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Hyperspectral Image Classification With
Re-Attention Agent Transformer and

Multiscale Partial Convolution
Junding Sun , Hongyuan Zhang, Jianlong Wang , Haifeng Sima , and Shuanggen Jin , Senior Member, IEEE

Abstract—Convolutional neural networks (CNNs) focus solely
on extracting local features, lacking the ability to capture global
spectral-spatial information. Meanwhile, Transformers effectively
learn the overall distribution and mutual relationships of spectral
features but overlook the extraction of local spatial features. To
fully leverage the complementary advantages of both techniques,
the article proposes a re-attention agent transformer and multiscale
partial convolution (RAT-MPC) for hyperspectral image classifica-
tion. It effectively utilizes the local learning capability of CNNs
and the long-range modeling ability of Transformers. Specifically,
the multiscale spatial-spectral feature learning module employs a
strategy of split, refactoring, fusion to extract shallow feature infor-
mation. Subsequently, the dual branch feature processing module
handles the obtained features from both local and global perspec-
tives. On one hand, the re-attention agent transformer branch is
employed to learn complex global spectral relationships. On the
other hand, multiscale partial convolutions are utilized to further
learn abstract spatial features. Finally, the multilevel feature fusion
attention module is designed to fully use features from different
receptive fields and depths. In addition, it incorporates an enhanced
coordinate attention mechanism to reinforce spatial detail features.
To evaluation the proposed RAT-MPC effectiveness, 5%, 0.7%,
and 0.1% of labeled samples are selected from the Indian Pines
(IP), Pavia University (PU), and WHU-Hi-LongKou (LK) datasets,
respectively. The experimental results demonstrate that the pro-
posed network exhibited exceptional classification performance,
achieving overall accuracies of 96.66%, 98.20%, and 98.44% on
the IP, PU, and LK datasets, respectively. Compared with the
latest CNN-Transformer related method DBCTNet, the proposed
method achieves improvements of 1.36%, 0.68%, and 1.38% in
overall accuracies, respectively.
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I. INTRODUCTION

UNLIKE ordinary color images and multispectral images,
hyperspectral images provide richer spectral information

by capturing a large number of narrow and continuous spectral
bands. The information enables a more precise analysis of the
composition and characteristics of surface features. Therefore,
hyperspectral imaging has extensive applications in fields such
as food safety, mineral exploration, precision agriculture, land
cover mapping, and environmental conservation. Hyperspectral
image classification techniques utilize rich spectral and spatial
information to assign unique categories to different types of
surface features, generating a classification map that reflects
their distribution.

In the early stages, traditional hyperspectral image classifi-
cation methods comprised two phases: Feature processing and
classification. Firstly, researchers employ feature extraction or
dimensionality reduction techniques to process hyperspectral
data, such as Principal Component Analysis (PCA) [1] and Local
Binary Patterns [2]. Subsequently, methods such as k-Nearest
Neighbors [3], Support Vector Machines [4], [5], and Random
Forests [6], [7] are used to generate classification maps. How-
ever, with the increase in hyperspectral image bands and the
expansion of application scenarios, the feature extraction and
data fitting capabilities of traditional methods struggle to achieve
satisfactory results when handling complex data.

In recent years, the application of deep learning technologies
has significantly advanced the performance of hyperspectral
image classification [8], [9], [10], [11]. Convolutional neural
networks (CNNs), which capture local features and spatial infor-
mation of hyperspectral data through convolutional operations,
have become a widely used approach in hyperspectral image
classification tasks [12], [13], [14], [15]. Hu et al. [16] utilized
a 1-D CNNs to learn spectral features from the spectral domain
for classification. Cheng et al. [17] utilized convolutional kernels
of varying sizes to capture spatial information across different
spectral bands. Next, Pan et al. [18] employed multiscale 3-D
convolutions to extract important spectral and spatial features
and enhanced the connectivity between the features through a
special fusion strategy. On this basis, Ghaderizadeh et al. [19]
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constructed a 3-D–2-D hybrid CNN. This method utilizes depth-
wise separable convolutional blocks and fast convolutional
blocks to extract spectral-spatial features at a lower computa-
tional cost, while employing 2-D CNN to learn additional spatial
features. CNNs utilize multiscale feature extraction to capture
finer spectral and spatial information [20], [21], [22]. However,
the lack of global feature learning makes it challenging to handle
complex types of land cover [23], [24], [25], [26].

Transformer-based model enhances understanding of spatial
continuity and spectral complexity through self attention mech-
anisms, thereby improving its ability to recognize features in
complex scenes [27], [28], [29]. Hong et al. [30] proposed
SpectralFormer, which uses Transformers to capture long-range
spectral dependencies and incorporates adaptive residual con-
nections to minimize the loss of critical features. Mei et al. [31]
employed a hierarchical approach to construct a Transformer
that extracts discriminative spatial and spectral features, while
reducing computational cost by decreasing the number of chan-
nels. Shi et al. [32] combined the strengths of Transformers
and multiscale features by using token inputs of different scales
in two branches for feature extraction. The strength of the
Transformer in handling long-range sequences enables it to learn
key features from complex scenes. However, Transformer based
methods require larger training datasets and extended training
time. In addition, the lack of focus on local detail limits the full
utilization of hyperspectral data [33], [34], [35].

Combining CNN and Transformer architectures allows for
the simultaneous utilization of local detail and global context
information, providing a more comprehensive feature represen-
tation [36], [37]. Sun et al. [38] developed the spectral-spatial
feature tokenization transformer, which sequentially employs
CNN and Transformer to efficiently learn low-mid-depth se-
mantic features of hyperspectral data. Hu et al. [39] proposed the
multiscale and multiangle attention network, which employs two
convolutional mappings to extract spatial-spectral features. Sub-
sequently, a multiangle attention module and a window attention
module are utilized for feature learning and representation. The
sequential cascading of CNN and Transformer limits effective
collaboration between the two architectures. Yu et al. [40] utilize
CNN and ViT to extract local and nonlocal features, respectively,
with interaction modules introduced to enable mutual compen-
sation between local and global features. To fully leverage the
feature information across different hierarchical levels. Yang
et al. [41] proposed an interactive transformer and CNN with a
multilevel feature fusion network. The framework employs four
parallel layers of Transformer and CNN to interactively extract
features across different perceptual domains and depths, using
fused features to achieve classification results. Nevertheless,
these methodologies exhibit limitations in discerning subtle
variations among ground objects within complex hyperspectral
scenarios.

Based on the aforementioned analysis, this article proposes
a novel re-attention agent transformer and multiscale partial
convolution (RAT-MPC) for hyperspectral image classifica-
tion. The methodology integrates multiscale convolution, Trans-
former mechanisms, and multilayer feature fusion modules to
capture spatial-spectral information across diverse depths and

perceptual fields. Initially, a multiscale spectral-spatial feature
learning module is engineered to enhance and amalgamate rich
spectral-spatial characteristics, thereby elevating the representa-
tional capacity of hyperspectral data. Subsequently, inspired by
re-attention [42] and agent attention [43], an agent Transformer
module incorporating re-attention mechanisms is developed to
capture nonlocal features. Moreover, multiscale partial convo-
lution (MPConv) is utilized to efficiently extract local spatial
features while minimizing computational redundancy. The fea-
tures obtained from both branches are summed to effectively
synthesize information from diverse perceptual fields, thereby
enhancing feature expressiveness. Next, a multilayer feature
fusion attention module consolidates the more representative in-
formation obtained across different layers. Finally, an enhanced
coordinate attention mechanism augments local spatial detail
features, elevating the model’s capacity for fine-grained feature
recognition.

The main innovations of this article are summarized as fol-
lows.

1) A Multiscale Spectral-Spatial Feature Learning (MSSFL)
module is constructed, employing a split-refactoring-
fusion strategy to acquire spectral-spatial fusion features
of ground objects across multiple scales while simultane-
ously reducing computational costs.

2) A Re-attention Agent Transformer (RAT) module is en-
gineered, incorporating agent matrices within the Trans-
former architecture to achieve an optimal balance between
computational efficiency and learning capacity. Moreover,
transformation matrices are employed to enrich Trans-
former attention layer features, preventing the issue of
attention maps becoming homogeneous as Transformer
layers deepen.

3) A Multiscale Partial Convolution (MPConv) operation is
incorporated into the proposed dual-branch local-global
feature processing module. This operation performs mul-
tiscale processing on local spatial information, enabling
the acquisition of fine-grained spatial features while min-
imizing redundant information utilization.

4) The Multilevel Feature Fusion Attention (MFFA) module
enhances overall information expressiveness by amalga-
mating low level information from shallow layers with
high-level semantic information from deeper layers. Fur-
thermore, spatial attention mechanisms are applied to
the fused information to accentuate fine-grained spatial
representations.

The rest of this article is organized as follows. Section II first
describes the proposed RAT-MPC for hyperspectral image clas-
sification and then provides a detailed description of modules of
MSSFL, RAT, MPConv, and MFFA. Section III introduces the
three datasets and evaluation indicators used in this paper, as well
as the hyperparameter settings. It also presents the experimental
results of the proposed RAT-MPC and compares with the current
eight methods in view of the quantitative and qualitative anal-
yses. A comprehensive discussion of the proposed method are
given in Section IV, including ablation experiments, influence
of patch size, selection of training sample amount and high
dimensional feature visualization. Finally, Section V concludes
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Fig. 1. Whole framework of the proposed RAT-MPC. The original hyperspectral data can be represented as M ∈ RH×W×B , where H, W, and B denote the
height, width, and number of bands of the hyperspectral image, respectively. M consists of labeled pixels and unlabeled pixels. Each pixel Mi,j ∈ R1×1×B

in M{e} corresponds to a class B = {B1, . . . ,B0}, o = 1, . . ., O. Here, O represents the number of land cover classes in the dataset, and i = 1, . . .,H and
j = 1, . . .,W denote the position of pixel Mi,j in the hyperspectral image M. M{e} represents the set of e labeled pixels in M. In the initialization phase,
the PCA algorithm is used to process hyperspectral data, reducing the number of bands from B to b. The reduces the spectral dimensionality and minimizes the
impact of redundant information. The hyperspectral data after PCA dimension reduction are expressed as Mpca ∈ RH×W×b, where b is the number of spectral
bands after PCA. To effectively utilize the spatial context and spectral features of hyperspectral data, the dimensionally reduced hyperspectral image Mpca is
segmented into small 3-D cubical patches H, centered on labeled pixels. Each cubical patch Hi,j ∈ Rs×s×b in H encompasses spectral and spatial information
within a spatial window of s× s. The class of the cubical patch Hi,j depends on the class of its central pixel Mi,j . Subsequently, a 3× 3× 7 3-D convolutional
layer is used for the initial extraction of spectral and spatial information and to increase the number of channels in the output feature map. This results in an output
feature X ∈ Rc×s×s×b. Next, MSSFL, DLGFP, and MFFA are used to extract multiscale spectral-spatial information, global spectral information, local spatial
information, and multilevel feature information, respectively. Finally, global average pooling and a fully connected layer are employed to obtain the classification
results.

this article with some remarks and hints at plausible future
research lines.

II. METHODOLOGY

A. Whole Frame of Proposed RAT-MPC

An overview of the proposed RAT-MPC is illustrated in
Fig. 1. The constructed framework divides hyperspectral images
into fixed sized patches, which then undergo three main stages
to extract spectral-spatial information for classification. The
three main stages include: Initialization, feature extraction, and
classification. In the initialization phase, Principal Component
Analysis (PCA) is used to reduce the number of bands in the
hyperspectral image, and a 3-D convolution is applied to adjust
the number of channels. The feature extraction stage includes
three parts: Multiscale spectral-spatial information extraction,
local-global feature learning, and cross level feature fusion.
The MSSFL module is used to extract shallow spectral-spatial
information from the initialized feature map. The dual branch
local-global feature processing module (DLGFP) module is
employed to learn global spectral and local spatial features from
the shallow features. The MFFA module is used to process
information from different depths and perceptual fields. In the
classification stage, the obtained features are passed through
a global average pooling layer and a fully connected layer to
generate the classification result. The following content will

provide a detailed explanation of the specific design of each
module within the RAT-MPC method.

B. Multiscale Spectral-Spatial Feature Learning Module

As shown in Fig. 1, the output featureX ∈ Rc×s×s×b from the
initialization stage serves as the input to the MSSFL module. To
comprehensively capture the rich spectral and spatial features
of hyperspectral images and enhance adaptability to complex
scenes, A multiscale spectral-spatial feature learning module,
as shown in Fig. 2, is introduced. This module consists of three
parts: Split, Refactoring, and Fusion.

Split: As shown in the splitting part of Fig. 2, a given feature
cube X is split along the channel dimension into two parts, with
channel counts of αc and (1− α)c, respectively. Here, α serves
as the split ratio, with a value range of 0 ≤ α ≤ 1. The initial
value of α is set to 0.5, meaning X is evenly divided into two
parts along the channel dimension. After the splitting operation,
X is divided into the upper part Xup and the lower part Xlow.

Refactoring: Xup, serving as the spectral-spatial feature
enricher, is fed back into the upper reconstruction stage. A
multiscale 3-D CNN operation is applied to Xup to extract
and enhance spectral-spatial information. The principle is that
land-cover features of varying sizes and structures exhibit
different characteristics at different scales, and the variations
across spectral bands display diversity. Therefore, multiscale
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Fig. 2. Structure of the MSSFL module. MSSFL extracts multiscale spectral-spatial features through three stages: Split,Refactoring, and Fusion. Split: The
feature map is divided along the channel dimension into two parts—one with αc channels and the other with αc and (1− α)c channels. Refactoring: The upper
reconstruction stage is used to enrich spectral-spatial features, while the lower reconstruction stage serves as a complement to the upper stage. Fuse: Features from
both reconstruction stages are processed via convolution and then concatenated along the channel dimension.

features are more beneficial in enhancing the ability of the
subsequent module to perceive complex spectral and spatial
structures. Specifically, convolution operations with different
kernel sizes are applied to the same Xup to capture spectral and
spatial information at different scales. The resulting multiscale
information is then aggregated along the channel dimension,
forming an information-rich feature map Y1. As shown in the
refactoring part of Fig. 2, the upper reconstruction stage can be
expressed as

Y1 = Conv3D3×3×3,1(Xup)� Conv3D3×3×3,2(Xup)

� Conv3D3×3×3,3(Xup) (1)

where Conv3D3×3×3.1(·), Conv3D3×3×3,2(·), and
Conv3D3×3×3,3(·) represent 3-D convolution operations
with a kernel size of 3× 3× 3 and dilation rates of 1, 2, and
3, respectively. The symbol � represents the concatenation
operation. Xup ∈ Rαc×s×s×b and Y1 ∈ R3αc×s×s×b represent
the input and output feature maps of the upper reconstruction
stage, respectively. Overall, the upper reconstruction stage uses
the fusion of different sizes convolution kernels on the same
feature map Xup capturing rich spectral and spatial information
in Y1 with minimal computational cost.
Xlow is used as the input for the lower reconstruction stage.

In this stage, a 3-D convolution layer with a 1× 1× 1 ker-
nel is utilized to capture shallow hidden detail information as
a supplement to the upper reconstruction stage. In addition,
the captured detail information is fused with Xlow to form
the output Y2 of the lower reconstruction stage, enriching the
feature representation. The lower reconstruction stage can be

expressed as

Y2 = Conv3D
1×1×1

(X
low

)�X
low

(2)

where Conv3D1×1×1(·) represents a 3-D convolution opera-
tion with a kernel size of 1× 1× 1. Xlow ∈ R(1−α)c×s×s×b

and Y2 ∈ R2(1−α)c×s×s×b denote the input and output feature
maps of the lower reconstruction stage, respectively. In simple
terms, the lower reconstruction stage reuses the original infor-
mation Xlow and applies a 1× 1× 1 convolution to obtain de-
tailed spectral-spatial feature representations as supplementary
information.

Fusion: A 1× 1× 1 convolution is applied to the output
features Y1 and Y2 to reduce the number of channels and
enhance information flow between channels. Subsequently, the
dimension-reduced information is concatenated along the chan-
nel dimension, resulting in a more comprehensive feature rep-
resentation Y. The fusion stage is as follows:

Y = ReLU(BN(Conv3D
1×1×1

(Y1)))

� ReLU(BN(Conv3D
1×1×1

(Y2))) (3)

where BN(·) represents batch normalization, and RELU(·) de-
notes the activation function. Y ∈ Rαc×1×1×1 represents the
output feature map obtained from the MSSFL module.

The MSSFL model employs depthwise dilated convolutions
with varying receptive field sizes to capture multiscale spectral-
spatial features and utilizes 1× 1× 1 convolutions to learn
hidden detail information as a supplement. At a lower com-
putational cost, this approach enriches the representation of
information, improving the classification performance of the
model.
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Fig. 3. Structure of the DLGFP module. DLGFP consists of two components: the RAT branch and the MPConv branch. The RAT branch is used to capture global
spectral dependencies, while the MPConv branch is employed to extract local spatial information.

C. Dual Branch Local-Global Feature Processing Module

To effectively learn data diversity from shallow features, this
article proposes the DLGFP module. This module learns global
spectral and local spatial information through two separate
branches to obtain more discriminative feature representations
for classification tasks. Fig. 3 illustrates the structure of the
proposed DLGFP model. The first branch, known as the (RAT
branch, captures complex relationships between different bands.
The second branch, called the multiscale partial convolution
branch, utilizes MPConv to further extract abstract local spatial
information. Subsequently, with the help of 3-D convolution,
the feature dimensions extracted by the RAT branch are trans-
formed to match the size of those from the MPConv branch.
Finally, element-wise addition is used to fuse the global spectral
information and local spatial information.

1) Re-Attention Agent Transformer Branch: CNN can effec-
tively extract local spatial features such as textures and edges,
making better use of the spatial correlation between adjacent
pixels in hyperspectral images. However, it struggles to cap-
ture long-range dependencies and global relationships between
different bands. In contrast, the Transformer can capture fea-
ture correlations at any position within the input data, making
it particularly suitable for modeling long-range dependencies
between different bands in hyperspectral images. However,
the computational complexity of its self attention mechanism
grows quadratically with the increase in data size, resulting
in high computational costs when processing high-dimensional
data like hyperspectral images. The method of using a proxy
matrix in the Transformer reduces the number of query tokens
to balance the computational efficiency and learning capacity
of the Transformer. In addition, the re-attention method en-
hances the diversity of hyperspectral image features to prevent
attention maps from becoming overly similar as Transformer

layers deepen. As shown in Fig. 4, the RAT primarily consists of
convolutional layers, an Agent Re-Attention (ARA) mechanism,
and normalization layers.

As observed in Fig. 4, a 3× 3× 3 3-D convolution is used
to integrate channel information. The resulting feature G′ pro-
vides a more distinctive feature representation for subsequent
classification tasks. Subsequently, ARA applies a 3× 3× 1
convolution to the integrated features to generate the query
matrix Q, key matrix K, and value matrix V. This operation
maintains consistency along the spectral dimension while incor-
porating surrounding spatial information. Fig. 5 illustrates the
workflow of ARA. A pooling operation is used to aggregate the
neighboring band information of Q, generating a proxy matrix A
to reduce the computational cost of the model. The proxy matrix
A is treated as the query matrix to perform attention calculations
with the key matrix K and value matrix V, effectively learning
long-range dependencies between different bands and yielding
the global spectral feature VA. Subsequently, the original query
matrix Q is used to perform a second attention calculation, with
the proxy matrix A as the key matrix and VA as the value matrix.
This operation broadcasts the global spectral information of
VA to each band in the query matrix, enhancing the capture
of detailed information. In addition, a learnable transformation
matrix θ is used to dynamically aggregate multihead attention
maps into a new attention map, enhancing the diversity of the at-
tention representations. Finally, a 3× 3× 1 single channel 3-D
convolution layer is used to enhance the feature representation
capability. The calculation process of ARA can be expressed as

Q,K, V = Reshape(Split(Conv3D3×3×1(G
′))) (4)

A = AvgPool3D(Q) (5)

VA = θT1

(
Softmax

(
AKT

√
d

))
V (6)
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Fig. 4. Structure of the RAT module. RAT replaces the self-attention mechanism in the Transformer with ARA to capture global spectral features.

Fig. 5. Structure of the ARA module. ARA employs a 3D-CNN to generate the query matrix Q, key matrix K, and value matrix V , and uses a pooling operation
to aggregate neighboring spectral band information from Q to obtain the proxy matrix A. Subsequently, the proxy matrix A is treated as the query matrix, and
attention is computed with the key matrix K and value matrix V to obtain the global spectral feature VA. Next, the original matrix Q is used as the query, the
proxy matrix A as the key, and VA as the value for a second attention computation, generating global spectral dependencies. Finally, the transformation matrix θ
is used to aggregate the attention maps from different heads.

Ĝ = Conv3D3×3×1

(
θT2

(
Softmax

(
QAT

√
d

))
VA

)
(7)

where θT1 ∈ Rd×b and θT2 ∈ Rb×d represent the learnable trans-
formation matrices used in the two attention operations, re-
spectively. Reshape(·) denotes the reshaping operation on the
feature map, and Split(·) refers to the splitting operation, which
divides the feature map along the channel dimension. Softmax(·)
represents the Softmax activation function. Ĝ ∈ R1×s×s×b de-
notes the output feature map obtained from the RAT module.

2) Multiscale Partial Convolution Branch: Based on
PConv [44], the MPConv branch is designed. It uses 2-D
CNNs with different receptive field sizes to supplement local
spatial features, while maintaining low computational cost.
Compared to composite neighborhood-aware convolution [45]
and content-guided convolution [46], PConv applies standard

convolution only to a subset of the input channels for spatial
feature extraction, leaving the remaining channels unchanged,
thereby improving the model’s computational efficiency. Fig. 6
illustrates the workflow of the proposed MPConv.

Before performing the 2-D convolution operation, a 1× 1× b
3-D convolution is applied to compress the spectral dimension of
the MSSFL output Y. The resulting feature map is then reshaped
to obtain a format suitable for 2-D CNN operations. Subse-
quently, it is split along the channel dimension into two parts:
feature U ′ ∈ Rcp×s×s, containing cp channels, and remaining
information Û ∈ R(c−cp)×s×s. U ′ is used as a representative of
the entire feature map to extract local spatial features, while
the remaining feature maps remain unchanged. It is worth
noting that multiscale feature extraction employs a strategy
that combines depthwise and dilated convolutions, allowing
for a more comprehensive extraction of spatial features at a
lower computational cost. The specific operation involves using
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Fig. 6. Structure of the MPConv module. MPConv selects part of the original feature map content for multiscale feature extraction.

depthwise convolutions with a kernel size of 3× 3 and dilation
factors of 1 and 2 to obtain multiscale features U ′′ ∈ Rcp×s×s.
Subsequently, a 2-D convolution layer with a kernel size of 1× 1
is used to integrate information from different scales. Finally, the
multiscale information U ′′ and the residual feature map Û are
fully fused using concatenation. In addition, residual connec-
tions are used to enable the reuse of shallower features, thereby
enhancing the comprehensive spatial awareness of the branch.
The information extraction process and calculation formulas of
the MPConv module are shown as follows:

Ũ = Reshape(ReLU(BN(Conv3D1×1×b(Y )))) (8)

U ′, Û = Split(Ũ) (9)

U ′′ = ReLU(BN(Conv2D1×1(Conv2D3×3,1(U
′)

� Conv2D3×3,2(U
′)))) (10)

U = U ′′ � Û ⊕ Ũ (11)

where Conv3D1×1×b(·) denotes a 3-D convolution opera-
tion with a kernel size of 1× 1× b. Conv2D3×3,1(·) and
Conv2D3×3,2(·) represent 2-D convolution operations with a
kernel size of 3× 3 and dilation rates of 1 and 2, respectively.
U ∈ Rc×s×s denotes the input and output feature maps of the
MPConv module. ⊕ represents the element-wise addition oper-
ation.

D. Multilevel Feature Fusion Attention Module

As shown in Fig. 7, the working mechanism of the MFFA
module is illustrated. First, the fused information is projected
along the vertical and horizontal directions to obtain features Z̃
and Ẑ. The projection operation is accomplished using adaptive
global average pooling. Subsequently, the feature set is divided
into three equally sized, independent subfeatures, and each sub-
feature is processed using convolution kernels of different sizes.
Then, the different subfeatures are aggregated and normalized
using group normalization. Finally, a spatial attention map is
generated using the Sigmoid function.

In the first part, the different levels of information X, Y, and
M, obtained after processing through the initialization, MSSFL
module, and GLDFP module, are fused. The fused feature map
Z ∈ Rc×s×s is obtained. The fusion process is represented as

follows:

Z = AvgPool(X)⊕ AvgPool(X ⊕ Y )⊕M (12)

where AvgPool(·) denotes adaptive global average pooling, used
to compress spectral dimension information.

The second part introduces an improved spatial attention
mechanism to further process the fused features, enhancing the
extraction of fine-grained spatial features. First, global average
pooling is applied to the fused feature map Z along the vertical
and horizontal dimensions, resulting in two directional feature
maps: Z̃ ∈ Rc×1×s and Ẑ ∈ Rc×s×1.

To learn different spatial distributions and enhance the extrac-
tion of fine-grained features, Z̃ and Ẑ are each divided into three
equally sized, independent subfeatures. The decomposition pro-
cess of the sub-features is as follows:

Z̃n = Z

[
:, (n− 1)× C

3
: n× C

3
, :, :

]
(13)

Ẑn = Z

[
:, (n− 1)× C

3
: n× C

3
, :, :

]
(14)

where Z̃n and Ẑn represent the nth subfeature, n = 1, 2, 3.
The grouped subfeatures correspond to different regions in the
image, enhancing sensitivity to variations in local areas.

Subsequently, 2-D convolutions with kernel sizes of 1× 1,
1× 3, and 1× 5 are sequentially applied to the three subfea-
tures of Z̃. Similarly, 2-D convolutions with kernel sizes of
1× 1, 3× 1, and 5× 1 are applied sequentially to the three
subfeatures of Ẑ. The approach enables the learning of diverse
spatial contextual relationships to enrich feature representation.
Furthermore, the different subfeatures are concatenated to obtain
the feature maps Z̃ ′ and Ẑ ′

Z̃ ′ = Conv2D1×1(Z̃1)� Conv2D1×3(Z̃2)� Conv2D1×5(Z̃3)
(15)

Ẑ ′ = Conv2D1×1(Ẑ1)� Conv2D3×1(Ẑ2)� Conv2D5×1(Ẑ3)
(16)

where Conv2D1×3(·) represents a 2-D convolution operation
with a kernel size of 1× 3. Z̃ ′ ∈ Rc×1×s and Ẑ ′ ∈ Rc×s×1

denote the feature maps obtained after aggregating the different
subfeatures.

Furthermore, the different subfeatures are concatenated and
normalized using group normalization with three groups. Fi-
nally, the Sigmoid activation function is applied to convert the
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Fig. 7. Structure of the MFFA module. First, MFFA fuses feature maps with different depths and receptive fields using element-wise addition, followed by
global average pooling in both horizontal and vertical directions. Subsequently, the feature map is divided into three equally sized sub-features, each processed
employing convolution operations at different scales. Next, group normalization is applied to normalize the feature maps, and the Sigmoid function is used to
generate directional feature weight maps. Finally, element-wise multiplication is applied to the weight maps to generate spatial attention feature maps, which are
then applied to the original feature map.

resulting feature map into different weights, which are then
multiplied to generate the spatial attention feature map. The
spatial attention map is multiplied element-wise with the input
feature map Z to highlight key spatial regions. The enhanced
feature map is added element-wise to the original feature map
to improve the expressiveness of the features

F = Z ⊗ Sigmoid(GN(Z̃ ′))⊗ Sigmoid(GN(Ẑ ′))⊕ Z (17)

where GN(·) represents the group normalization operation,
and Sigmoid(·) denotes the Sigmoid activation function. ⊗
represents the element-wise multiplication operation. F ∈
Rc×s×s denotes the feature information generated by the MFFA
module.

The third part uses a global average pooling layer and a
fully connected layer to perform learnable label recognition and
weight learning on the obtained features, generating the final
classification result.

III. EXPERIMENT RESULTS AND ANALYSIS

In this section, the discourse commences with an intro-
duction to three renowned hyperspectral datasets employed in
the experimentation. Subsequently, the hyperparameter config-
urations and experimental environment utilized in the study
are described. Finally, extensive experiments and analyses are
conducted on three real hyperspectral datasets to evaluate the

proposed RAT-MPC method, comparing its performance with
other advanced hyperspectral image classification techniques.
Next, ablation studies are first conducted to illustrate the impact
of various modules within RAT-MPC on the model’s classifica-
tion performance.

A. Datasets Description

To validate the performance and effectiveness of the pro-
posed RAT-MPC model, evaluations are conducted on three well
known hyperspectral datasets: Indian Pines (IP), Pavia Univer-
sity (PU), and WHU-Hi-LongKou (LK). Among these datasets,
the IP and PU datasets effectively validate the classification
performance of the model in agricultural and urban road scenes.
The LK dataset, with its high spatial resolution, enables the
assessment of model classification performance under intricate
scenarios.

IP: This dataset is captured by AVIRIS over the Indian Pines
test site. It includes 224 spectral bands within the 0.4 ∼ 2.5 μm
range. In the experiments, 24 bands affected by water absorption
are removed, resulting in 200 bands available for analysis. The
IP dataset consists of an image with a spatial size of 145× 145
pixels, containing a total of 10 249 labeled samples divided into
16 land-cover classes. The false-color image, ground truth map,
and color codes are presented in Fig. 8, respectively.
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Fig. 8. Indian Pines Datasets. (a) False-color image, (b) Ground truth map, (c) Color codes.

Fig. 9. Pavia University Datasets. (a) False-color image, (b) Ground truth map, (c) Color codes.

PU: This dataset is collected by the ROSIS sensor over
Pavia University. It includes 115 spectral bands within the
0.43 ∼ 0.86 μm range. After removing 12 bands affected by
noise and water absorption, 103 bands are retained for analysis.
The PU dataset consists of an image with a spatial size of
610× 340 pixels, containing a total of 42 776 labeled sam-
ples divided into nine land-cover classes. The false-color im-
age, ground truth map, and color codes are shown in Fig. 9,
respectively.

LK: This dataset is captured in Longkou, Hubei Province, us-
ing the Headwall Nano-Hyperspectral imaging sensor mounted
on a DJI M600 Pro drone. It includes 270 spectral bands
within the 400 ∼ 1000 nm range. The LK dataset consists of
an image with a spatial size of 550× 400 pixels and a high
spatial resolution of 0.463 m. This dataset contains a total of
204 542 labeled samples, divided into 9 land cover classes.
The false-color image, ground truth map, and color codes are
displayed in Fig. 10, respectively.
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Fig. 10. WHU-Hi-LongKou Datasets. (a) False-color image, (b) Ground truth map, (c) Color codes.

TABLE I
SAMPLE AMOUNTS OF TRAINING, VALIDATION AND TEST SET FOR THREE DATASETS

To objectively evaluate the proposed network, the IP, PU,
and LK datasets are divided into training, validation, and test
sets. For the three datasets, 5%, 0.7%, and 0.1% of the labeled
samples are randomly selected as the training set. The validation
set follows the same sampling ratio as the training set, with the
remaining samples designated as the test set. The hyperspec-
tral datasets have an imbalance in the number of classes, and
using a smaller sampling ratio results in some classes lacking
selected samples, which impacts the performance of the model.
A minimum sampling threshold is applied during the selection
of training samples to ensure that each class contains at least
a specified number of samples. In this study, the minimum
sampling thresholds for the training and validation sets are set

to 5 and 3, respectively. Table I presents the names of land cover
classes, along with the number of training, validation, and test
samples for the three datasets.

B. Experimental Settings

Evaluation Metrics: This article uses three quantitative evalu-
ation metrics–Overall Accuracy (OA), Average Accuracy (AA),
and the Kappa coefficient (Kappa)–to assess the performance of
each method. OA represents the proportion of correctly clas-
sified samples among all samples, serving as a measure of the
overall classification performance of the model. AA calculates
the ratio of correctly predicted samples to the total number of
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samples within each class. The Kappa coefficient measures the
consistency between the predicted results and the actual ground
truth. The values of the three quantitative evaluation metrics in-
crease as the classification performance of the model improves.
In addition, the number of parameters(Paras) and FLOPs are
used to evaluate the computational overhead of the model.

Comparison Methods: To analyze the performance of the
proposed RAT-MPC method, comparative experiments are con-
ducted with methods based on CNN, methods that combine CNN
with attention mechanisms, and methods that integrate CNN
with Transformer architectures. The following content provides
a detailed description of the comparative methods used in the
experiments:

1) SSRN: SSRN employs a 3D CNN to construct two residual
blocks–a spectral residual block and a spatial residual
block–to sequentially capture more discriminative spec-
tral and spatial features from hyperspectral images. This
network segments the original hyperspectral image into
patches as input, with each input patch sized 7× 7× b,
where b represents the number of spectral bands in the
input.

2) CVSSN: CVSSN integrates the input 1-D sequence
information with 3-D cube data to effectively learn spec-
tral and spatial features. Subsequently, Euclidean distance
similarity measure and cosine angle similarity measure are
used to calculate the self similarity representation oriented
by the central spectral vector, enhancing the spatial infor-
mation representation. In addition, this network introduces
Euclidean distance similarity to measure the similarity
between the central feature vector and its neighboring fea-
ture vectors, thoroughly exploring the spatial relationships
between the central and adjacent feature vectors. The input
patch sizes are 1× 1× b and 9× 9× b.

3) A2S2KResNet: A2S2KResNet is designed with 3-D Res-
Blocks to jointly extract more robust and discriminative
spectral-spatial features. This framework employs a spec-
tral attention mechanism to capture long-range nonlin-
ear cross channel correlations. The input patch size is
9× 9× b.

4) DBMA: DBMA establishes two parallel branches: The
first branch employs dense 3-D CNN for spectral fea-
ture extraction, incorporating channel attention to enhance
spectral representation. The second branch utilizes dense
3-D CNN for spatial feature extraction, integrating spatial
attention mechanisms to amplify focus on the most infor-
mation rich regions. The input patch size is 9× 9× b.

5) DBDA: DBDA proposes a dual branch dual attention
network, which includes a spectral branch and a spatial
branch to extract spectral features and spatial features,
respectively. The self attention mechanism is applied sep-
arately to the spectral and spatial dimensions to optimize
and refine feature maps. The input patch size is 9× 9× b.

6) SSFTT: The SSFTT method combines CNN and Trans-
former from shallow to deep layers. This network
uses CNN to extract shallow spectral-spatial features.
Subsequently, the shallow features are transformed by a
Gaussian weighted feature tokenizer into tokenized se-
mantic features, and the data is fed into the Transformer

encoder to learn relationships among high level semantic
features. The input patch size is 13× 13× 30.

7) BS2T: The BS2T framework includes a spectral branch
and a spatial branch, dedicated to extracting spectral
information and spatial information, respectively. Each
branch comprises three distinct phases. The first stage uses
3-D CNN to capture local information from hyperspectral
images. The second stage employs Transformer to obtain
long-range global dependencies from the local informa-
tion. Finally, the features obtained from both branches are
fused for classification. The input patch size is 9× 9× b.

8) DBCTNet: The DBCTNet network uses 3-D CNN in the
early stages to enrich spectral features. Then, a dual branch
module of 3-D CNN and Transformer is constructed to
fully integrate local and global features. The input patch
size is 9× 9× b.

Implementation Details: All experiments in this study are
implemented in the PyTorch environment and trained on a
machine equipped with an NVIDIA P100 16 GB GPU. To
avoid the influence of initialization and ensure fairness, all
experiments are independently repeated 20 times. The 5 results
with the lowest and highest OA are discarded, and the mean and
variance of the remaining 10 results are calculated. To better
illustrate the model’s optimal classification capability, the exper-
imental results are visualized by selecting the model parameter
configuration with the highest OA from 20 experiments. The
cross entropy loss function is used to calculate the loss, and
the Adam optimizer is employed for model optimization. The
batch size is set to 16, the initial learning rate to 0.001, and
the number of epochs to 200. To accelerate model convergence,
cosine annealing scheduling is used to dynamically adjust the
learning rate over 200 epochs. In addition, for the proposed
RAT-MPC method, a patch size of 9× 9 is configured for each
of the three datasets, and the number of spectral bands after PCA
dimensionality reduction is set to 30.

C. Ablation Experiment

In this section, to verify the effectiveness of each part of the
RAT-MPC network for hyperspectral image classification, ab-
lation experiments are conducted on four different components
across the three datasets. In the experiments, 5%, 0.7%, and
0.1% of samples are selected from the IP, PU, and LK datasets
for training, respectively. The spectral dimension is reduced to
30 using the PCA method. The experimental results are obtained
by performing 20 iterations, with the 5 highest and 5 lowest
values removed, leaving the mean of the remaining 10 results.
The ConvTE branch from DBCTNet [47] is used as the baseline
model for ablation experiments on the different modules within
RAT-MPC. A detailed analysis is conducted on five different
model combinations, and changes in the OA, AA, and Kappa
evaluation metrics are observed to assess the impact of each
component on RAT-MPC. The ablation experiment results for
the five different model combinations are presented in Table II.
In the table, the symbol “�” indicates that the module is used,
while “×” denotes that the module is not used.

RAT refers to the operation of adding an agent matrix
to ConvTE and using a re-attention mechanism to exchange
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TABLE II
RESULTS ABLATION STUDIES OF THE PROPOSED MODULE ON DIFFERENT DATASETS

information across different attention heads. In Table II, it can
be observed that, compared to the ConvTE method, RAT shows
a significant improvement in classification performance across
the three datasets. Specifically, the OA, AA, and Kappa indices
increase by 2.44%, 7.95%, and 2.78% on the IP datasets; by
0.92%, 2.62%, and 1.24% on the PU dataset; and by 1.5%,
8.66%, and 2% on the LK dataset. The demonstrates that the
designed RAT module can more effectively capture long-range
dependencies among different spectral bands, resulting in im-
proved classification performance.

DLGFP is a method that adds a parallel MPConv branch to the
RAT branch. The data in Table II reveals that employing the RAT
branch independently resulted in a notable decline in classifica-
tion accuracy compared to the integrated utilization of RAT and
MPConv. In the IP, PU, and LK datasets, OA decreases by 2.49%,
1.97%, and 0.68%, while Kappa decreases by 2.85%, 2.63%, and
0.89%, respectively. This is because RAT demonstrates strong
capability in learning long-range dependencies among different
spectral bands but struggles to effectively capture local features
such as texture, shape, and edges of land cover elements, thereby
reducing classification performance.

MSSFL-DLGFP represents the application of the proposed
MSSFL module before DLGFP to preliminarily extract spectral-
spatial features. The data presented in Table II demonstrates that
DLGFP incorporating MSSFL achieved superior classification
performance across all three datasets compared to DLGFP em-
ployed independently. Compared to the performance of DLGFP
on the PU dataset, incorporating MSSFL increases OA, AA, and
Kappa by 1.22%, 1.88%, and 1.62%, respectively. It confirms
the effectiveness of the proposed MSSFL module. The MSSFL
module enriches spectral-spatial information through multiscale
deep convolutions and uses point convolutions to reconstruct
hidden detail features as a supplement, thereby enhancing the
representation capacity of shallow features.

RAT-MPC includes the MSSFL, DLGFP, and MFFA mod-
ules. In Table II, it can be observed that this method achieves su-
perior classification performance across all three datasets com-
pared to previous module combinations. In the MFFA module,

the fusion of features from different perceptual fields and depths
is enhanced with coordinate attention, improving fine-grained
feature extraction and boosting the classification performance of
the model. Compared to MSSFL-DLGFP, OA, AA, and Kappa
increase by 0.82%, 0.37%, and 0.93% on the IP dataset; by 0.5%,
0.64%, and 0.68% on the PU dataset; and by 0.38%, 0.91%, and
0.49% on the LK dataset. Overall, each module in the proposed
RAT-MPC method plays a crucial role in the feature extraction
process.

D. Comparative Experiments

In this section, diverse models are applied to three hyperspec-
tral datasets, with analyses conducted from qualitative, quanti-
tative, and computational complexity perspectives to validate
the classification efficacy of the proposed methodology. The
classification results of different methods on the three datasets
are presented in Tables III, IV, and V, while the visualizations
of different models are shown in Figs. 11, 12, and 13. The
highest classification accuracy values, as well as the lowest
parameter amount and FLOPs, are highlighted in bold. To dis-
tinctly demonstrate the visualization results of different models,
specific regions within the classification maps are demarcated
with white rectangular frames and subsequently magnified.

1) Classification Maps and Categorized Results for the IP:
The classification results of different algorithms on the IP dataset
are shown in Table III. It can be observed that the pro-posed
RAT-MPC achieves commendable classification results, with
OA and Kappa reaching 96.66% and 96.19%, respectively. Com-
pared to the CNN-based SSRN method, the approach achieves
an improvement of 0.46% in OA and 0.49% in the Kappa
coefficient. Meanwhile, the proposed RAT-MPC method has
the lowest parameter count and FLOPs, with approximately
30 K and 13 M, respectively. Compared with A2S2KResNet and
BS2T, RAT-MPC achieves a 0.87% and 0.68% improvement in
OA. The RAT-MPC also achieves an 1% and 0.77% improve-
ment in Kappa. Moreover, RAT-MPC achieved outstanding clas-
sification results with only one-twelfth of the parameter count
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Fig. 11. Classification Result Images achieved by different methods for the IP dataset. (a) Ground Truth. (b) SSRN(OA:96.23%). (c)CVSSN (OA:94.61%). (d)
A2S2KResNet(OA:95.79%). (e) DBMA(OA:95.04%). (f) DBDA(OA:94.76%). (g) SSFTT(OA:95.34%). (h) BS2T(OA:95.98%). (i) DBCTNet(OA:95.33%). (j)
RAT-MPC(OA:96.69%).

Fig. 12. Classification Result Images achieved by different methods for the PU dataset. (a) Ground Truth. (b) SSRN(OA:96.89%). (c)CVSSN(OA:92.85%). (d)
A2S2KResNet(OA:97.26%). (e) DBMA(OA:95.43%). (f) DBDA(OA:95.99%). (g) SSFTT(OA:97.52%). (h) BS2T(OA:97.51%). (i) DBCTNet(OA:97.52%). (j)
RAT-MPC(OA:98.20%).
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TABLE III
CLASSIFICATION PERFORMANCE BY DIFFERENT METHODS FOR IP DATASET

TABLE IV
CLASSIFICATION PERFORMANCE BY DIFFERENT METHODS FOR PU DATASET

of A2S2KResNet and BS2T. A2S2KResNet is the best model
for classification on the joint CNN and attention mechanism-
based methods, while BS2T stands as the top-performing
framework among the hybrid CNN and Transformer-based
approaches.

SSFTT integrates 3-D–2-D convolutional layers and Trans-
former modules, effectively mitigates classification errors
caused by “same spectral foreign objects” and “same object
different spectral.” However, the continuous extraction of spec-
tral and spatial information poses challenges in effectively
distinguishing and utilizing different features. As a result, when
dealing with land cover categories with limited samples, the

classification performance fails to achieve satisfactory results.
The classification accuracy for category 4 (corn) and category
16 (stone) is 87.89% and 89.04%, respectively, showing a de-
crease of 3.1% and 7.95% compared to the proposed RAT-MPC
method. This is because the RAT-MPC method incorporates the
DLGFP module, which effectively integrates Transformer and
MPConv. The architecture enables the simultaneous extraction
of both local and global information, ensuring the comprehen-
sive utilization of spectral and spatial features.

In addition, the IP dataset includes categories with highly
similar spectral characteristics and spatial structures, such as
the three subclasses of “soybean.” These categories significantly
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TABLE V
CLASSIFICATION PERFORMANCE BY DIFFERENT METHODS FOR LK DATASET

Fig. 13. Classification Result Images achieved by different methods for the LK dataset. (a) Ground Truth. (b) SSRN(OA:96.23%). (c) CVSSN(OA:96.62%). (d)
A2S2KResNet(OA:97.08%). (e) DBMA(OA:95.66%). (f) DBDA(OA:96.15%). (g) SSFTT(OA:97.44%). (h) BS2T(OA:98.24%). (i) DBCTNet(OA:97.08%). (j)
RAT-MPC(OA:98.44%).

impact the classification performance of the model. As shown
in Table III, the comparative methods exhibit relatively poor
classification performance in distinguishing the three subclasses
of “soybean.” The proposed RAT-MPC method incorporates
the RAT module, which models the global dependencies and
complex nonlinear relationships between different bands in
hyperspectral images. The enables the model to focus on the
frequency bands that contribute more significantly to the classi-
fication task, thereby facilitating the distinction between these

subclasses. As a result, the classification outcomes for the three
subclasses are exceptional, with accuracies of 94.81%, 97.21%,
and 95.48%, respectively. Compared to other methods, the pro-
posed approach achieves the largest accuracy improvements for
the three subclasses of “soybean” by 4.62%, 4.16%, and 7.83%,
respectively. The minimum enhancements achieved are 0.3%,
0.19%, and 1.11%, respectively.

The visualization results of different methods for the IP
dataset are shown in Fig. 11. Fig. 11(a) shows the ground truth
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of the IP dataset. Fig. 11(b) shows the prediction results of the
SSRN method. It can be observed that the Alfalfa category,
represented by red regions, contains numerous Dark Gray errors.
This is because CNN struggles to effectively learn the spectral
and spatial features of categories with a smaller number of
pixels during the classification process. Fig. 11(d) presents the
classification results of A2S2KResNet. The central green region,
representing the Soybean-m category, exhibits more pronounced
classification errors, with noticeable noise along the edges.
Corn-m is distributed across five distinct regions, each varying
in shape and number of pixels, which increases the difficulty for
the model to achieve accurate classification. Fig. 11(g) displays
the classification result obtained using the SSFTT method. In
the dark blue triangular region on the left, representing Corn-
m, various heterogeneous pixels appear, including categories
such as Soybean-c, Corn, and Corn-n. The indicates that the
sequential use of CNN and Transformer methods struggles to
effectively integrate local and global information, making the
classification of Corn-m susceptible to interference from hetero-
geneous pixels. Fig. 11(h) presents the classification result ob-
tained using the BS2T method. BS2T effectively utilizes spectral
and spatial information through its dual-branch design, avoiding
the occurrence of multiple heterogeneous pixels. However, it is
influenced by the similar category Corn-n, leading to significant
misclassification of Corn-m as Corn-n in the mixed regions of the
two categories. Fig. 11(i) shows the classification map obtained
using the DBCTNet method. Due to the significant influence of
the similar category Corn, nearly all the pixels in this region are
misclassified as Corn. Fig. 11(j) illustrates the classification re-
sult obtained using the proposed RAT-MPC method. Compared
to other methods, RAT-MPC achieves the highest prediction
accuracy for this category. Although some noise is present in the
visualization map, it is relatively minimal. From the magnified
regions, it can be seen that there is a lot of noise in the edge
area in Fig. 11(c), (e), and (f) resulting in blurred category
boundaries. In contrast, the proposed RAT-MPC method demon-
strates superior classification results by integrating features from
different depths and perceptual domains, effectively reducing
noise in edge regions. By combining the objective evaluation
metrics in III with the prediction results in Fig. 11 and comparing
them with other methods, it can be concluded that the proposed
method achieves the best performance on the IP dataset.

2) Classification Maps and Categorized Results for the PU:
The classification results of different algorithms on the PU
dataset are shown in Table IV. The proposed RAT-MPC demon-
strated outstanding classification performance, achieving OA,
AA, and Kappa values of 98.20%, 96.96%, and 97.62%, respec-
tively. RAT-MPC outperforms other models, achieving the high-
est improvements of 5.35%, 8.19%, and 7.17% in OA, AA, and
Kappa coefficients, respectively, while maintaining the smallest
enhancements of 0.68%, 0.45%, and 0.9%. Compared to the
hybrid CNN and Transformer networks, SSFTT and BS2T, the
proposed method achieves improvements of 0.68% and 0.69% in
OA, 0.95% and 2.18% in AA, and 0.92% and 0.93% in the Kappa
coefficient, respectively. This is because RAT-MPC integrates
the MSSFL module, which employs a split-refactoring-fusion
strategy to optimize the representation of hyperspectral data. In

addition, the RAT-MPC method achieves standard deviations
of just 0.11% for OA, 0.2% for AA, and 0.15% for the Kappa
coefficient, all of which are lower than those of the compared
methods. The demonstrates that the proposed method exhibits
high stability and robustness. This is attributed to the use of
MFFA for integrating features from different stages and the
enhanced fine-grained feature representation achieved through
the improved coordinate attention mechanism. Moreover, the
RAT-MPC method has significantly fewer parameter count and
FLOPs compared to these models,about one-eleventh of DBMA,
giving it a strong advantage in resource-constrained environ-
ments.

DBCTNet stands as the model with the highest OA, AA, and
Kappa values among the fusion methods based on CNN and
Transformer. It combines CNN and Transformer architectures
to effectively utilize local and global features, thereby improv-
ing classification performance. In addition, DBCTNet employs
pseudo-3D convolution and downsampling operations during
the feature extraction process, significantly reducing the param-
eter count and FLOPs. Among the comparative methods, it ranks
second only to the proposed method. Its OA, AA, and Kappa
values reached 97.52%, 96.51%, and 96.72%, respectively, rep-
resenting decreases of 0.68%, 0.95%, and 0.92% compared to
the proposed RAT-MPC method. The model even achieved the
highest classification accuracy for the third class (Gravel). The
RAT-MPC method emphasizes the effective utilization of global
and local multiscale features, achieving superior performance in
urban areas. Although the proposed method does not achieve
the best classification performance in the “Gravel” category,
trailing the DBCTNet method by 0.65%. This is because it
introduces the focal loss function, which effectively alleviates
the impact of category imbalance during model training and
enhances the model’s attention to difficult-to-classify samples
such as minority classes. The standard deviation for RAT-MPC
in this category is 4.56%, which is 2.57% lower than DBCTNet’s
7.13%. The fully demonstrates that the proposed method is more
robust in the classification performance for this category.

The visualization results of different methods for the PU
dataset are shown in Fig. 12. Fig. 12(a) shows the ground truth of
the PU dataset. It can be observed from Fig. 12(b) that the SSRN
method exhibits classification errors in the yellow region in the
lower-left corner, which represents the Tree category. In the PU
dataset, Tree is often distributed in dotted or patchy patterns
around other buildings, containing a significant number of edge
pixels. In addition, it is susceptible to interference from other
categories, leading to mispredictions at category boundaries.
Using only CNN for classification makes it challenging to fully
capture the subtle differences between different spectral bands.
In Fig. 12(c), CVSSN demonstrates relatively good classifica-
tion performance in certain category regions. However, its clas-
sification results for many other categories are less satisfactory.
In Fig. 12(d), A2S2KResNet exhibits a significant amount of
noise in the red region representing Asphalt. Fig. 12(e) shows the
classification results of DBMA. It can be observed that a large
number of classification errors occur in the lower-left corner,
along with mispredictions in the internal pixels of the light green
region at the bottom. In Fig. 12(f), the DBDA method struggles to
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distinguish between Gravel and Bricks, resulting in large-scale
misclassification. Fig. 12(g) presents the classification results
of SSFTT. SSFTT is highly susceptible to interference from
surrounding pixels when identifying Bricks. It misclassifies
bricks into multiple categories, such as Asphalt, Gravel, and Bare
soil. Fig. 12(h) shows the classification results of BS2T, a method
combining CNN and Transformer. It accurately predicted most
categories, but exhibited classification errors in the Bitumen
category. Fig. 12(i) illustrates the classification results of the
DBCTNet method. The lower-left corner contains a signifi-
cant amount of noise and a high proportion of misclassified
edge pixels. The annotated regions in the image contain three
classes: Bitumen, Bare Soil, and Shadows. However, many
comparative methods misclassify some Bitumen and Shadows
as Asphalt and Bare Soil as Meadows. In particular, CVSSN
misclassifies some Bitumen as Gravel, resulting in considerable
noise within the region. In comparison, the proposed RAT-MPC
method also exhibits a small amount of noise but maintains clear
boundaries.

3) Classification Maps and Categorized Results for the LK:
Unlike the other two datasets, the LK dataset features centimeter
level spatial resolution, which is more conducive to extracting
spatial features. The classification results of different models on
the LK dataset are shown in Table V. The classification results of
the proposed method surpass those of the comparative methods,
achieving OA, AA, and Kappa values of 98.44%, 94.72%, and
97.94%, respectively. The CNN-based SSRN method achieves
OA, AA, and Kappa values of only 96.23%, 87.62%, and 95.05%
on LK dataset, with classification performance lagging behind
the proposed method by 2.21%, 7.1%, and 2.89%, respectively.
In addition, compared to the A2S2 KResNet model, which
achieves the best classification performance among CNN and
attention-based fusion methods. The proposed method outper-
formed it by 1.36%, 3.67%, and 1.78% in OA, AA and Kappa
values, respectively. BS2T is the best-performing model among
the fusion methods based on CNN and Transformer. Its OA,
AA, and Kappa values are very close to those of the proposed
RAT-MPC method, reaching 98.24%, 94.18%, and 97.68%, with
differences of only 0.2%, 0.54%, and 0.26%, respectively. This
is because BS2T employs a parallel branch structure that more
comprehensively captures local and global spectral-spatial in-
formation, achieving commendable classification performance.
However, its parameter count is approximately 504 K, while
RAT-MPC achieves outstanding classification results with only
30 K parameter count. In addition, RAT-MPC has the lowest
FLOPs, approximately 13 M.

In the LK dataset, Class 8 (Roads and Houses) is often
found surrounding the crops. It is influenced by the surrounding
land cover during the classification process, making it difficult
to achieve satisfactory classification performance. RAT-MPC
demonstrated optimal effectiveness in classifying Roads and
Houses, achieving an accuracy of 95.08%. Compared to other
methods, it outperformed by a maximum of 18.51% and a
minimum of 3.87%. Compared to SSRN, A2S2KResNet, and
BS2T, the classification performance improved by 11.25%,
10.01%, and 3.87%, respectively. This is because it can fully
capture subtle spectral differences between different land cover

types, efficiently filter, and integrate feature information across
different levels.

The visualization results of different methods for the LK
datasets are shown in Fig. 13. Fig. 13(a) shows the ground truth
of the PU dataset. Fig. 13(b) presents the classification results of
SSRN. It can be observed that this model struggles to distinguish
between Cotton and Narrow-leaf Soybean, resulting in poor clas-
sification performance for Narrow-leaf Soybean, which aligns
with the objective evaluation metrics in Table IV. Fig. 13(c)
reveals the classification results of the CVSSN model. A large
number of noise points appear within the Broad-leaf Soybean
region, indicating insufficient spatial information representation
capability. From Fig. 13(d), it can be observed that a significant
amount of Broad-leaf Soybean appears within the dark blue
Sesame region, and a host of heterogeneous pixels are present
in the yellow region. In Fig. 13(e), the red region representing
Corn contains Broad-leaf Soybean, which is likely due to the
DBMA model’s poor spatial information extraction capability.
Fig. 13(f) shows the prediction results of the DBDA model.
It can be exhibited that multiple different categories appear in
the yellow region in the upper left corner. Both CNN-based
methods and those combining CNN with attention mechanisms
exhibit significant noise, demonstrating a clear tendency toward
misclassification. This is primarily because CNN focuses on
extracting local features, neglecting the long-range dependen-
cies in spectral and spatial dimensions. Fig. 13(g) indicates
that the SSFTT model is highly susceptible to the influence of
surrounding categories, such as Corn, Cotton, and Broad-leaf
Soybean, when classifying Roads and Houses. In Fig. 13(h), the
BS2T model demonstrates relatively good overall performance,
ranking as the second-best model after the proposed method.
From Fig. 13(i), it can be observed that although the DBCT-
Net model leverages the Transformer architecture to capture
long-range spectral dependencies, its insufficient utilization of
spatial features results in the presence of multiple heteroge-
neous pixels in the yellow region in the upper right corner.
Fig. 13(j) presents the classification results of the proposed
method. The classification results for pixels within each category
are smoother, and the edges are clearer. In the LK dataset,
land cover classes generally occupy large areas, so leveraging
spatial consistency can enhance the classification performance
of the model. The visualization maps of the SSFTT and BS2T
methods are similar to those of the proposed method but still
exhibit relatively more noise. The fundamental reason for this
difference is that the proposed method applies an improved coor-
dinate attention mechanism to fused features at different levels,
capturing more detailed features and enhancing classification
performance.

IV. DISCUSSION

In this section, patches of diverse sizes are used as the in-
put model to evaluate the effect of varying amounts of input
information on the network. Subsequently, distinct proportions
of labeled samples are selected for training on the three hyper-
spectral datasets to verify the stability and robustness of both
the comparative methods and the proposed method. Finally,
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Fig. 14. Comparison of objective evaluation indicators for three datasets with different patch sizes. (a) OA. (b) AA. (c) Kappa.

the t-SNE algorithm is used to visualize the high-dimensional
output features of different methods on the IP, PU, and LK
datasets, demonstrating the capability of the proposed network
in processing hyperspectral data.

A. Influence of Patch Size

In hyperspectral image classification, the size of the input
patch determines the amount of local contextual information
available to aid in classifying the central pixel, thereby in-
fluencing the overall classification performance of the model.
Experiments are conducted on three hyperspectral datasets to
illustrate the impact of input patch size on the classification
performance of the model in different scenarios. Three datasets
with varying spatial sizes, pixel counts, spatial resolutions, and
scene complexities are selected to enhance the generality of the
experimental results. Specifically, six different patch sizes are in-
vestigated: 5× 5, 7× 7, 9× 9, 11× 11, 13× 13, and 15× 15.
The OA, AA, and Kappa for different input patch sizes across
the three datasets are shown in Fig. 14. The illustration clearly
demonstrates that as input patch size increases, the classification
performance of the proposed method progresses through three
distinct phases: Rapid enhancement, gradual improvement, and
eventual decline. In the IP and PU datasets, classification perfor-
mance increases rapidly as the patch size grows from 5× 5 to
9× 9. It then improves gradually, reaching optimal classification
performance at 11× 11, after which it begins to decline. When
utilizing patch sizes of 9× 9 and 11× 11 as input, the model
demonstrates limited performance improvement across the IP
and PU datasets. Therefore, to reduce computational overhead
without significantly compromising classification performance,
a smaller patch size of 9× 9 is selected as the input for the IP
and PU datasets. In the LK datasets, classification performance
increases rapidly as the patch size grows from 5× 5 to 7× 7.
It then improves gradually, reaching optimal OA and Kappa at
9× 9, after which it begins to decline. To avoid the need for
optimization specific to a single datasets, a patch size of 9× 9
is used as the input for the LK datasets.

B. Selection of the Proportion of Training Sample

In hyperspectral image classification, data acquisition and
sample labeling incur substantial costs and require expert knowl-
edge. Moreover, the proposed method uses a supervised learning

approach, where the scale of training samples impacts the effec-
tiveness of model training and overall performance. To verify
the stability and robustness of the proposed RAT-MPC method,
the performance of nine methods is observed under varying
numbers of training samples. Specifically, training sample ratios
of 5%, 7%, 15%, and 30% are used in the IP dataset. In the PU
dataset, training sample ratios of 0.5%, 0.7%, 1.5%, and 3%
are applied. For the LK dataset, the sample ratios are set to
0.1%, 0.2%, 0.5%, and 1%. Figs. 15, 16, and 17 display the
OA, AA, and Kappa of the nine methods at different training
ratios, respectively. In the case of a small number of samples,
the proposed RAT-MPC method also achieves satisfactory clas-
sification results. As the number of training samples increases,
the classification performance of the proposed method gradually
improves across the three datasets, further validating its stability.
The primary reason is that the RAT-MPC method utilizes a dual
branch structure to effectively learn local spatial features and
global spectral features, and it employs an attention mechanism
to enhance fine-grained representation of the fused features,
thereby improving classification performance.

C. Visualization Analysis of Features

In this section, the t-SNE algorithm is used to visualize the
high-dimensional output features of different models across the
three datasets. Figs. 18, 19, and 20 present the t-SNE visual-
izations of data distributions on the IP, PU, and LK datasets,
respectively. In the experiment, the best-performing model from
each category of methods is selected for comparison with the
proposed model. In the IP and LK datasets, the comparative
methods are SSRN, A2S2KResNet, and BS2T. In the PU dataset,
comparisons are made with SSRN, A2S2KResNet, and SSFTT.
In the IP dataset, the BS2T method shows significant intra-class
dispersion, particularly with more pronounced intra-class sepa-
ration in Corn-notill, Corn-mintill, Grass-pasture-mowed, Soy-
bean-mintill, and Woods. In the PU dataset, the A2S2KResNet
method shows the Bitumen class scattered within the Asphalt
class. The indicates that A2S2KResNet struggles to effectively
distinguish between these two categories, thereby reducing its
classification performance. In the LK dataset, the SSRN method
exhibits overlap when classifying Roads and Houses and Mixed
Weed. From the visualizations of the three datasets, it can be
observed that the proposed method achieves a more dis-tinct
feature distribution. Although the proposed method shows minor
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Fig. 15. Curves of OA at different percentages of training data with different methods:(a) IP. (b) PU. (c) LK.

Fig. 16. Curves of AA at different percentages of training data with different methods:(a) IP. (b) PU. (c) LK.

Fig. 17. Curves of Kappa at different percentages of training data with different methods: (a) IP. (b) PU. (c) LK.

Fig. 18. Visualization analysis of features on the IP dataset. (a) SSRN. (b) A2S2KResNet. (c) BS2T. (d) RAT-MPC.
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Fig. 19. Visualization analysis of features on the PU dataset. (a) SSRN. (b) A2S2KResNet. (c) SSFTT (d) RAT-MPC.

Fig. 20. Visualization analysis of features on the LK datasets. (a) SSRN. (b) A2S2KResNet. (c) BS2T. (d) RAT-MPC.

TABLE VI
CLASSIFICATION PERFORMANCE OF THE MODEL ON IP, PU AND LK DATASETS UNDER DIFFERENT GAUSSIAN NOISE PERTURBATION LEVELS

instances of class confusion, the feature variance within each
class is minimal, and the separation between classes is notably
clear.

D. Model Robustness Analysis

To further validate the model’s adaptability to spectral pertur-
bations in real-world scenarios, we introduce perturbed samples
during the training phase to bolster its robustness against spectral
interference. In the experiment, perturbations are applied to the
PCA-reduced data, more precisely simulating interference at
the final input level of the model, thereby validating its robust-
ness against real-world spectral disturbances more effectively.
Incorporating perturbations into the training set enhances the
model’s ability to adapt to spectral interference, uncertainties,
and anomalies, thereby strengthening its robustness in complex
environments. The validation set employs the original clean data
to ensure stability during the model selection process. In the test
set, 50% of the samples undergo random perturbations while the
remainder remain intact, thereby more accurately reflecting the

distribution characteristics of partially compromised samples in
real-world scenarios. Moreover, the number of perturbed bands
is set to 2, 5, and 10 to examine the classification performance
under varying degrees of spectral disturbance.

1) Gaussian Noise Disturbance: In the experiments, three
noise augmentation strategies of varying intensities are
employed. Specifically, the designations GaussianNoise-2,
GaussianNoise-5, and GaussianNoise-10 signify the injection
of noise into two, five, and ten spectral bands of each image,
respectively. The experimental results are shown in Table VI,
and the overall trend shows that the OA, AA, and Kappa of
the three datasets show different degrees of decrease with the
gradual imposition of the noise intensity. This trend primarily
stems from the fact that high-intensity noise disrupts the intrinsic
structure of spectral data, thereby impeding the model’s ability
to extract meaningful features.

Under mild noise interference, GaussianNoise-2 exhibits only
a slight decrease in accuracy compared to the original RAT-MPC
model across all three datasets. This indicates that introducing
mild noise into the training set enhances the model’s ability to



19770 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

TABLE VII
EFFECT OF DISCARD DIFFERENT NUMBERS OF SPECTRAL BANDS ON HYPERSPECTRAL IMAGE CLASSIFICATION PERFORMANCE

adapt to slight spectral disturbances. In the LK dataset, its OA
decreases from 98.44% to 98.07%, marking a drop of merely
0.37%. When the noise intensity is raised to a moderate level
(GaussianNoise-5), a more pronounced dip in model perfor-
mance occurs. In the PU dataset, the OA of GaussianNoise-5
stands at 96.83%, representing a decline of 1.37% compared
to RAT-MPC. This trend stems primarily from the fact that
high-intensity noise undermines the intrinsic structure of spec-
tral data, thereby impeding the capacity of the model to extract
meaningful features. This makes the model more prone to confu-
sion, thereby resulting in a decline in classification performance.
When high-intensity noise (GaussianNoise-10) is applied, the
model performance deteriorates significantly, reflecting its sen-
sitivity to substantial spectral perturbations. In the IP dataset,
the OA of GaussianNoise-10 reaches 92.35%, marking a de-
cline of nearly 4%. This indicates that high-amplitude noise
perturbations have disrupted the discriminative structure of the
original spectra, causing the model to become confused when
distinguishing between spectrally similar classes.

In summary, moderate noise augmentation (such as
GaussianNoise-2) can effectively enhance the model’s robust-
ness and stability in noisy environments without substantially
compromising its accuracy. However, once the noise intensity
surpasses a certain threshold, it significantly undermines the
model’s ability to capture critical spectral features. In practical
applications, the magnitude of spectral augmentation should be
meticulously calibrated to the dataset’s characteristics and the
task’s requirements. This approach strikes an optimal balance
between enhancing model robustness and maintaining high ac-
curacy, thereby bolstering its utility and reliability in complex
remote-sensing scenarios.

2) Spectral Band Dropout Perturbation: In the experiments,
three distinct spectral dropout strategies of varying severity are
devised. Specifically, SpectralDiscard-2, SpectralDiscard-5, and
SpectralDiscard-10 represent the random discarding of 2, 5,
and 10 spectral bands during training, with the corresponding
bands set to zero to simulate scenarios of channel failure or
occluded information loss. The experimental results, as shown
in Table VII, indicate that as the number of discarded bands
increases, the model performance gradually declines. This phe-
nomenon suggests that the model possesses a certain degree of
robustness against band information loss. However, once the
loss exceeds a specific threshold, the integrity of the features is
compromised, resulting in diminished classification capability.

Under mild dropout conditions (SpectralDiscard-2), the clas-
sification accuracy across all three datasets declines only slightly
compared to the original RAT-MPC model, and performance
remains at a high level. In the IP dataset, the OA decreases
from 96.66% to 95.83%, a drop of merely 0.83%. Further-
more, the declines in AA and Kappa remain within 1%. In the
LK dataset, the OA drops from 98.44% to 98.14%, marking
a decrease of only 0.3%. This indicates that the absence of
a small number of spectral bands has a limited impact on
the model’s overall discriminative capacity, demonstrating its
robustness to minor spectral disturbances. When the dropout
level increases to a moderate degree (SpectralDiscard-5), the
model performance begins to decline noticeably. In the PU
dataset, the OA drops from 98.20% to 97.03%, the AA falls
to 95.56%, and the Kappa decreases to 96.06%, with an overall
decline of approximately 1.5%. This phenomenon suggests that
as the number of discarded bands increases, certain critical
discriminative spectral bands may be obscured. When inter-class
differences are concentrated primarily within specific bands, the
model becomes more susceptible to misclassification. Under
severe dropout conditions (SpectralDiscard-10), the model per-
formance deteriorates markedly across all datasets. In the LK
dataset, the OA drops from 98.44% to 97.01%. In the IP dataset,
the OA decreases from 96.66% to 92.28%, with the Kappa
showing a decline of up to 5%. This further illustrates that losing
an excessive number of spectral bands severely disrupts the
spectral structure, making it difficult for the model to effectively
extract discriminative features, thereby significantly impairing
its classification performance.

In summary, moderately introducing spectral dropout during
training (such as SpectralDiscard-2) can enhance the model’s
adaptability to local band loss or channel failure, strengthening
its robustness while maintaining high accuracy. However, as
the number of discarded bands increases, the model’s ability to
acquire effective discriminative information declines noticeably,
resulting in a rapid deterioration of performance. Therefore, in
practical deployment, the dropout ratio should be judiciously
controlled according to the task’s requirements for information
integrity, so as to achieve an optimal balance between interfer-
ence resistance and recognition accuracy.

3) Generalizability Analysis: To verify the model’s adapt-
ability and generalization potential under real-world scenario
variations, a series of cross-dataset experiments is devised.
Specifically, the experiments employ the Pavia University (PU)
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Fig. 21. Classification map on the pc dataset using the model trained on pu dataset. (a) False-color image. (b) Ground truth map. (c) Classification diagram after
migration. (d) Color codes.

and Pavia Center (PC) datasets, which diverge in both spatial
dimensions and spectral coverage, thus constituting an ideal
proving ground for assessing the model’s cross-scenario gener-
alization capability. In the experiments, the RAT-MPC model is
first trained on the PU dataset, with its configuration parameters
retained. Subsequently, a set of model parameters achieving an
OA close to the average level on the PU test set is selected
and directly transferred to the PC dataset. To further enhance
the model’s adaptability to new scenarios, its parameters are
subjected to lightweight transfer fine-tuning. Specifically, all
network layers except the fully connected layer remain frozen,
with updates applied solely to the fully connected layer. During
the fine-tuning phase, 0.7% of the labeled samples are randomly
selected from the PC dataset for training, adhering to the same
configuration as the main experiment to ensure experimental
comparability.

The PC dataset is captured by the ROSIS sensor over the
central area of Pavia in northern Italy. It comprises 102 spectral
bands, covering a range slightly different from that of the PU
dataset, yet still spanning the 0.43 μm to 0.86 μm spectral
region. Compared to the PU dataset, the PC dataset boasts
higher-resolution imagery at 1096× 1096 pixels and encom-
passes 148,152 labeled samples across nine distinct land-cover
classes. The false-color image, ground truth map, and color
codes are shown in Fig. 21 respectively. The subtle differences
in image size and spectral coverage between the PU and PC
datasets provide a valuable reference for evaluating the model’s
generalization performance across data sources.

The experimental results are presented in Table VIII. From a
quantitative perspective, the RAT-MPC model continues to ex-
hibit remarkable classification performance following its trans-
fer to the PC dataset. Despite being initially trained solely on
the PU dataset and undergoing only lightweight fine-tuning on
the fully connected layer, the model achieves impressive results
on the PC dataset, with an OA of 95.76%, an AA of 86.56%,

TABLE VIII
CLASSIFICATION PERFORMANCE WHEN TRANSFERRING PU-TRAINED

PARAMETERS TO THE PC DATASET

and a Kappa coefficient of 93.98%. Although classification
performance dips compared to PU, the model sustains ele-
vated accuracy, thereby highlighting its formidable capacity for
cross-scenario transfer. Notably, the decline in AA is relatively
pronounced, indicating that under conditions of substantial inter-
class distribution disparities, the model’s recognition accuracy
for certain categories is adversely affected. Nevertheless, the
steadfast performance of both accuracy and consistency metrics
vividly underscores the RAT-MPC model’s robustness and its
potential to generalize across diverse scenario distributions.

The visualization results are illustrated in Fig. 21 From a
qualitative perspective, the classification maps produced by
RAT-MPC on the PC dataset reveal a generally clear and co-
herent spatial distribution across most land-cover categories. In
the PC dataset, several representative land cover regions, such
as large bodies of water, roads, buildings, and bare soil, present
clearly defined boundaries and well-preserved structural layouts.
This indicates that the model is capable of effectively capturing
spatial contextual information. In complex areas such as urban
cores and major transportation routes, the classification results
closely align with the actual spatial layout of land cover features.
This demonstrates the model’s strong discriminative capability
and robust resistance to noise. Although a few edge regions
exhibit class confusion or localized fragmentation, the overall
visual quality remains high. This further attests to the RAT-MPC
model’s robust generalization across varied scenarios captured
by the same sensor.
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V. CONCLUSION

In this article, a RAT-MPC method for hyperspectral im-
age classification is proposed, enhancing feature representation
through the integration of three distinct approaches. First, the
MSSFL module is designed to enrich feature representation
by leveraging multiscale local spectral-spatial information. Sec-
ondly, the DLGFP module is constructed to jointly extract global
spectral and local spatial information. This module includes two
branches: the RAT branch and the MPConv branch. On one hand,
the RAT branch uses ARA to model long-range correlations
between spectral bands. In addition, a proxy matrix is designed
within ARA to balance computational efficiency and learning
capacity, and a transformation matrix is introduced to enhance
the diversity of the attention map. On the other hand, multiscale
partial convolution is used to further extract abstract spatial
information with fewer parameters. Third, the MFFA module
aggregates diverse information from different levels and uses
spatial attention mechanisms to generate more discriminative
image features, further improving classification results. Further,
the results of the ablation experiments demonstrate the contribu-
tion of each module within the RAT-MPC network to improving
classification performance. Among methods that combine CNN
and Transformer, the proposed method shows only modest im-
provements in classification performance compared to SSFTT
and BS2T. However, its parameter count and FLOPs are re-
duced by approximately one-fifth and one-eighth, respectively.
Compared to the DBCT method, with similar parameter counts
and FLOPs, the proposed method achieves an approximate 1%
improvement in OA. In brief, the RAT-MPC method adopts a
dual-branch structure to fully leverage both local and global
features, and introduces a proxy matrix to balance learning
capacity and computational complexity of the model.

The proposed method achieves satisfactory classification re-
sults, yet there remains room for improvement. For example,
in the proposed DLGFP module, the extracted global spectral
information and local spatial information are fused through
element-wise addition. This approach overlooks the differences
in information extracted by each branch, leading to insufficient
feature representation. In future work, exploring improved fu-
sion methods to connect different features may enhance classi-
fication accuracy. In addition, the integration of multitemporal
hyperspectral data with a temporal consistency modeling strat-
egy is intended to enhance the model’s robustness to seasonal
spectral variations. Meanwhile, class-aware attention weighting
or soft-labeling mechanisms are explored to enhance classifica-
tion performance on small and edge classes.
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