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Abstract: Ocean bottom seismometer (OBS) can record both pressure and displacement data by
modern marine seismic acquisitions with four-component (4C) sensors. Elastic full-waveform
inversion (EFWI) has shown to recover high-accuracy parameter models from multicomponent
seismic data. However, due to limitation of the standard elastic wave equation, EFWI can hardly
simulate and utilize the pressure components. To remedy this problem, we propose an elastic
full-waveform inversion method based on a modified acoustic-elastic coupled (AEC) equation.
Our method adopts a new misfit function to account for both 1C pressure and 3C displacement data,
which can easily adjust the weight of different data components and eliminate the differences in the
order of magnitude. Owing to the modified AEC equation, our method can simultaneously generate
pressure and displacement records and avoid explicit implementation of the boundary condition at
the seabed. Besides, we also derive a new preconditioned truncated Gauss–Newton algorithm to
consider the Hessian associated with ocean bottom seismic 4C data. We analyze the multiparameter
sensitivity kernels of pressure and displacement components and use two numerical experiments to
demonstrate that the proposed method can provide more accurate multiparameter inversions with
higher resolution and convergence rate.

Keywords: elastic full waveform inversion; acoustic-elastic coupled; ocean bottom seismic;
multicomponent; multiparameter

1. Introduction

Ocean bottom seismic survey is a modern platform for exploring the Earth’s interior, locating
seismometers at the seabed for all-weather, long-term, continuous, real-time observations. Unlike the
conventional towed-streamer acquisition, OBS can record 1C pressure and 3C displacement data [1]
using four-component (4C) detectors. The observed multicomponent data contain plenty of elastic
properties of subsurface media, which can be used to deduct the lithology, fluid content, and pore
pressure of rocks [2].

In multicomponent data processing, elastic full-waveform inversion (EFWI) plays an increasingly
important role [3]. In the manner of classical FWI [4], EFWI computes parameter gradients by
cross-correlating forward- and back-propagated wavefields and updates models to minimize the data
misfit function. As governed by the elastic wave equation, EFWI can interpret multiple elastic wave
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phenomena, i.e., wave-mode conversion and AVO effects [5], and provide quantitative estimations
for subsurface parameter distributions. Although it costs a large number of computing resources in
wavefield simulations, its excellent performance still makes it more and more attractive [6–10].

However, the standard elastic wave equation commonly used in the conventional EFWI
approaches cannot directly extract pressure components from elastic wavefields. By solving the
acoustic and elastic wave equations in different computing areas, a fluid–solid coupled EFWI approach
has been proposed [11–13]. It can generate pressure in the water immediately above the seabed and
elastic components on the solid seabed. However, it requires to explicitly implement the correct
boundary conditions, which is challenging for irregular surfaces [14]. Alternatively, Yu et al. [15]
proposed an acoustic-elastic coupled (AEC) equation in elastic imaging of OBS 4C data. It introduces
the physical relation between pressure and normal stress into the elastic wave equation. Thus, it can
compute the pressure wavefield and avoid applying the boundary conditions. The developed 4C
elastic reverse-time migration (ERTM) shows to suppress non-physical artifacts in the back-propagated
wavefield and provide better-resolved subsurface images. With consideration of propagating direction
and anisotropic property, this equation has been extended with an elastic vector imaging for transverse
isotropy media [16,17]. However, these 4C ERTM methods aim to retrieve the subsurface structures
but fail to provide quantitative parameter reconstructions.

In this study, we propose a new EFWI method based on a modified AEC equation, which can
reconstruct multiple elastic parameters from OBS 4C data. Our method defines a new weighted misfit
function; thus, it can adjust the weight of pressure and displacement components, and eliminate
the differences in the order of magnitude. As more parameter classes and data components are
involved, the blurring effects and parameter couplings [18] in the Hessian operator are prone to
be more serious. To better consider the inverse Hessian operator, we reformulate the truncated
Gauss–Newton-based (TGN) algorithm [19,20] in the framework of this modified AEC equation.
Compared with the preconditioned conjugate gradient (PCG) algorithm, TGN can estimate a more
accurate inverse Hessian and provide better parameter update directions. TGN has been widely used in
multiparameter inversion for acoustic, elastic, and anisotropic media [21–23] and elastic least-squares
RTM [24,25]. Besides, a pseudo-diagonal Hessian [26,27] is used as a precondition operator to remove
the influences of limited observation apertures, geometry spreading, and frequency-limited wavelet.

The paper is organized as follows. In Section 2, we first review the general formulas of FWI,
and then introduce the theory of the AEC-EFWI method and the implementation of the preconditioned
TGN algorithm. In Section 3, we numerically analyze multiparameter sensitivity kernels of pressure
and displacement components. In Section 4, we use two numerical examples to validate the
effectiveness of the proposed method. Before conclusions, we discuss whether the AEC-EFWI method
can invert elastic parameters using only 1C pressure data for OBS and towed-streamer acquisitions.

2. Methods

2.1. General FWI Formulation

Seismic wave equation can be expressed as

Sw = f, (1)

where w denotes the subsurface wavefields, f indicates the source wavelet, and S is the parameter
derivative matrix.

By taking the partial derivative of Equation (1) with respect to parameter, the sensitivity kernel L
can be acquired,

L =
∂w
∂m

= −
(

S−1
) ∂S

∂m
w. (2)
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The gradient of misfit function g can be obtained by applying the adjoint of sensitivity kernel to
the data residuals between observed and synthetic data,

g = LTδd. (3)

Based on the Newton optimization, the parameter perturbation can be estimated by solving the
Newton equation

g = Hδm, (4)

where H denotes the Hessian operator, which is the second-order partial derivatives of the misfit
function with respect to parameter.

Thus, the (k + 1)th iteration model m(k+1) can be updated by summing the (k)th iteration model
m(k) and the (k + 1)th iteration model perturbation δm(k) scaled with a suitable step-length r,

m(k+1) = m(k) + r · δm(k). (5)

2.2. Acoustic-Elastic Coupled EFWI Method

Compared with the standard elastic wave equation, the original AEC equation requires one more
formula to compute the pressure component from elastic wavefields. In this study, we have made
some modifications to reduce the number of equations and variables, and thus provide a modified
AEC equation (details referred to Appendix A), given by

ρ
∂2ux

∂t2 −
∂ (τs

n − p)
∂x

− ∂τs
s

∂z
= 0

ρ
∂2uz

∂t2 −
∂τs

s
∂x
− ∂ (−τs

n − p)
∂z

= 0

p + (λ + µ)

(
∂ux

∂x
+

∂uz

∂z

)
= fp

τs
n − µ

(
∂ux

∂x
− ∂uz

∂z

)
= 0

τs
s − µ

(
∂ux

∂z
+

∂uz

∂x

)
= 0

, (6)

where p, ux, and uz denote the pressure, horizontal , and vertical particle displacement wavefields,
respectively. τs

n and τs
s are the S-wave-related normal and deviatoric stress components, respectively.

λ and µ are the Lamé constants, and ρ is density. fp indicates the source function applied to the
p-component. Compared with the original AEC equation, this modified one can generate OBS 4C
records with same accuracy in wavefield simulation but costs less computing resources.

In this study, we define a weighted misfit function to account for both pressure and displacement
components, given by

E (m) =
1
2

ε · ‖δdx‖2 +
1
2

ε · ‖δdz‖2 +
1
2
(1− ε) · ζ ·

∥∥δdp
∥∥2 , (7)

where δdx, δdz, and δdp denote the residuals of the horizontal, vertical displacement, and pressure
components, respectively. Here, ε is a weighting coefficient, satisfying ε ∈ [0, 1]. A scale factor ζ is
used to eliminate the differences in magnitude between pressure and displacement components.
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According to the adjoint-state theory [28], the adjoint AEC equation can be given by
(see Appendix B for details)

ρ
∂2ûx

∂t2 −
∂ [(λ + µ) p̂]

∂x
+

∂ [µτ̂s
n]

∂x
+

∂ [µτ̂s
s ]

∂z
= f ′x

ρ
∂2ûz

∂t2 −
∂ [(λ + µ) p̂]

∂z
− ∂ [µτ̂s

n]

∂z
+

∂ [µτ̂s
s ]

∂x
= f ′z

p̂−
(

∂ûx

∂x
+

∂ûz

∂z

)
= f ′p

τ̂s
n +

(
∂ûx

∂x
− ∂ûz

∂z

)
= 0

τ̂s
s +

(
∂ûx

∂z
+

∂ûz

∂x

)
= 0

, (8)

where (ûx, ûz, p̂, τ̂s
n, τ̂s

s ) is the adjoint wavefields of (ux, uz, p, τs
n, τs

s ), and
(

f ′x, f ′z, f ′p
)

is the
multicomponent adjoint source, satisfying

f ′x = ε · δdx

f ′z = ε · δdz

f ′p = (1− ε) · ζ · δdp

. (9)

The gradients of the Lamé constants gλ, gµ and density gρ,Lame can be computed by performing
zero-lag cross-correlations of the adjoint wavefields (Equation (8)) and the forward wavefields
(Equation (6)), given by (see Appendix B for details)

gλ = − p
λ + µ

p̂

gµ = − p
λ + µ

p̂− τs
n

µ
τ̂s

n −
τs

s
µ

τ̂s
s

gρ,Lame =
∂2ux

∂t2 ûx +
∂2uz

∂t2 ûz

. (10)

Compared with the Lamé constants, the parameterization of seismic velocities is a better choice
in multiparameter EFWI [29–32]. According to the chain rule, the gradients of P- (α) and S-wave
velocities (β) and density can be obtained,

gα = 2ρα · gλ

gβ = −4ρβ · gλ + 2ρβ · gµ

gρ,Vel =
(

α2 − 2β2
)
· gλ + β2 · gµ + gρ,Lame

. (11)

The models of P- and S-wave velocities and density can be updated as follows,
m(k+1)

α

m(k+1)
β

m(k+1)
ρ

=


m(k)

α

m(k)
β

m(k)
ρ

−r ·H−1


g(k)α

g(k)β

g(k)ρ

 . (12)

2.3. Preconditioned Truncated Gauss–Newton Algorithm

The inverse Hessian operator is estimated by a preconditioned truncated Gauss–Newton (PTGN)
algorithm, as shown in Algorithm 1. In each iteration, we should perform demigration (Lpk) and



Remote Sens. 2020, 12, 2816 5 of 23

migration (LT (Lpk)) processes to update the parameter perturbations. The migration has been
illustrated in Equation (8), and the demigration of OBS 4C data can be computed through a first-order
Born modeling operator, given by

ρ
∂2δux

∂t2 −
∂ (δτs

n − δp)
∂x

− ∂δτs
s

∂z
= −δρ

∂2ux

∂t2

ρ
∂2δuz

∂t2 +
∂δτs

s
∂x
− ∂ (−δτs

n − δp)
∂z

= −δρ
∂2uz

∂t2

δp+(λ+µ)

(
∂δux

∂x
+

∂δuz

∂z

)
=−(δλ+δµ)

(
∂ux

∂x
+

∂uz

∂z

)
δτs

n − µ

(
∂δux

∂x
− ∂δuz

∂z

)
= δµ

(
∂ux

∂x
− ∂uz

∂z

)
δτs

s − µ

(
∂δux

∂z
+

∂δuz

∂x

)
= δµ

(
∂ux

∂z
+

∂uz

∂x

)
. (13)

Algorithm 1 Preconditioned Truncated Gauss–Newton algorithm

Input: Gradient g, Hessian precondition operator Hp;

Set x(0) = 0 and r(0) =
(
LTL

)
x(0) − g;

Solve Hp · y(0) = r(0) for y(0);

Set p(0) = −r(0) and k = 0;

Output: Parameter perturbation x

1: while r(k) > ε do

2: s(k) = r(k)
T

r(k)

(Lp(k))
T
(Lp(k))

3: x(k+1) = x(k) + s(k)p(k)

4: r(k+1) = r(k) + s(k)[LT(Lp(k))]

5: Solve Hp · y(k+1) = r(k+1) for y(k+1)

6: t(k+1) = r(k+1)T
y(k+1)

r(k)
T

y(k)

7: p(k+1) = −y(k+1) + t(k+1)p(k)

8: k = k + 1

9: end while

10: return x(k+1)

A diagonal pseudo-Hessian with source-side illumination is used as a precondition operator,
given by

Hp =

(
∂S
∂m

w
)T ( ∂S

∂m
w
)

. (14)
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According to the modified AEC equation, the diagonal blocks of the Hessian for Lamé constants
and density satisfy 

Hλλ =

(
∂S
∂λ

w
)T(∂S

∂λ
w
)
=

(
p

λ + µ

)2

Hµµ =

(
∂S
∂µ

w
)T(∂S

∂µ
w
)
=

(
p

λ + µ

)2
+

(
τs

n
µ

)2
+

(
τs

s
µ

)2

Hρρ =

(
∂S
∂ρ

w
)T(∂S

∂ρ
w
)
=

∂2ux

∂t2
∂2ux

∂t2 +
∂2uz

∂t2
∂2uz

∂t2

, (15)

and the ones for P- and S-wave velocities and density can be given by Hαα Hαβ Hαρ

Hαβ Hββ Hβρ

Hαρ Hβρ Hρρ

 =

 2ρ 0 0

−4βρ 2βρ 0

α2 − 2β2 β2 1

 ·
 Hλλ Hλµ Hλρ

Hλµ Hµµ Hµρ

Hλρ Hµρ Hρρ

 ·
 2ρ 0 0

−4βρ 2βρ 0

α2 − 2β2 β2 1


T

(16)

Thus, we have 
Hαα = 4α2ρ2Hλλ

Hββ = 16β2ρ2Hλλ + 4β2ρ2Hµµ + Hρρ

Hρρ =
(

α2 − 2β2
)2

Hλλ + β4Hµµ + Hρρ

. (17)

3. Sensitivity Analysis

In regional and global seismic explorations, sensitivity kernels are always used to portray
subsurface wavepaths [33,34]. For the elastic case, the kernels of displacement components with
different parameter classes have been studied on the standard elastic equation [23,35]. In this
study, we use the modified AEC equation to simulate elastic wavefields, allowing for the kernels of
pressure and displacement components. The experiment is performed on the elastic Marmousi model
(see Figure 1), including a shallow water layer below the sea surface. Only one shot is excited to
generate a pure P-wave source at the place of (5 km, 0.03 km), and 601 4C receivers are evenly located
at the seabed. The peak frequency of the source function is 8 Hz.

Observed pressure and displacement records are back-propagated from the receivers, respectively.
The obtained sensitivity kernels of pressure (p) and displacement (ux and uz) components are presented
in Figure 2. In the pressure kernels, most energy is distributed in the shallow part of the model and
attenuates rapidly with the increase of depth. In contrast, the displacement kernels contain the S-wave
reflection paths, thus it can enhance the illumination for the deep model. The corresponding 2D
wavenumber spectrum of these kernels are shown in Figure 3. It is clear that the pressure kernels
have higher resolution than the displacement ones in both vertical and horizontal directions. It is
because the pressure component is computed by the spatial partial derivatives of the displacement
wavefield, and these operators physically increase the frequency (or wavenumber) content of the data.
Consequently, the simultaneous utilization of pressure and displacement components can provide a
better characterization of subsurface structures.
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(a) Vp model (b) Vs model

(c) ρ model

Figure 1. True parameters of the elastic Marmousi model: Vp (a), Vs (b), and ρ (c).
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Figure 2. Sensitivity kernels of pressure (top) and displacement (bottom) components with respect to
(a,d) Vp, (b,e) Vs, and (c,f) ρ.

The kernels for different parameter classes also have remarkable differences. The Vp kernels
(Figure 2a,d) are mainly formed by the diving waves and reflections associated with P-wave,
which show relatively isotropic distributions in the wavenumber spectrum. The Vs kernels contain
more information of PS reflections (Figure 2b,e). Besides, the ρ kernels are of the highest wavenumber
components and behave as migration images of subsurface interfaces. That is the reason why we can
easily obtain the short-wavelength structures of density model but fail to reconstruct the background
model from seismic data.
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Figure 3. The 2D Wavenumber spectrum for the sensitivity kernels of pressure (top) and displacement
(bottom) components with respect to (a,d) Vp, (b,e) Vs, and (c,f) ρ.

4. Results

We use two numerical experiments on (1) the Overthrust model and (2) the Marmousi model
to validate the proposed method. An O(2, 8) time-space-domain finite-difference staggered-grid
solution [36] of the modified AEC equation is used to generate both forward- and back-propagated
4C wavefields. A convolution perfectly matched layer absorbing boundary [37,38] is used around the
calculation area without consideration of the sea surface. In these experiments, a Ricker wavelet
is adopted to generate pure P-wave sources with a peak frequency of 8 Hz (the bandwidth in
[2 Hz, 20 Hz]).

4.1. Overthrust Model Test

We first use the Overthrust model to demonstrate the effectiveness of the proposed PTGN
algorithm for OBC 4C data. The true Vp and Vs models are shown in Figure 4. The density model
is set to be 1000 kg/m3 in the water layer and 2000 kg/m3 below the seabed. The model is sampled
as 801 × 166 grids with intervals of 12.5 m in both horizontal and vertical directions. The initial
parameters are generated from the true ones with a smoothing window of 250 m. The acquisition
geometry includes 101 shots with an interval of 100 m below the sea surface and 801 OBS receivers at
the seabed for each shot. The total recording time is 4.0 s, and the temporal sampling rate is 1.0 ms.
Observed seismic data are shown in Figure 5, including horizontal and vertical displacements and
pressure components. As a comparison, the inversion is also performed using a preconditioned
conjugate gradient (PCG). The maximum number of the loop for parameter update is 21, and that of
the inner loop in the PTGN algorithm is 10.
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Figure 4. True and initial parameters of the Overthrust model: (a,c) Vp and (b,d) Vs.
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Figure 5. Observed multicomponent seismic data: (a) horizontal and (b) vertical displacement and
(c) pressure components.

Figure 6 displays the multiparameter gradients of the 1th iteration. We observe that the PCG
gradients have insufficient illuminations for the deep part of the model, while the PTGN gradients are
much improved and behave as amplitude-preserving subsurface images. The final Vp and Vs models
are displayed in Figure 7. The inverted Vp and Vs using PTGN give better descriptions of structural
boundaries with a higher interface continuity and fewer vertical artifacts. The vertical profiles (Figure 8)
and the root mean square (RMS) errors (Table 1) can further demonstrate that PTGN can provide
more accurate multiparameter inversions. Multicomponent data residuals between observed and
simulated are shown in Figure 9. The residuals of the PTGN method are much weaken than those
of PCG, which demonstrates that the PTGN can better interpret the observed multicomponent data.
The convergence curves (Figure 10) shows that PTGN has a higher decreasing rate and eventually
converges to a lower misfit value.
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Figure 6. The multiparameter gradients of the 1th iteration: preconditioned conjugate gradients (PCGs)
of (a) Vp and (b) Vs, and preconditioned truncated Gauss–Newton (PTGN) gradients of (c) Vp and
(d) Vs.
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Figure 7. Multiparameter inversion results: (a) Vp and (b) Vs using PCG, and (c) Vp and (d) Vs
using PTGN.

Table 1. Root mean square (RMS) errors of inversion results using PCG and PTGN.

RMS Errors (%) V p Vs

PTGN 3.08 2.86
PCG 3.22 4.20
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Figure 8. Vertical profiles of the inverted Vp (solid) and Vs (dashed) using the PTGN and PCG methods
at horizontal distances of 2 km, 5 km, and 8 km.

0

1

2

3

T
im

e
s(
)

0 2 4 6 8 10
Distance km( )

(a) ux-component

0

1

2

3

T
im

e
s(
)

0 2 4 6 8 10
Distance km( )

(b) uz-component

0

1

2

3

T
im

e
s(
)

0 2 4 6 8 10
Distance km( )

(c) p-component

0

1

2

3

T
im

e
s(
)

0 2 4 6 8 10
Distance km( )

(d) ux-component

0

1

2

3

T
im

e
s(
)

0 2 4 6 8 10
Distance km( )

(e) uz-component

0

1

2

3

T
im

e
s(
)

0 2 4 6 8 10
Distance km( )

(f) p-component

Figure 9. Multicomponent data residuals obtained by inverted models in Figure 7. The scale is
consistent with the shot gathers in Figure 5 seismic data. (a–c) The residuals of PCG and (d–f) the
residuals of PTGN.
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Figure 10. Convergence profiles of the misfit function using PTGN (solid) and PCG (dashed).

4.2. Marmousi Model Test

Next, we use the elastic Marmousi model to demonstrate the effectiveness of the AEC-EFWI
method. Smoothed versions of true Vp, Vs, and ρ (see Figure 1) with a window of 300 m are taken
as the initial models (see Figure 11). The dimension of the model is 601 × 201, and the intervals
are 15 m in the horizontal and vertical directions. We have 61 shots with an interval of 150 m and
601 OBS receivers for each shot. The total recording time is 4.8 s, and the temporal sampling rate is
1.2 ms. A Ricker wavelet with a peak frequency of 8 Hz is adopted to generate a pure P-wave source.
Observed multicomponent seismic data are simulated using the modified AEC equation, as shown in
Figure 12. As a comparison, an EFWI method for horizontal and vertical displacement components are
performed. A maximum of 15 iterations is used for the PTGN loop for both AEC-EFWI and EFWI.

(a) Vp model (b) Vs model

Figure 11. Initial models of Vp (a) and Vs (b).
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Figure 12. Observed multicomponent seismic data: (a) horizontal and (b) vertical displacement and
(c) pressure components.
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Figure 13 displays the inverted Vp and Vs models using the two methods. In the Vp results
(Figure 13a,c), AEC-EFWI provides better-resolved structures, i.e., anticlines, faults, lithologic
interfaces, and high-speed bodies. For Vs (Figure 13b,d), however, the results using the two methods
are comparable. With incorporation of the RMS errors in Table 2, we can find that considering the
pressure data may not take as great effects on Vs as Vp. It may be because the pressure data are more
sensitive to the Vp perturbations.

(a) AEC-EFWI Vp (b) AEC-EFWI Vs

(c) EFWI Vp (d) EFWI Vs

Figure 13. Multiparameter inversion results: (a) Vp and (b) Vs using modified acoustic-elastic
coupled-elastic full-waveform inversion (AEC-EFWI), and (c) Vp and (d) Vs using elastic full-waveform
inversion (EFWI).

The vertical profiles extracted at the horizontal distances of 3.0, 4.5, and 6.0 km are displayed in
Figure 14. The AEC-EFWI results (marked by red lines) can precisely illustrate the deep reflectors with
narrower sidelobes, and they are very close to the true models (marked by black lines). In contrast,
as displayed in the corresponding wavenumber spectrum (Figure 15), EFWI underestimates the
perturbations, especially for the interfaces with sharp parameter contrasts (see green lines in Figure 14).
The data residuals simulated by the inverted results (Figure 16) and the convergence profiles of the
misfit function (Figure 17) prove that the AEC-EFWI can better match the observed data and have a
higher convergence rate.

Table 2. RMS errors of the inversion results using AEC-EFWI and elastic full-waveform inversion
(EFWI) methods for the Marmousi model test.

RMS Errors (%) V p Vs

EFWI 5.29 3.93
AEC-EFWI 4.25 3.43

RATIO −24.5 −14.6
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and 6 km.
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Figure 15. The 1D wavenumber spectrum of vertical profiles, corresponding to Figure 14. Black lines
denote the true model, red lines indicate the AEC-EFWI results, and green lines are the EFWI results.
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Figure 16. Multicomponent data residuals obtained by inverted models in Figure 13. The scale is
consistent with the shot gathers in Figure 12. Panels (a–c) denote the residuals of EFWI, and panels
(d–f) indicate those of AEC-EFWI.
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5. Discussion

We have validated the effectiveness of the proposed AEC-EFWI method in processing OBS 4C data
and improving inversion accuracy. This study mainly focuses on reconstructing the high-wavenumber
components of elastic parameters from good initial models. Of course, this AEC-EFWI method also
suffers from the notorious cycle-skipping and other practical issues. To alleviate this problem, this work
should be further considered to combine with the reflection waveform inversion (RWI) [39–43] or the
migration velocity analysis (MVA) [44–46]. In these approaches, the most critical step is to compute the
PP and PS reflection paths. It can be easily accomplished by the AEC equation instead of performing a
complete P/S decomposition on forward/back-propagated wavefields.

In those experiments, the weighting coefficient ε is set to be 50%. In fact, this value is determined
by the difference of observed pressure and displacement components. Supposing that it reduces
to zero, we wonder whether the AEC-EFWI method can still provide reasonable inversions for
elastic parameters? Figure 18a shows a simple cartoon of the wave propagation process for this case.
The incident P-wave excited from the source location generates both PP and PS transmissions at the
seabed, and these transmissions are reflected at the interface of Layer 1. Because the water layer
is assumed to be precisely known in advance, the observed PPP and PSP waves can be treated as
“pseudo-first-order” reflections excited by virtual mixed sources from the seabed. Note that, this PSP
wave path carries more information of subsurface Vs distribution, which makes a great contribution to
Vs update.

Water Layer
Vp=1.5 km/s

Layer 1
Vp=3 km/s

Vs=1.5 km/s

Layer 2

Seabed

PPP

PSP

(a) OBS case

Water Layer
Vp=1.5 km/s

Layer 1
Vp=3 km/s

Vs=1.5 km/s

Layer 2

Seabed

PP-PP

PS-SP

(b) Towed-streamer case

Figure 18. Cartoons of the wave propagation for 1C (a) ocean bottom seismic (OBS) and
(b) towed-streamer cases.

We test the method on the Marmousi model (Figure 1), starting from the same initial models
(Figure 11) with 1C pressure data. The inverted results are displayed in Figure 19. The extracted vertical
profiles and the corresponding wavenumber spectrum are shown in Figures 20 and 21, respectively.
Although the inversion accuracy and spatial resolution decrease to some extent, the 1C results can
still provide acceptable multiparameter inversions and have a certain consistency with the true ones.
It demonstrates that this AEC-EFWI method is feasible to recover elastic parameters using OBS 1C
pressure data. Besides, we can find that the high-wavenumber components in the results using 1C
pressure data are better reconstructed than the low-wavenumber components (see differences between
the green and red lines in Figure 21), which highlights the contribution of pressure component on
high-wavenumber reconstruction.
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Figure 19. Inverted (a) Vp and (b) Vs results using AEC-EFWI with 1C pressure data.
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Figure 20. Vertical profiles of Vp (solid) and Vs (dashed) at the horizontal distances of 3.0, 4.5, and 6 km.
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Figure 21. The 1D wavenumber spectrum of vertical profiles, corresponding to Figure 20. Black lines
denote the true model, red lines indicate the results using 4C data, and green lines are the ones using
1C data.

Similarly, this method may be also applied for marine towed-streamer pressure data. As displayed
in Figure 18b, the PP-PP and PS-SP wave paths help to reveal subsurface Vp and Vs distributions.
Besides, other converted waves, i.e., PP-SP and PS-PP, can further enhance the illumination of Vs
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model. Of course, it should be further tested with field streamer data. Although some practical
problems, i.e., data preprocessing, low-frequency loss, and initial model building, have not been fully
considered, the cartoons and the preliminary results can at least inspire us to use 1C pressure data
for elastic parameter inversion and eventually provide a flexible method and idea for increasingly
complex marine data processing.

6. Conclusions

In this study, we have proposed an elastic full-waveform inversion method based on a
modified acoustic-elastic coupled equation. This method uses the modified AEC equation to
simultaneously compute subsurface pressure and displacement wavefields. It adopts a weighted
misfit function to quantify the contributions of pressure and displacement records. With the adjoint
operator, it can simultaneously make use of OBS 4C data to reconstruct multiple elastic parameters.
The preconditioned TGN algorithm with a multiparameter diagonal Hessian operator is developed
to cope with unbalanced illumination and coupling effects. The sensitivity analysis and numerical
experiments have validated that the AEC-EFWI method can yield a higher spatial resolution, provide
more accurate elastic parameter inversions, and have a higher convergence rate. The discussion reveals
the potential of this AEC-EFWI method in inverting elastic parameters using 1C pressure data for OBS
and marine towed-streamer cases.
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Appendix A. Derivation of the Modified Acoustic-Elastic Coupled Equation

We start from the standard 2D time-domain displacement–stress elastic wave equation [47],
given by 

ρ
∂2ux

∂t2 =
∂τxx

∂x
+

∂τxz

∂z

ρ
∂2uz

∂t2 =
∂τxz

∂x
+

∂τzz

∂z

τxx = (λ + 2µ)
∂ux

∂x
+ λ

∂uz

∂z
+ f

τzz = (λ + 2µ)
∂uz

∂z
+ λ

∂ux

∂x
+ f

τxz = µ

(
∂ux

∂z
+

∂uz

∂x

)
, (A1)

where ux and uz denote the horizontal- and vertical-particle displacement components, respectively;
τxx and τzz are the normal stress components; and τxz is the shear stress component. λ and µ are the
Lamé constants, and ρ is density. f indicates the source function that is implemented in τxx and τzz to
generate a pure P-wave.

In tensor analysis, the stress tensor T can be decomposed into the isotropic pressure −pI and
deviatoric τs parts,

T = τs − pI. (A2)
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For 2D cases, the pressure wavefield satisfies

p = −1
2

tr(T)

= −1
2
(τxx + τzz) = − (λ + µ)

(
∂ux

∂x
+

∂uz

∂z

)
,

(A3)

and the deviatoric stress components become

τs
xx = τxx + p = µ

∂ux

∂x
− µ

∂uz

∂z

τs
zz = τzz + p = µ

∂uz

∂z
− µ

∂ux

∂x

τs
xz = τxz = µ

∂ux

∂z
+ µ

∂uz

∂x

. (A4)

These equations formulate the original acoustic-elastic coupled equation; we refer to the work
in [15].

Note that, it is redundant to simultaneously compute the pressure and two normal stress
components. Thus, we redefine

τs
n = τs

xx = −τs
zz, τs

s = τs
xz, (A5)

where τs
n and τs

s are the redefined normal and deviatoric stress components. The simplified
equation becomes 

ρ
∂2ux

∂t2 =
∂ (τs

n − p)
∂x

+
∂τs

s
∂z

ρ
∂2uz

∂t2 =
∂τs

s
∂x

+
∂ (−τs

n − p)
∂z

= 0

p = − (λ + µ)

(
∂ux

∂x
+

∂uz

∂z

)
τs

n = µ

(
∂ux

∂x
− ∂uz

∂z

)
τs

s = µ

(
∂ux

∂z
+

∂uz

∂x

)
. (A6)

Compared with the original one, this modified equation can provide subsurface 4C elastic
wavefields with same accuracy but less computing resources.

For completeness purpose, we also derive the modified AEC equation in 3D. The 3D original AEC
equation is given by 

ρ
∂2ux

∂t2 =
∂(τs

xx − p)
∂x

+
∂τs

xy

∂y
+

∂τs
xz

∂z

ρ
∂2uy

∂t2 =
∂τs

xy

∂x
+

∂(τs
yy − p)
∂y

+
∂τs

yz

∂z

ρ
∂2uz

∂t2 =
∂τs

xz
∂x

+
∂τs

yz

∂y
+

∂(τs
zz − p)
∂z

. (A7)
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and 

p = −
(
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2
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µ
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. (A8)

Because τs
xx + τs

yy + τs
zz = 0, we can similarly provide a 3D modified AEC equation by replacing

τs
yy as −(τs

xx + τs
zz) to reduce the number of formulas.

Appendix B. Derivation of Gradient Computation for Aec-Efwi Method

The modified AEC equation can be rewritten as

Sw = f (A9)

where w = (ux, uz, p, τs
n, τs

s )
T denotes the elastic wavefields, f =

(
0, 0, fp, 0, 0

)T denotes the source
wavelet, and S denotes the parameter derivative matrix,

S =



ρ ∂2

∂t2 0 ∂
∂x − ∂

∂x − ∂
∂z

0 ρ ∂2

∂t2
∂
∂z

∂
∂z − ∂

∂x

(λ + µ) ∂
∂x (λ + µ) ∂

∂z 1 0 0

−µ ∂
∂x µ ∂

∂z 0 1 0

−µ ∂
∂z −µ ∂

∂x 0 0 1


. (A10)

Substituting Equation (2) into Equation (3), the gradient satisfies

∂E
∂m

=

[
−
(

S−1
) ∂S

∂m
w
]T

f′. (A11)

With consideration of the self-adjoint assumption
(
S−1)T

=
(
ST)−1, it can be rewritten by

∂E
∂m

= −
[

∂S
∂m

w
]T(

ST
)−1

f′. (A12)

Here, ST is the adjoint operator of the modified AEC-equation, given by

ST =



ρ ∂2

∂t2 0 − ∂
∂x (λ + µ) ∂

∂x µ ∂
∂z µ

0 ρ ∂2

∂t2 − ∂
∂z (λ + µ) − ∂

∂z µ ∂
∂x µ

− ∂
∂x − ∂

∂z 1 0 0
∂

∂x − ∂
∂z 0 1 0

∂
∂z

∂
∂x 0 0 1


. (A13)
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According to the adjoint-state method, we define ŵ =
(
S−1)Tf′ as the solution of the

adjoint equation,
STŵ = f′ (A14)

where ŵ = (ûx, ûz, p̂, τ̂s
n, τ̂s

s )
T is the adjoint variables as used in Equation (8).

For the parameterization of Lamé constants and density m = [λ, µ, ρ]T , the partial derivative
matrices can be given by

∂S
∂λ

=



0 0 0 0 0

0 0 0 0 0
∂

∂x
∂
∂z 0 0 0

0 0 0 0 0

0 0 0 0 0


, (A15)

∂S
∂µ

=



0 0 0 0 0

0 0 0 0 0
∂

∂x
∂
∂z 0 0 0

− ∂
∂x

∂
∂z 0 0 0

− ∂
∂z − ∂

∂x 0 0 0


, (A16)

and

∂S
∂ρ

=



∂2

∂t2 0 0 0 0

0 ∂2

∂t2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (A17)

Substituting Equations (A14–A17) into Equation (A12), the gradients of the Lamé constants and
density can be given by

∂E
∂λ

= − p
λ + µ

p̂

∂E
∂µ

= − p
λ + µ

p̂− τs
n

µ
τ̂s

n −
τs

s
µ

τ̂s
s

∂E
∂ρ

=
∂2ux

∂t2 ûx +
∂2uz

∂t2 ûz.

(A18)
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