n : k ¼ 0; 1; . . .; n þ2 ; i ¼ 1; 2; . . .; Ig are

defined by:

L kþ1þið Þ
n

¼

2nþ1
4p

RR
U
q DU ;X

0ð ÞDkþ1
L X0ð ÞPn tð Þ dX0

¼
Pn

m¼�n

L kþ1ð Þ
n;m Yn;m Xð Þ i ¼ 0

2nþ1
4p

RR
U
b X0ð Þ ai X

0ð ÞDkþ1þi
L X0ð ÞPn tð Þ dX0

¼
Pn

m¼�n

L kþ1þið Þ
n;m Yn;m Xð Þ i ¼ 1; 2; . . .; I

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð15Þ

and

U kþ1þið Þ
n

¼

2nþ1
4p

RR
U
q DU ;X

0ð ÞDkþ1
U X0ð ÞPn tð Þ dX0

¼
Pn

m¼�n

U kþ1ð Þ
n;m Yn;m Xð Þ i¼ 0

2nþ1
4p

RR
U
b X0ð Þ ai X

0ð ÞDkþ1þi
U X0ð ÞPn tð Þ dX0

¼
Pn

m¼�n

U kþ1þið Þ
n;m Yn;m Xð Þ i¼ 1; 2; . . .; I

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð16Þ

For a specific volumetric layer, the mass density q
is either constant q, laterally-varying, q X0ð Þ or—the

most general case—approximated by the laterally

distributed radial density variation model by using

the following polynomial function (for each lateral

column):

q r0;X0ð Þ ¼ q DU ;X
0ð Þ

þ b X0ð Þ
XI

i¼1

ai X
0ð Þ R � r0ð Þi

;

for R � DU X0ð Þ � r0 [R � DL X0ð Þ; ð17Þ

where a nominal value of the lateral density

q DU ;X
0ð Þ is stipulated at depth DU and location X0.

This density distribution model describes the radial

density variation by means of the coefficients

ai : i ¼ 1; 2; . . .; If g and b within a volumetric

mass layer at a location X0. Alternatively, when

modeling the gravitational field of anomalous mass

density structures, the density contrast Dq r0;X0ð Þ of a
volumetric mass layer relative to the reference crustal

density qc is defined as:

Dq r0;X0ð Þ ¼ q r0;X0ð Þ � qc

¼ Dq DU;X
0ð Þ

þ b X0ð Þ
XI

i¼1

ai X
0ð Þ R� r0ð Þi ;

for R � DU X0ð Þ � r0 [R � DL X0ð Þ; ð18Þ

where Dq DU;X
0ð Þ is a nominal value of the lateral

density contrast.

From Eqs. (10) and (11), the spectral representa-

tion of the consolidated crust-stripped gravity

disturbance dgcs is given by:

dgcs r;Xð Þ ¼GM

R2

X�n

n¼0

Xn

m¼�n

R

r

� �nþ2

nþ 1ð Þ Tcs
n;m Yn;m Xð Þ;

ð19Þ

where the potential coefficients Tcs
n;m consist of the

following components:

Tcs
n;m ¼ Tn;m � Vt

n;m þ Vb
n;m þ Vi

n;m þ Vs
n;m þ Vc

n;m:

ð20Þ

Spherical harmonic analysis is used to generate the

gravitational potential coefficients of the topography

and density contrasts of the ocean, ice, sediments, and

consolidated crust (Vt
n;m, Vb

n;m, Vi
n;m, Vs

n;m and Vc
n;m) to a

specific degree of spherical harmonics by use of an
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available global crustal structure model (i.e., typically

provided by means of discrete density, depth, and

thickness data) in accordance with Eqs. (12–18).

2.3.2 Compensation Attraction (for a Constant

Density Contrast)

TENZER and CHEN (2014a) defined the compensation

attraction gcmp for the constant Moho density contrast

Dqc=m in the form:

gcmp r;Xð Þ ¼GM

R2

X�n

n¼0

1

2nþ 1

R

r

� �nþ3
nþ 1

nþ 3

Xn

m¼�n

FD
n;m Yn;m Xð Þ;

ð21Þ

where the numerical coefficients FD
n;m are given by:

FD
n;m ¼ � 3

�qEarth
Xnþ3

k¼1

n þ 3

k

� �
�1ð Þk

Rk
D kð Þ

n;m : ð22Þ

The Moho-depth spherical functions Dn and their

higher-order terms D kð Þ
n : k ¼ 2; 3; . . .

� �
are defined

as:

Dn ¼ 2n þ 1

4p
Dqc=m

ZZ

U

D0 X0ð Þ Pn tð Þ dX0

¼
Xn

m¼�n

Dn;m Yn;m Xð Þ; ð23Þ

and

D kð Þ
n ¼ 2n þ 1

4p
Dqc=m

ZZ

U

Dk
0 X0ð Þ Pn tð Þ dX0

¼
Xn

m¼�n

D kð Þ
n;m Yn;m Xð Þ; ð24Þ

where the Moho-depth coefficients Dn;m are gener-

ated from the a-priori Moho depths D0
0.

2.3.3 Compensation Attraction (for a Variable

Density Contrast)

By analogy with Eq. (21), we define the compensa-

tion attraction gcmp;Dq for the variable Moho density

contrast Dqc=m in the form:

gcmp;Dq r;Xð Þ ¼ GM

R2

X�n

n¼0

1

2n þ 1

R

r

� �nþ3
n þ 1

n þ 3

�
Xn

m¼�n

FDqD
n;m Yn;m Xð Þ; ð25Þ

where the numerical coefficients FDqD
n;m are given by:

FDqD
n;m ¼ � 3

�qEarth
Xnþ3

k¼1

n þ 3

k

� �
�1ð Þk

Rk
DqDð Þ kð Þ

n;m:

ð26Þ

The Moho-depth spherical functions DqDð Þn and

their higher-order terms f DqDð Þ kð Þ
n : k ¼ 2; 3; . . .g

are given by:

DqDð Þn ¼ 2n þ 1

4p

ZZ

U

Dqc=m X0ð ÞD0 X0ð Þ Pn tð Þ dX0

¼
Xn

m¼�n

DqDð Þn;m Yn;m Xð Þ; ð27Þ

and

DqDð Þ kð Þ
n ¼ 2n þ 1

4p

ZZ

U

Dqc=m X0ð ÞDk
0 X0ð Þ Pn tð Þ dX0

¼
Xn

m¼�n

DqDð Þ kð Þ
n;m Yn;m Xð Þ: ð28Þ

The coefficients DqDð Þn;m and their higher-

order terms f DqDð Þ kð Þ
n;m : k ¼ 2; 3; . . .g are gener-

ated from the a-priori Moho depths D0
0 and the

(laterally varying) values of the Moho density

contrast Dqc=m.

3. Results and Analysis

Two schemes for determination of crustal

thickness based on adopting uniform and variable

models of the Moho density contrast were used to

assess the gravitational effect of the upper mantle

density (which is implicitly incorporated in defi-

nition of the variable Moho density contrast) on

the Moho geometry. The gravity field quantities

were calculated globally on a 1 9 1 arc-deg sur-

face grid. The Moho depths were determined on a

1 9 1 arc-deg global grid, which is identical with

a position of gravity points. The gravity field

quantities and the Moho geometry were deter-

mined with a spectral resolution complete to

degree 180 of spherical harmonics (which corre-

sponds to a half-wavelength of 1 arc-deg, or

approximately 100 km on equator).
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3.1. Consolidated Crust-stripped Gravity

Disturbances

The expressions for the gravimetric forward

modeling were used to compute the gravity distur-

bances (Eq. 10) and the gravity corrections because of

major known crustal density structures (Eqs. 11–18).

The consolidated crust-stripped gravity disturbances

were then obtained from the gravity disturbances after

applying these gravity corrections in accordance with

Eq. (8). The gravity disturbances were generated by

using the coefficients of the global gravitational model

GOCO-03c (MAYER-GUERR et al. 2012; JIN et al. 2013).

The spherical harmonic terms of the normal gravity

field were computed in accordance with data from the

Geodetic Reference System 1980 (GRS-80; MORITZ

2000). The topographic correction and the stripping

gravity corrections due to bathymetry, ice, sediment,

and consolidated crustal layers were generated from

the coefficients of the Earth’s spectral crustal model

(ESCM180). The ESCM180 coefficients were com-

piled from the CRUST1.0 global seismic crustal model

(LASKE et al. 2012) by incorporating additional global

datasets for the topography, bathymetry, polar ice

sheets, and geoid surface (cf. CHEN and TENZER 2014).

Moreover, the depth-dependent seawater density was

used to define the ocean density contrast (GLADKIKH

and TENZER 2012; TENZER et al. 2012e). The density

contrasts were taken relative to the reference crustal

density of 2,670 kg m-3 (HINZE 2003).

Global results for topographic and crust compo-

nents stripping gravity corrections and the respective

gravity disturbances corrected for these effects have

been presented and discussed by Tenzer and Vajda

(2009a). Here we present only the final result of this

numerical procedure (Fig. 1). The consolidated crust-

stripped gravity disturbances vary globally between

-956 and 514 mGal, with a mean of 36 mGal and a

standard deviation of 277 mGal. As seen in Fig. 1,

these gravity disturbances are mostly positive over

oceans and negative over continents. The maxima

correspond to locations of the oceanic subduction

zones. The corresponding minima over oceans are

along the mid-oceanic ridges. The most pronounced

feature of the gravity map is the global tectonic

configuration of boundaries between the oceanic and

continental lithospheric plates, which is distinctively

marked by small (absolute) values of these gravity

disturbances. The largest negative gravity distur-

bances on land apply over orogens of the Tibetan

Plateau, Himalayas, and Andes.

3.2. Moho Density Contrast

We estimated the average value of the Moho

density contrast by minimizing a spatial correlation

between the complete crust-stripped gravity data

(generated from the ESCM180 coefficients) and

CRUST1.0 Moho geometry. Our results revealed

that the minimum correlation is obtained for a Moho

density contrast Dqc=m of 445 kg m-3.

We further evaluated the variable Moho density

contrast relative to the reference crustal density of

2,670 kg m-3 by using the 1 9 1 arc-deg data from

the CRUST1.0 upper mantle density model (Fig. 2).

As is apparent from statistics in Table 1, the Moho

density contrast varies over a relatively large range of

340–790 kg m-3. The density contrast shown in

Fig. 2 obviously does not represent the real density

contrast at the Moho interface (because it is defined

relative to a constant crustal density). To illustrate the

Moho density contrast more realistically (up to a level

of model uncertainties), we used the 1 9 1 arc-deg

data from the CRUST1.0 lower crust and upper mantle

model (Fig. 3, and statistics in Table 1). The density

contrast minima mark distinctively the mid-oceanic

ridges (i.e., divergent tectonic plate boundaries) and

the oceanic subduction zones (i.e., convergent tectonic

plate boundaries). The Moho density contrast under

the continental crust is typicallymore pronounced than

under the oceanic crust. The density contrast under the

oceanic crust is usually less than 350 kg m-3, whereas

it typically exceeds 400 kg m-3 under the continental

crust. Substantially smaller values of theMoho density

contrast under the continental crust are detected only

along the East-African and West-Antarctic rift zones

and the continent-to-continent collision zone of the

African and Eurasian tectonic plates (along the

Mediterranean Sea). The density contrast maxima

are under the orogens of the Himalayas, Tibetan

Plateau, and Andes. Some regional spatial variations

in the Moho density contrast are recognized under the

continental crust. For instance, large values of the
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Moho density contrast are seen under the cratonic

shields and platforms in East Antarctica, North

America, Amazonia, North-West Australia, West

Africa, Congo, Kalahari, Tanzania, and Fennoscandia.

3.3. Complete Crust-stripped Gravity Disturbances

The uniform and variable models of the Moho

density contrast were used to compute the compen-

sation attractions in accordance with Eqs. (21–24)

Figure 1
Consolidated crust-stripped gravity disturbances (in mGal)

Figure 2
Moho density contrast (in kg m-3) computed relative to the reference crustal density of 2,670 kg m-3 using the CRUST1.0 upper mantle

density model

Table 1

Statistics of the CRUST1.0 upper mantle and lower crust density

model and the Moho density contrast

CRUST1.0 density Min

(kg m-3)

Max

(kg m-3)

Mean

(kg m-3)

STD

(kg m-3)

Upper mantle—

2,670 kgm-3

340 790 662 49

Lower crust 2,850 3,050 3,002 66

Upper mantle 3,010 3,460 3,332 49

Upper mantle–

lower crust

10 610 330 92
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Figure 3
CRUST1.0 density contrast structure: a the lower crust density, b the upper mantle density, and c the Moho density contrast (in kg m-3)
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and Eqs. (25–28), respectively (Fig. 4, and statistics

in Table 2). These two types of the compensation

attraction were then used to compute the complete

crust-stripped gravity disturbances (Fig. 5, and sta-

tistics in Table 3) from the consolidated crust-

stripped gravity disturbances (shown in Fig. 1). The

compensation attraction computed by using the

constant Moho density contrast (of 445 kg m-3) has

a range of values of 1,367 mGal. The corresponding

compensation attraction computed by using the

variable Moho density contrast has a substantially

larger range of values of 2,450 mGal. The differences

between these two types of compensation attraction

(and consequently the respective values of the

complete crust-stripped gravity disturbances) vary

between -1,216 and 113 mGal, with a mean of -

421 mGal and a standard deviation of 162 mGal. As

Figure 4
Compensation attraction (in mGal) computed by using the constant (a) and variable (b) Moho density contrast models

Table 2

Statistics of the compensation attractions gcmp and gcmp;Dq

computed by using the constant and variable Moho density

contrast, respectively

Compensation

attraction

Min

(mGal)

Max

(mGal)

Mean

(mGal)

STD

(mGal)

gcmp 503 1,870 834 263

gcmp,Dq 636 3,086 1,256 421
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is apparent from Fig. 6, the largest differences are

under the orogens, where maxima of the compensa-

tion attraction (attributed to the largest crustal

thickness) are further magnified by large values of

the variable Moho density contrast (exceeding

600 kg m-3 in these locations).

The complete crust-stripped gravity disturbances

comprise mainly the gravitational signal of density

heterogeneities within the mantle lithosphere and the

sub-lithosphere mantle (including the core–mantle

boundary zone; PELTIER 2007). The gravitational

signature of the lithosphere density structure is, for

instance, evident over oceans (Fig. 5). The gravity

minima are along the mid-oceanic ridges (and

hotspots) and the corresponding gravity maxima are

Figure 5
Complete crust-stripped gravity disturbances (in mGal) computed using the constant (a) and variable (b) Moho density contrast models

Table 3

Statistics of the complete crust-stripped gravity disturbances dgm

and dgm;Dq computed by using the constant and variable Moho

density contrast, respectively

Complete crust-stripped

gravity disturbance

Min

(mGal)

Max

(mGal)

Mean

(mGal)

STD

(mGal)

dgm 453 1,306 871 90

dgm,Dq 809 2,166 1,292 192
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along the oceanic subduction zones. These features

are attributed to ocean-floor spreading because of

mantle convection (i.e., increasing density with age

of the oceanic lithosphere; cf. TENZER et al. 2012c).

The gravity minima over land distinctively mark the

continental rift zones (e.g., the West-Antarctic, East-

African, and Baikal rift zones). These gravity minima

thus coincide with divergent tectonic plate bound-

aries. In contrast, the gravity maxima are seen mainly

over the orogens of the Himalayas, Tibetan Plateau,

and Andes. Both types of consolidated crust-stripped

gravity disturbance are everywhere positive. This

systematic bias is because of the redundant gravita-

tional signal of (unmodeled) deep mantle density

heterogeneities.

3.4. Moho Geometry

The complete crust-stripped gravity disturbances

(Fig. 5a) were used to determine the Moho depths.

Here, we assumed a constant value of the Moho

density contrast (455 kg m-3). The system of obser-

vation equations was formulated in accordance with

Eq. (1). We further estimated the Moho geometry

from the complete crust-stripped gravity disturbances

(Fig. 5b) by assuming variable Moho density con-

trast. The system of observation equations was, in this

case, in accordance with Eq. (5).

The Moho geometry was determined in accor-

dance with the procedure described by TENZER and

CHEN (2014a). The inverse solution was performed

iteratively by use of a Gauss–Seidel scheme (YOUNG

1971). A condition of the convergence between

results of two successive steps (k and k ? 1) was

dDkþ1
n;m � dDk

n;m

���
���
2
� c, where c is a limit of conver-

gence. The iteration stopped when the difference

between two successive results was \0.1 %. The

values of a design matrix were computed by using

CRUST1.0 data. The a-priori error model was not

applied, because the CRUST1.0 Moho depth and

density contrast uncertainties are not known. We used

a simple regularization scheme to stabilize the ill-

posed solution. The regularization matrix was set

equal to the identity matrix. The selection criterion

for finding the optimum regularization variable was

based on minimizing the RMS of differences between

the gravimetric and seismic models. For the constant

Moho density contrast, the best solution (4.4 km) by

means of the RMS fit was obtained by using a

regulation variable of 1.8 9 10-7. For the variable

Moho density contrast, the best RMS fit (3.0 km) was

obtained for the same regulation variable.

The global maps of gravimetric solutions (Fig. 7)

revealed a typical pattern of the Moho geometry with

enhanced contrast between the thick continental crust

and thinner oceanic crust. The largest Moho depths

Figure 6
Differences (in mGal) between the complete crust-stripped gravity disturbances (shown in Fig. 5) computed by using the constant and variable

Moho density contrast models
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were confirmed under the Andes and Himalayas with

an extension beneath the Tibetan Plateau. Moho

depth minima were found under most of the oceanic

crust. Comparison of these two solutions, however,

revealed some substantial differences (Fig. 8). The

range of Moho depths is 97.0 km (for a uniform

model) and 70.9 km (for a variable model); the

statistics are given in Table 4. The largest Moho

depth differences were found under orogens (Fig. 8).

Moreover, these two gravimetric solutions differ in

average values (Table 4). It is also obvious that the

minimum Moho depths of 0.9 km in both results are

unrealistically small. Comparison of our gravimetric

results with the CRUST1.0 seismic model indicates

that these small values are because of the presence of

systematic bias attributed to unmodeled deep mantle

density heterogeneities (this issue is discussed further

in the sect 3.5) (Fig. 9).

3.5. Validation of Results

The RMS difference between the gravimetric

and seismic Moho depths (for a uniform model) is

4.4 km (cf. Table 5). The variable Moho density

Figure 7
Gravimetric Moho depths (in km) determined by using the constant (a) and variable (b) models of the Moho density contrast models

Vol. 172, (2015) Effect of the Upper Mantle Density Structure 1575



contrast improved the RMS fit of the gravimetric

solution with the seismic model by more than

30 %; the RMS difference is, in this case, only

3.0 km. Moreover, large discrepancies between

the gravimetric and seismic models were signif-

icantly reduced in some regions (Fig. 10). Both

gravimetric solutions are significantly biased rel-

ative to the CRUST1.0 seismic model; the mean

of the differences is 9.7 km for the variable

model and 7.8 km for the uniform model. This

bias causes unrealistically small Moho depths

under the oceanic crustal structures. Moreover,

application of the constant Moho density contrast

yields large Moho depths beneath orogens of the

Tibetan Plateau, Himalayas, and central Andes.

Application of the variable density contrast

model, on the other hand, improved the agreement

between the gravimetric and seismic models for

these regions. This bias is attributed to large,

systematically positive values of the complete

crust-stripped gravity disturbances (Fig. 5). A

prevailing long-wavelength pattern in these grav-

ity disturbances was explained by the redundant

gravitational signal of (unmodeled) mantle heter-

ogeneities (discussed in the sect. 3.3). There are

additional uncertainties in the ESCM180 and

CRUST1.0 models, which affect the disagreement

between the gravimetric and seismic models.

3.6. Spectral Analysis

To investigate the power spectra of the gravity

and Moho data (complete to degree 180 of spherical

harmonics), we calculated their degree variances and

respective cumulative degree variances. This compu-

tation was performed for the coefficients Tcs
n;m of the

consolidated crust-stripped gravity disturbances. The

same computation was conducted for the coefficients

Tm
n;m and Tm;Dq

n;m of the complete crust-stripped gravity

disturbances. The spectral characteristics were also

computed for the CRUST1.0 Moho-depth coefficients

DCRUST1:0
n;m and for the gravimetric Moho-depth coef-

ficients Dn;m and DDq
n;m (for the uniform and variable

Moho density contrast).

The degree variances of the gravity field r2n dgð Þ
and the Moho geometry r2n Dð Þ were calculated in

Figure 8
Moho depth differences (in km) between the gravimetric solutions (shown in Fig. 7) determined by using the variable and constant models of

the Moho density contrast

Table 4

Statistics of the Moho depths; where DCRUST1:0 are the CRUST1.0

Moho depths, and D and DDq are the gravimetric Moho depths

determined by using the constant and variable Moho density

contrast, respectively

Moho depth Min (km) Max (km) Mean (km) STD (km)

D 0.9 97.9 15.1 15.0

DDq 0.9 71.8 13.2 12.4

DCRUST1.0 7.4 74.8 22.9 12.4
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accordance with the generalized Parseval theorem

(GELDEREN VAN and KOOP 1997):

r2n dgð Þ ¼
Xn

m¼�n

Tn;m

� �2

; r2n Dð Þ ¼
Xn

m¼�n

Dn;m

� �2

ð29Þ

The corresponding cumulative degree variances

were computed from:

HN dgð Þ ¼
XN

n¼2

r2n dgð Þ;HN Dð Þ ¼
XN

n¼2

r2n Dð Þ ð30Þ

We also analyzed spectral correlations of the

consolidated and complete crust-stripped gravity

disturbances with the Moho geometry. For this

purpose, we computed the degree-correlation coeffi-

cients between Tn;m and Dn;m as (PHILLIPS and

LAMBECK 1980):

h2n dg;Dð Þ ¼

Pn

m¼�n

Tn;m Dn;m

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2n dgð Þ r2n Dð Þ

p ; ð31Þ

As is apparent from Fig. 11a, the signal of Tcs
n;m

has the largest energy at long-to-medium wave-

lengths (n\ 70). The degree variances of Tcs
n;m and

Tm;Dq
n;m are very similar at 70\ n\100, whereas the

signal of Tm;Dq
n;m is slightly more pronounced at

n[ 100. The signal of Tm
n;m has the smallest energy

at n\ 120 and becomes similar to Tcs
n;m at n[ 120.

Interestingly, the signals of Tm
n;m and Tm;Dq

n;m occur

almost completely within the lowest spherical har-

monics (n\ 3) whereas the contribution from the

remaining part of the range of gravity (n C 3) is

much smaller (Fig. 11b).

Both gravimetric Moho solutions Dn;m and DDq
n;m

are biased relative to the CRUST1.0 Moho model

DCRUST1:0
n;m at n = 0 (Fig. 12b). As is apparent from

Fig. 12a, the signal of DDq
n;m is more prominent at

20\ n\110 and becomes similar to DCRUST1:0
n;m at

n[ 110. The degree variances of Dn;m decrease

slightly faster than for DCRUST1:0
n;m and DDq

n;m at n[ 60.

Except for n = 0, the spectral correlations of Tcs
n;m

withDn;m,D
Dq
n;m andDCRUST1:0

n;m are everywhere negative

(Fig. 13a), with the highest (absolute) correlations

([0.95) at n\ 5. The correlation between Tcs
n;m and

DCRUST1:0
n;m decreases almost monotonously decreases

(in the absolute sense) to approximately -0.25 (at

n[ 160). In contrast, the correlations of Tcs
n;m withDn;m

and DDq
n;m decrease more rapidly (in the absolute sense)

at 40\ n\110 and become almost unchanged

(approx. -0.25) at n[ 110.

The correlation spectra of Tm
n;m with Dn;m, DDq

n;m

and DCRUST1:0
n;m are very similar (Fig. 13b). At n\ 30,

these correlations oscillate around zero, then slightly

increase (to approx. 0.2) at 30\ n\80 and remain

mostly within 0.2–0.3 at n[ 80.

The correlation spectra of Tm;Dq
n;m with Dn;m, DDq

n;m

and DCRUST1:0
n;m (Fig. 13c) have a different trend than

Figure 9
CRUST1.0 Moho model (in km)
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the respective correlation spectra of Tm
n;m (Fig. 13b).

The correlations are, in this case, everywhere

positive. The largest correlations ([0.6) are at

n\ 14. At n[ 20, the correlation spectra oscillate

at approximately 0.5, except for the correlation

between Tm;Dq
n;m and DCRUST1:0

n;m , which shows some

weakening at n[ 100 (to approx. 0.35 at n = 180).

4. Discussion

Application of gravity corrections to the GOCO-

03c gravity disturbances removed the gravitational

signal attributed to the topography and to crustal

density heterogeneities. The consolidated crust-

stripped gravity disturbances thus comprise mainly

Figure 10
Moho depth differences (in km) between the CRUST1.0 (shown in Fig. 9) and gravimetric solutions (shown in Fig. 7) determined by using

the constant (a) and variable (b) Moho density contrast models

Table 5

Statistics of the Moho depth differences

Moho depth

difference

Min

(km)

Max

(km)

Mean

(km)

RMS

(km)

DDq - D -26.3 8.1 -1.9 2.6

DCRUST1.0 - DDq -11.7 30.7 9.7 3.0

DCRUST1.0 - D -34.6 29.2 7.8 4.4

The notation is explained in Table 4
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the gravitational signature of the Moho geometry.

This is evident from the gravity map in Fig. 1. These

gravity disturbances are highly spatially correlated

with the Moho geometry. TENZER et al. (2014) dem-

onstrated that this (absolute) correlation is 0.98.

Similarly, a very high correlation was reported by

TENZER et al. (2009b, 2012c). Moreover, the spectral

correlation analysis in Fig. 13a revealed that this

correlation is particularly pronounced at long-to-

medium wavelengths. In a higher-frequency part of

the gravity spectrum, this correlation decreases (in

the absolute sense), probably because of weakening

of the Moho profile and possibly also because of

noise in gravity and crustal structure models. The

consolidated crust-stripped gravity disturbances also

contain the redundant gravitational signal of (un-

modeled) mantle heterogeneities, especially at long

wavelengths, where we also observe the largest

(absolute) correlation of these gravity data with the

Moho geometry. A possible explanation is that the

Moho geometry is highly correlated with the mantle

density structure. To examine this assumption, we

plotted the spectral correlation of the CRUST1.0

upper mantle density with the Moho geometry

(Fig. 14). It is apparent the profile of the (upper)

mantle density structure in the Moho geometry is

particularly enhanced at long wavelengths. Moreover,

we can see that the mantle density structure is more

pronounced in Fig. 5b. Application of the generalized

compensation model thus revealed more realistically
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the mantle density structure. This is not surprising,

because the upper mantle density structure was used

to compute the variable Moho density constant

(which was adopted in the definition of the general-

ized compensation scheme). This finding is also

confirmed by the results from spectral correlation

analysis. Application of the standard compensation

model removed almost entirely the Moho signature

from the whole spectrum of the complete crust-

stripped gravity disturbances. As is apparent from

Fig. 13b, the correlation between the complete crust-

stripped gravity disturbances dgm and the Moho

geometry is almost completely absent. In contrast, the

complete crust-stripped gravity disturbances dgm;Dq

(obtained after applying the generalized compensa-

tion scheme) are highly spatially correlated with the

Moho profile in the long-wavelength gravity spec-

trum (Fig. 13c). This is explained by the fact that the

upper mantle structure and the Moho geometry are

also highly spatially correlated at the long wave-

lengths (Fig. 14).

5. Summary and Concluding Remarks

We have formulated the gravimetric inverse

problem for determination of Moho geometry based
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Correlation spectrum of a the consolidated crust-stripped gravity

disturbances dgcs, b the complete crust-stripped gravity distur-

bances dgm (for the constant Moho density contrast), and c the

complete crust-stripped gravity disturbances dgm;Dq(for the variable

Moho density contrast) with the Moho geometry (DCRUST1:0, the
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constant Moho density contrast; and DDq, the gravimetric Moho
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1580 R. Tenzer et al. Pure Appl. Geophys.



on adopting the generalized compensation model.

This model takes into consideration the variable

depth and density of compensation (defined by means

of the variable Moho depth and density contrast). The

generalized compensation model was compared with

the standard compensation model (which assumes

only a variable Moho depth). This formulation differs

from the generalized VMMmodel defined by SJÖBERG

and BAGHERBANDI (2011). They formulated the VMM

inverse problem of isostasy for simultaneous esti-

mation of the Moho depth and density contrast. In our

inversion scheme, we estimate the Moho depth

only—the variable Moho density contrast is fixed.

The Moho density contrast (defined relative a the

reference crustal density of 2,670 kg m-3) was found

to be 445 kg m-3. This value agrees very closely

with the global average of 448 ± 187 kg m-3 esti-

mated by SJÖBERG and BAGHERBANDI (2011). These

two estimates differ by approximately 7 % from the

value of 485 kg m-3 reported by TENZER et al.

(2012c) and the value of 480 kg m-3 adopted in the

definition of the PREM (DZIEWONSKI and ANDERSON

1981, Table 1).

We used CRUST1.0 data for the upper mantle

density to derive the laterally varying model of the

Moho density contrast relative to the reference crustal

density. This model does not furnish the real density

contrast at the Moho interface, because it is not

measured relative to the overlying lower crustal

density. Such a definition is, however, equivalent to

the principle of computing the stripping gravity cor-

rections, in which the density contrasts of crustal

structures are again measured relative to the reference

crustal density.

Analysis of the CRUST1.0 lower crust and upper

mantle density variations showed that the ‘‘real’’

Moho density contrast varies between 10 and 610 kg/

m-3. This density contrast resembles, to some extent,

the global tectonic configuration. The density contrast

under the oceanic crust is typically less pronounced

than under the continental crust. The density contrast

minima mark distinctively the divergent tectonic

plate boundaries. The density contrast maxima are

typically found under the orogens and cratonic

shields and platforms.

The variable Moho density contrast in our model

(implicitly) incorporated information about the

density structure within the upper mantle and con-

sequently its effect on Moho geometry. In the

absence of a 3D mantle density model, however,

density heterogeneities within the whole mantle

could not be directly modeled and corrected for. The

input gravity data used for the Moho gravity inver-

sion thus comprised also the redundant gravitational

signal of (unmodeled) mantle heterogeneities, which

introduced large systematic bias into the gravimetric

Moho results. A possible technique for removing this

systematic bias was proposed by BAGHERBANDI and

SJÖBERG (2012). They used the method of ECKHARDT

(1983) and BOWIN et al. (1986) to estimate the max-

imum number of long-wavelength spherical harmonic

terms which should be removed from the gravity

field. The principle of this procedure was based on

finding the representative depth of gravity signal

attributed to each spherical harmonic degree term.

The spherical harmonics which have a depth below a

specific limit (chosen, in our case, as the maximum

depth of the lithosphere) are then removed from the

gravity field. The input gravity data also contain

errors because of gravity and crustal model uncer-

tainties. TENZER et al. (2012b) estimated that the

relative errors in these gravity data can reach

approximately 10 %. Similar relative errors might be

expected in the gravimetrically determined Moho

depths.

The isostatic mass balance depends on loading

and effective elastic thickness, rigidity, rheology of

the lithosphere, and viscosity of the asthenosphere

(WATTS 2001). Moreover, the glacial isostatic

adjustment, present-day glacial melting, plate motion,

mantle convection, and other geodynamic processes

contribute to the overall isostatic balance. The

gravimetric methods thus (often) cannot model real-

istically the actual Moho geometry without use of

additional constraining information (retrieved mainly

from results of seismic surveys). Despite these theo-

retical deficiencies of gravimetric methods, the

accuracy of Moho determination by using gravity

data can be improved substantially by incorporating

all available information on the Earth’s density

structure. As we demonstrated in this study, use of the

upper mantle density model improved the RMS fit of

the gravimetric result to the seismic model by

approximately 30 %. The most significant
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improvement of the Moho geometry was observed in

regions where the globally averaged value cannot

accurately approximate the actual Moho density

contrast, for instance, under continent-to-continent

and ocean-to-continent convergent tectonic plate

boundaries (characterized by large variations in

density contrast).
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