
Measurement 172 (2021) 108890

Available online 17 December 2020
0263-2241/© 2020 Elsevier Ltd. All rights reserved.

Analytical performance and validations of the Galileo five-frequency 
precise point positioning models 

Ke Su a,b, Shuanggen Jin a,c,d,* 

a Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China 
b University of Chinese Academy of Sciences, Beijing 100049, China 
c School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China 
d Jiangsu Engineering Center for Collaborative Navigation/Positioning and Smart Applications, Nanjing 210044, China   

A R T I C L E  I N F O   

Keywords: 
Convergence time 
Five-frequency 
Galileo 
Inter-frequency bias (IFB) 
Precise Point Positioning (PPP) 
Positioning accuracy 

A B S T R A C T   

Galileo navigation satellite system provides global services with five-frequency signals. The contribution of this 
study is to develop four Galileo five-frequency precise point positioning (PPP) models with the ionospheric-free 
(IF) and uncombined observables, namely FF1, FF2, FF3 and FF4 models, respectively. Galileo dual- and triple- 
frequency IF models, known as DF and TF models, are also investigated for comparisons. The Galileo dual- and 
multi-frequency PPP models are comprehensively evaluated with thirty consecutive days period observations 
collected from 26 multi-GNSS experiment (MGEX) network stations, together with a dynamic experiment 
dataset, in terms of the static and kinematic performance. The by-product estimated parameters in five-frequency 
PPP models including the receiver clock, tropospheric delay, receiver inter-frequency biases (IFBs) and differ
ential code bias (DCB) are also analyzed. The experimental results show that the FF1, FF2, and FF3 models 
perform basic consistent and the FF4 model exhibits inconsistency due to the external ionospheric constraint. The 
Galileo kinematic PPP performance is significantly improved with the multi-frequency observations under the 
limited observed satellites circumstance. The significance and potency of the Galileo five-frequency PPP is 
demonstrated for future Galileo applications.   

1. Introduction 

Over the last few decades, the Global Navigation Satellite Systems 
(GNSSs) have made great progress with the construction of the Global 
Positioning System (GPS), BeiDou Navigation Satellite System (BDS), 
GNSS of Russia (GLONASS) and Galileo, as well as the Quasi-Zenith 
Satellite System (QZSS) and Indian Regional Navigation Satellite Sys
tem (IRNSS), which have been operational with the transmission of multi- 
frequency signals [1–4]. Particularly as the European GNSS, Galileo sys
tem run by the European Space Agency (ESA) is able to provide posi
tioning, navigation and timing (PNT) services to European citizens and 
worldwide [5–7]. The fully developed Galileo is capable of offering 
globally high-performance and reliable services including Open Service 
(OS), Public Regulated Service (PRS), Commercial Service (CS) and 
Search and Rescue Service (SAR) [8]. Galileo was designed independently 
to provide five-frequency signals centered at E1 (1575.42 MHz), E5a 
(1176.45 MHz), E5b (1207.14 MHz), E5 (1191.795 MHz) and E6 

(1278.75 MHz), respectively, for civilian and commercial services [9–11]. 
With the Galileo five-frequency signals, more optimum advantages 

and choices can be obtained such as in the aspects of the low-noise level, 
ionosphere modeling and precise positioning, which has much potency 
in the Galileo applications [12,13]. Until now, many studies were 
investigated for the Galileo multi-frequency real-time kinematic (RTK) 
technology. For example, Tu et al. [14] proposed the four-frequency 
Galileo RTK model that uses one common reference satellite to ach
ieve better positioning accuracy and ambiguity fix success rate. Wang 
et al. [15] performed the five-frequency Galileo RTK long-baseline am
biguity resolution with multipath mitigation to achieve high ambiguity 
success rate within a short time. For absolute stand-alone positioning, it 
starts with the pseudorange-based positioning. Tian et al [16] analyzed 
the Galileo single point positioning (SPP) performance with 4 in-orbit 
validation (IOV) and 14 full operational capability (FOC) satellites, 
indicating that Galileo exhibits the same accuracy as GPS. However, the 
multipath and noise of the pseudorange observations will degrade 
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positioning performance and mask the atomic clocks short-term stabil
ity. To seek for better positioning performance and higher stability, 
precise point positioning (PPP) can acquire high precision position with 
the pseudorange, carrier phase observations as well as the precise orbit 
and clock products [17]. 

As we all know, PPP technique is popular in the GNSS community 
and has the wide applications in geodynamic research for its high- 
accuracy positioning and flexible operation with a stand-alone receiver 
using the precise products provided by global institutions such as the 
international GNSS service (IGS) [18]. PPP needs to consider more about 
the observables modelling and more estimated parameters compared to 
the traditional double differenced relative positioning. Whereas the PPP 
major problem is the long convergence time, which will generally take 
scores of minutes before the positioning errors converge [19]. Diverse 
multi-frequency PPP studies have been performed and investigated. Pan 
et al. [20] comprehensively compared and evaluated the three GPS 
triple-frequency PPP models with the GPS Block IIF satellites. Guo et al. 
[21] assessed the BDS-2 triple-frequency PPP performance in both static 
and kinematic scenarios, indicating that three proposed PPP models 
agree well with each other. Su and Jin [22] presented three triple- 
frequency PPP models to perform carrier phase precise time and fre
quency transfer with the BDS-3 B1I, B3I and B2a signals. With regard to 
the Galileo PPP solutions, Afifi and El-Rabbany [23] introduced a new 
PPP model that combined single-frequency GPS/Galileo observations in 
between-satellite single-difference mode. Cai et al. [24] developed the 
dual-frequency PPP models to process the observations of all the four 
GNSS systems. Deo and El-Mowafy [25] proposed two new PPP models 
that can be used for Galileo triple-frequency data to accelerate conver
gence of carrier phase float ambiguities. Liu et al. [26] proposed the 
method of PPP ambiguity resolution (AR) using Galileo triple-frequency 
observations. Zhang et al. [27] focused on the Galileo quad-frequency 
PPP precise time and transfer performance with the E1, E5a, E5b and 
E5 observations. Li et al. [28] presented a new Galileo multi-frequency 
PPP with taking advantage of five-frequency observations for rapid AR. 

In the current multi-GNSS era, the multi-frequency precise posi
tioning technology will no doubt be popular [29,30]. However, the 
previous studies mainly focus on the performance of the multi-GNSS PPP 
models and the studies related to the Galileo five-frequency PPP models 
were not investigated. Various multi-frequency PPP models can be 
established with the different observables and ionospheric delays pro
cessing strategies using Galileo five-frequency observations. The focus of 
this study is to develop and analyze the five-frequency PPP performance 
with Galileo E1, E5a, E5b, E5 and E6 signals. To facilitate comparative 
analysis, the Galileo E1/E5a dual-frequency and E1/E5a/E5b triple- 
frequency ionospheric-free (IF) PPP models are considered as well. 
This paper is organized as following structure. First, we develop the 
Galileo dual-, triple and five-frequency PPP models and discuss their 
relationships and characteristics. Then, the static Galileo five-frequency 
PPP performance is evaluated and validated in terms of positioning 
accuracy and convergence time with the multi-GNSS Experiment 
(MGEX) network stations. The rest of the parameters including the 
receiver clock, zenith tropospheric delay (ZTD), receiver inter-frequency 
biases (IFBs) and E1/E5a differential code bias (DCB) are also analyzed, 
followed by the kinematic PPP performance verification using a dy
namic experimental dataset. Finally, some conclusions are given. 

2. Methodology 

This section starts with the Galileo dual- and triple-frequency PPP 
models. Then we develop four Galileo five-frequency PPP mathematical 

models in detail, classified as IF based models and uncombined (UC) 
models. The characteristics of the PPP models are also discussed. The IF 
based PPP models with five-frequency Galileo measurements can be 
implemented by two means: on the one hand, measurements can be 
combined by some of the dual-frequency IF combinations. We define it 
as FF1 model. On the other hand, an optimal five-frequency IF combi
nation can be obtained through the five-frequency observations, where 
the model is defined as FF2 model. The UC PPP model with five- 
frequency Galileo measurements can also be implemented by two 
means: one is that raw five-frequency measurements are employed 
without additional external information, which is defined as FF3 model. 
Another model called FF4 model is that the UC observations are pro
cessed plus with external ionospheric products. 

2.1. DF: Model with a dual-frequency IF combined observable 

The PPP model known as dual-frequency (DF) model utilizes the 
Galileo E1/E5a dual-frequency IF combined observables. With m avail
able Galileo satellites observed, the DF model can be written as [31]: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ PDF

ΦDF

]

=
[
e2 ⊗B,e2 ⊗ em,n2 ⊗(f T

1,2⋅Λ1,2 ⊗ Im)
]

⎡

⎢
⎣

x
tr

a′

⎤

⎥
⎦+

[ εP,DF

εΦ,DF
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,

⎡

⎣
f T

1,2⋅(q′

⊗ cP)⋅f 1,2

f T
1,2⋅(q′

⊗ cΦ)⋅f 1,2

⎤
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(1)  

where P and Φ denote the observed minus computed (OMC) pseudor
ange and carrier phase values vectors, respectively; x denotes the vector 
of three-dimension receiver position increments as well as the zenith wet 
delay (ZWD); B is the corresponding design matrix; tr denotes the esti
mable receiver clock offset vector; em is the m-row vector with all 1′s 
elements; a′ T

=
[
aT

1 , aT
2
]

denotes the vector of the ambiguities, in which 

ai is the vector of the ith frequency carrier phase ambiguities; f T
m,n =

[
α
(m,n), β(m,n)

]
=

[
f2
m, − f2

n

]/
(f2

m − f2
n ), (m, n = 1, 2,3, 4, 5) is the IF fre

quency factor vector, in which f denotes the corresponding frequency 
value; n2 = [0, 1]T; Λm,n = diag(λm, λn) denotes the diagonal matrix of 
corresponding wavelengths; Im is the m-dimension identity matrix; εP 
and εΦ denote the pseudorange and carrier phase observation noise 
vectors. Correspondingly, and cΦ denote the pseudorange and carrier 
phase variance factors; q′

= diag(q2
1, q2

2), in which qi denotes the 
observation noise ratio; Qm = diag(sin− 2(E1), sin− 2(E2), ..., sin− 2(Em))

denotes the cofactor matrix, in which E denotes the satellite elevation 
angle;⊗ denotes the Kronecker product operation. 

2.2. TF: Model with a triple-frequency IF combined observable 

The triple-frequency (TF) PPP model known as the TF model in
tegrates the E1/E5a/E5b signals to one combined observable. The TF 
model with m observed Galileo satellites can be written as [32]: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
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′
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′
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(2) 
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where k’T = [k′

1, k′

2, k′

3], in which k′

1, k′

2 and k′

3 denote the triple- 
frequency combined coefficients. Λ1,2,3 = diag(λ1, λ2, λ3); a˝T = [aT

1 , aT
2 ,

aT
3 ] denotes the vector of the ambiguities; q′′ = diag(q2

1,q2
2,q2

3). 

2.3. FF1: Model with four dual-frequency IF combined observables 

Any two of Galileo E1, E5a, E5b, E5 and E6 observations can be in
tegrated into the dual-frequency IF combined observable. Although ten 
combinations can be generated, four sets of IF combinations can meet 
the requirement to make full of the five-frequency observations. The E1/ 
E5a, E1/E5b, E1/E5 and E1/E6 dual-frequency IF combinations are 
utilized, whose noise amplification factors are smaller than other com
bination. The FF1 model with m satellites can be written as:     

wheren′

2 = [1, 0]T;d4 = diag(0, 1, 1, 1);CT =
⎡

⎢
⎢
⎢
⎢
⎢
⎣

α(1,2) β(1,2) 0 0 0
α(1,3) 0 β(1,3) 0 0
α(1,4) 0 0 β(1,4) 0
α(1,5) 0 0 0 β(1,5)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;Λ = diag(λ1, λ2, λ3, λ4, λ5); aT =

[
aT

1 , aT
2 , aT

3 , aT
4 , aT

5
]

denotes the vector of the ambiguities; q = diag(q2
1,q2

2,

q2
3,q2

4,q2
5); ifbFF1 denotes the estimated IFB vector in FF1 model. Owing to 

the four IF combined observables share the same estimated receiver 
clock values, three estimable IFB parameters with regard to the E1/E5b, 
E1/E5 and E1/E6 pseudorange combinations are mandatory to account 
for the inconsistency of pseudorange observables and the receiver clock. 

a denotes the vector of the ambiguities. 

2.4. FF2: Model with a five-frequency IF combined observable 

The five-frequency Galileo measurements can be grouped into a 
designated combination with the criteria that are geometry-free, IF and 
have minimum noise. The criteria to determine the coefficients kT = [k1,

k2, k3, k4, k5] can be given as: 
⎧
⎨

⎩

eT ⋅k = 1
uT ⋅k = 0

F = kT ⋅q⋅k = min
(4)  

where uT = [1, u2, u3, u4, u5],uk = (f1/fk)2
, (k = 2,3,4,5). 

The coefficients following the above criteria can be solely deter
mined as follows (the derivation of the coefficients is given in Appen
dix): 

with  
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2⋅q2

4⋅q2
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2

(6) 

In view of five-frequency pseudorange observations are grouped into 
the one observation, the receiver clock will eventually absorb the 
receiver uncalibrated code delays (UCDs). Hence, the FF2 model with m 
satellites can be written as: 
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
PFF2
ΦFF2

]

=
[
e2 ⊗ B, e2 ⊗ em,n2 ⊗ (kT ⋅Λ ⊗ Im)

]

⎡

⎣ x
tr

a

⎤

⎦+

[
εP,FF2
εΦ,FF2

]

,

[
kT ⋅(q ⊗ cP)⋅k
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⊗ Qm

(7)  

2.5. Model using five-frequency UC observables 

Distinguishing from IF based models, the slant ionospheric delays are 
estimated as unknowns in FF3 model. The FF3 model with m satellites 
can be written as:  

where d5 = diag(0,0,1,1,1);n′′
2 = [1, − 1]T . In FF3 model, the linearly 

related slant ionospheric delay and receiver E1/E5a DCB parameters are 
estimated as lumped terms and cannot be separated. ifbFF3 denotes the 
estimated IFB vector in FF3 model. Parallel to the FF1 model, the IFB 
parameters are also required to compensate the inconsistency of receiver 
UCDs on E5b, E5 and E6 frequencies. 

2.6. Model using five-frequency UC observables with external ionospheric 
constraint 

In FF4 model, the external ionospheric constraints are added on the 
estimated ionospheric delays by the ionospheric virtual observations. 
Meanwhile, the receiver DCB and pure slant ionosphere delay can be 
estimated separately. Hence, the FF4 model with m satellites can be 
written as:  

where n′

5 =
[
β(1,2), − α

(1,2), u3⋅β(1,2), u4⋅β(1,2), u5⋅β(1,2)

]T
; DCB denotes the 

estimated receiver DCB parameter; τ0 is the external ionospheric 
observable, which can be provided by the external products such as 
global ionosphere map (GIM). 

2.7. Discussion on the five-frequency PPP models 

Table 1 compares the dual-, triple- and five-frequency Galileo PPP 
models in terms of the adopted observations, coefficients, ionospheric 
delay factor with respect to the Galileo E1 part and the noise amplifi
cation factors. Furthermore, Table 2 provides the characteristics of the 
estimated parameters of the dual-, triple- and five-frequency PPP models 
when observing the m satellites. In fact, the introduced five-frequency 
PPP models can be considered as the different forms of the same Gali
leo input data including the pseudorange and carrier phase observa
tions. More specifically, the observables in the FF1 and FF2 models are 
passed through a linear transformation process to the raw observations 

where the corresponding coefficient matrix is invertible. Similarly, the 
variance–covariance matrix and the solution vector are identical with 
the transformed equations based on the algebraic theory [33]. That is to 
say, owing to the weight matrices are determined following the law of 
covariance propagation, the FF1, FF2 and FF3 models are theoretically 
equivalent as along as the estimated ionospheric delay and receiver 
hardware delay are estimated as white noises [34]. For a different sit
uation, the external information added on the FF4 model will lead to a 
different PPP performance. 

For simplicity, we consider that the Galileo five-frequency observa
tions share the same prior noise though the different frequencies may 
have different characteristics [28]. The prior noise δ2

0 can be expressed 
as a Sine mapping function i.e. δ0 = a/sin(E), in which a denotes the 
observation precision. Compared with raw observables, the noise 
amplification factors of IF-based combinations range from 2.4 to 3.5 
depending on the frequency combination. The E1/E5a combined 

observable in FF1 model provides the best priori performance among the 
four IF combinations and the nonzero off-diagonal elements of covari
ance matrix indicate that the different IF combinations have the strong 
correlations. The five-frequency IF combined observable in FF2 model 
shows the smaller combination noise than any other IF combinations. 
The FF1, FF2 and FF3 models employed with the Kalman filter have 
internal equivalence when the filter has fully converged, where at that 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(9)   

⎧
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+
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,
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time the ionospheric delay and phase ambiguity parameters are effec
tively and successfully separated. 

3. Performance and evaluation 

In this section, we begin with the introduction of the Galileo-only 
PPP data processing strategies. Then, datasets provided by the MGEX 
network are used to verify the static PPP performance in terms of 
convergence time and positioning accuracy. Furthermore, the receiver 
clock, tropospheric delay, receiver IFBs, and DCB estimates are 
analyzed. Finally, the kinematic PPP performance are analyzed. 

3.1. Data processing strategies 

To validate the Galileo-only five-frequency PPP performance, data
sets of 26 MGEX stations capable of observing the Galileo five-frequency 
observations are collected from day of year (DOY) 1-30, 2019, for static 
PPP test. A dynamic experiment on the campus playground was con
ducted to perform the kinematic PPP tests. Fig. 1 shows the geographical 
distribution of the selected 26 MGEX stations. Table 3 summarizes the 
receivers and antenna type of the contributing MGEX stations. The 
selected stations all can observe the five-frequency measurements 
though the different receivers may not have exactly the same settings 
including the bandwidth, filtering strategy, multipath mitigation, the 
strategy of obtaining the special measurement and so on. Table 4 

summarizes the detailed processing strategy of Galileo five-frequency 
PPP as well as Galileo dual- and triple-frequency PPP models for the 
selected stations. The Galileo code and phase observation precision are 
set to 0.4 m and 0.004 m, respectively [24]. The position coordinates are 
modeled as constants and white noise in static and kinematic PPP 
modes, respectively. The positioning performance is assessed with 

Table 1 
Comparison of dual-, triple and five-frequency PPP models.  

Models Obs E1 E2 E3 E4 E5 Ion Noise 

DF E1/E5a 2.261 − 1.261 0 0 0 0 2.588 
TF E1/E5a/E5b 2.315 − 0.836 − 0.479 0 0 0 2.507 
FF1 E1/E5a 2.261 − 1.261 0 0 0 0 2.588 

E1/E5b 2.422 0 − 1.422 0 0 0 2.809 
E1/E5 2.338 0 0 − 1.338 0 0 2.694 
E1/E6 2.931 0 0 0 − 1.931 0 3.510 

FF2 ALL 2.217 − 0.680 − 0.351 − 0.512 0.326 0 2.423 
FF3/FF4 E1 1 0 0 0 0 1 1 

E5a 0 1 0 0 0 1.793 1 
E5b 0 0 1 0 0 1.703 1 
E5 0 0 0 1 0 1.747 1 
E6 0 0 0 0 1 1.518 1  

Table 2 
Characteristics of the parameters for the dual-, triple and five-frequency PPP 
models.  

Models Raw observed number Estimated parameter number Redundancy 

DF 2m m+5 m − 5 
TF 2m m+5 m − 5 
FF1 8m 4 m+8 4m − 8 
FF2 2m m+5 m − 5 
FF3 10m 6 m+8 4m − 8 
FF4 11m 6 m+9 5m − 9  

Fig. 1. Geographical distribution of the selected 26 MGEX stations.  

Table 3 
Receivers and antenna type of the contributing 26 MGEX stations.  

Station Receiver type Antenna type 

AREG, HARB, PTGG, TLSG, TONG SEPT POLARX5 TRM59800.00 
GAMG, GOP6, STJ3, YEL2 LEIAR25.R4 
KAT1, KOUG LEIAR25.R3 
DARW, LAUT, POHN JAVRINGANT_DM 
YAR3 LEIAR25 
YARR LEIAT504 
NRMG TRM57971.00 
STR1 ASH701945C_M 
BRST TRIMBLE ALLOY TRM57971.00 
KZN2 TRIMBLE NETR9 TRM59800.00 
LPGS, POTS, SGOC, ULAB, URUM, 

WUH2 
JAVRINGANT_G5T JAVAD TRE_3  

Table 4 
Galileo PPP data processing strategy.  

Items Strategies 

Solutions DF, TF, FF1, FF2, FF3 and FF4 
Observations Galileo E1, E5a, E5b, E5 and E6 pseudorange and carrier 

phase observations 
Sampling rate Static data: 30 s; kinematic data: 1 s 
Elevation cutoff 7◦

Satellite orbit Fixed by GFZ precise orbit products 
Satellite clock Fixed by GFZ precise clock products 
Satellite DCB E1: − βs

(1,2)⋅DCBs
(1,2); E5a: αs

(1,2)⋅DCBs
(1,2) ; 

E5b:DCBs
(1,3) − βs

(1,2)⋅DCBs
(1,2); E5: DCBs

(1,4) − βs
(1,2)⋅DCBs

(1,2); 
E6: DCBs

(1,5) − βs
(1,2)⋅DCBs

(1,2) ; Corrected with Chinese 
Academy of Sciences (CAS) products [38]  

Earth rotation Fixed [18] 
Relativistic effect Corrected [39] 
Phase windup effect Corrected [40] 
Tide effect Solid Earth, pole and ocean tide [18] 
Satellite and receiver 

antenna 
MGEX values. When the phase center corrections on the 
third, fourth and fifth frequency are unavailable, the 
corrections on the second frequency are applied. 

Station coordinates Static: estimated as constants; Kinematic: estimated as 
white noise process (100 m2) 

Receiver clock Estimated as white noises (105 m2/s) 
Tropospheric delay Dry component: GPT3 model together with Modified 

Hopfield; Wet component: estimated as random part (10− 9 

m2/s), VMF3 mapping function [41,42] 
Receiver DCB and IFB Absorbed by receiver clock or estimated as constants 
Ionospheric delay DF/TF/FF1/FF2: eliminated by IF observations; 

FF3/FF4: estimated as white noise process (104 m2/s)  
[22,43] 

Ambiguities Estimated as constant  

K. Su and S. Jin                                                                                                                                                                                                                                 



Measurement 172 (2021) 108890

6

respect to the coordinates from IGS solutions. Owing to the different 
observations are applied with the same satellite clock estimates, the 
disagreement defined as inter-frequency clock bias (IFCB) arises. The 
consistency of Galileo five-frequency time-dependent UCDs can be 
ensured and thus the IFCB in Galileo can be neglected [35]. The GIM 

provided by IGS, with an accuracy of few total electronic content units 
(TECUs) is used for the prior ionosphere constraint. The variance of the 
virtual ionospheric parameters for GIM can refer to the literature [22]. 
The FF4 model can also be carried out with some other high-accuracy 
ionospheric models that used as the constraints [36,37]. 

3.2. Static PPP performance 

The static PPP performance is investigated and assessed in terms of 
convergence time and positioning accuracy. The convergence criterion 
is defined as the three-dimensional positioning errors are less than the 
10 cm at the current epoch and keep the feature during the following 
twenty epochs [44]. The three-dimensional root mean square (RMS) is 
calculated using the positioning errors from the convergent epoch to the 
end epoch in a day. Taking the stations DARW and GAMG on DOY 001/ 
2019 as the examples, Fig. 2 shows the positioning error of Galileo-only 
static PPP for DF, TF, FF1, FF2, FF3 and FF4 models, respectively. We 
can observe that the positioning errors are within 2 cm in the north, east 
and up components for the dual-, triple- and five-frequency PPP models 
at two stations. The positioning solutions of the FF1, FF2 and FF3 models 
exhibit the great agreement, and show slightly better performance than 
the DF and TF solutions. The difference between FF4 and other PPP 
models mainly lies in the initial time, which is influenced by the con
straints from the external ionospheric products. 

Fig. 3 illustrates the distribution and boxplot of the Galileo-only 
static PPP convergence time with different models for 26 MGEX sta
tions. Moreover, Fig. 4 provides the three-dimensional RMS of Galileo- 
only static PPP by different models. For each boxplot, it has five hori
zontal lines, representing 0%, 25%, 50%, 75% and 100% quantiles from 
bottom to top, respectively. The median and mean of corresponding 
values are also provided in the figures. It is apparent that the positioning 
performance of FF1, FF2 and FF3 agrees well with each other, for 
instance, of which the median values (50% quantiles) of convergence 
time are 30.5, 30.5, 31.0 min, respectively. It is no surprising for that 
their equivalence has been discussed. A slightly difference can be found 
between FF3 model and IF based PPP models in that the correlation 
exists between the estimable ionospheric delay parameters and phase 
ambiguity parameters in FF3 model before convergence. The conver
gence performance of Galileo-only FF4 solution exhibits much worse 
than other PPP models, which is influenced by the limited accuracy of 
GIM (2–8 TECU) [45]. The similar phenomena existed in dual-frequency 
PPP has been demonstrated by Zhou et al [46]. In addition, compared 
with Galileo-only dual-frequency IF model, the positioning accuracy of 
five-frequency PPP models is effectively improved after convergence. 
The growing weighting of ionospheric virtual observations have subtle 
influence on the positioning accuracy of Galileo-only FF4 scheme in the 
filter process after convergence. 

Fig. 3. Distribution and boxplot of the Galileo-only static PPP convergence time with DF, TF, FF1, FF2, FF3 and FF4 schemes for the selected 26 stations.  

Fig. 2. Positioning error of Galileo-only static PPP solutions among different 
PPP models at stations DARW (top) and GAMG (bottom) (DOY 001/2019). 
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3.3. Receiver clock, tropospheric delay, receiver IFB and DCB estimates 

Fig. 5 depicts the estimated receiver clock time series for different 
Galileo-only PPP models at stations DARW and GAMG. Slight differ
ences exist for the receiver clock estimates of DF, TF and five-frequency 
PPP models, especially for the station DRAW. The estimated receiver 
clock of two stations fluctuates less than 15 ns in one day. The clock time 
series of stations DARW and GAMG show the different variation ten
dency due to the common unmodelled error. The receiver clocks in DF, 
FF1, FF3 and FF4 models refer to the same values, that are the combined 
raw receiver clock and Galileo E1/E5a receiver UCDs (dtr =

dtr + dr,(1,2)). The values in FF2 model with a systematic bias show the 
same variation (dtr = dtr + dr,(1,2,3,4,5)). 

Fig. 6 shows the estimated ZTD series for different PPP models at two 

stations, which are estimated as random-walk process in the models. The 
estimable ZTDs can be segmented into the estimated ZWDs and priori 
zenith hydrostatic delays (ZHDs) derived by the GPT3 and Modified 
Hopfield models. To evaluate the accuracy estimated ZTDs, the values 
provided by IGS with a typical formal accuracy of 1.5–5 mm are used as 
the reference [47]. The RMS of the ZTD errors are (1.6, 1.5, 1.5, 1.5, 1.5, 
1.5) cm and (0.9, 0.9, 0.9, 0.9, 0.9, 0.9) cm for stations DARW and 
GAMG, respectively, for the DF, TF, FF1, FF2, FF3 and FF4 models. Like 
the estimated receiver clocks, the ZTDs differences mainly exist among 
the DF and PPP models, especially for the station DRAW as well. The 
differences of estimated ZTDs from the five-frequency PPP models are 
small and can be neglectable after convergence. 

The receiver IFB values have to be estimated in FF1, FF3 and FF4 
models. Fig. 7 shows the time series of IFB estimates at stations DRAW 

Fig. 4. Distribution and boxplot of the three-dimensional RMS of Galileo-only static PPP with DF, TF, FF1, FF2, FF3 and FF4 schemes for the selected 26 stations.  

Fig. 5. Time series of the estimated receiver clock time series for different 
Galileo-only PPP models at stations DARW and GAMG. Fig. 6. Estimated ZTD time series of stations DARW and GAMG for different 

Galileo-only PPP models at stations DARW and GAMG. 
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and GAMG, respectively. The IFB estimates are epoch-wise and stable. 
Hence, it is possible to estimate the IFBs as constants in a day. The 
maximum variations of receiver IFBs in three models are less than 0.5 ns 
(equivalent to 0.15 m). In fact, the ratio of estimated IFB1, IFB2 and IFB3 
in the FF1 and FF3 (FF4) models theoretically are βs

(1,3) (-1.422), βs
(1,4)

(-1.388) and βs
(1,5) (-1.931), respectively. To further verify the estimated 

IFBs accuracy for the three models, Galileo receiver DCBs (i,e., DCBr,(1,3), 
DCBr,(1,4) and DCBr,(1,5)) extracted from the MGEX products are used to 
calculate the reference IFB values. Fig. 8 shows the receiver IFB esti
mates difference with respect to MGEX reference IFBs at two stations. 
The results indicate that the differences are all within 0.3 ns (equivalent 
to 0.09 m). We can conclude that the estimated IFBs have an accuracy of 
few centimeters. 

Furthermore, there is an additional estimated receiver DCB param
eter in FF4 model. Fig. 9 shows the receiver E1/E5a DCB estimates at 
two stations. The MGEX reference DCB values are depicted for com
parison. The RMS of estimated DCBs are 0.55 and 0.75 ns, respectively, 
with regard to the reference values. The relatively lower accuracy of 
estimated DCBs arises from the limited accuracy of GIM products and 
the strong correlation between DCB and the slant ionospheric delay. 

3.4. Kinematic PPP tests 

To validate the Galileo-only five-frequency PPP performance in real 
kinematic scenarios, a dynamic experiment was conduct on the Zhon
gyuan old playground of the campus of Nanjing University of Informa
tion Science and Technology in Nanjing, China on December 26, 2019. 
The experiment begins at the GPS time 06:37:02 and lasts for more than 
two hours. The kinematic data have the sampling rate of 1 Hz with the 
cut-off angle of 7◦. Fig. 10 shows the trajectory of the rover station as 
well as the location of the reference station. For the reference station, the 
TRIMBLE ALLOY receiver was equipped with TRM57971.00 antenna. 
The rover station with the same receiver and antenna types was taken by 
the experimenters to walk around the playground for five times after 
resting for approximately 30 min. The multi-GNSS ambiguity-fixed 
double-difference real-time kinematic (RTK) approach was handled to 
provide the reference values for the Galileo-only kinematic PPP tests 
[14]. From Fig. 10, we can observe that distances between the rover and 
reference stations are always less than 400 m during the experimental 
period. 

The Galileo-only kinematic PPP kinematic positioning errors of the 
DF, TF, FF1, FF2, FF3 and FF4 solutions with reference to the RTK 

Fig. 7. Receiver IFB estimates of the five-frequency Galileo-only FF1, FF3 and FF4 models on stations DRAW and GAMG (DOY 001/2019).  

Fig. 8. Difference of receiver IFB estimates with respect to MGEX reference 
IFBs on stations DRAW and GAMG (DOY 001/2019). 

Fig. 9. Receiver E1/E5a DCB estimates together with MGEX reference DCBs on 
stations DRAW and GAMG (DOY 001/2019). 

Fig. 10. Trajectory of the rover station and the location of the reference station.  
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solution in the north, east and up components, respectively, are shown 
in Fig. 11. The positioning performance of the Galileo-only PPP seems to 
perform not very well, which is expected given the lower number of 
Galileo satellites. To demonstrate it, Fig. 11 also provides the Galileo- 
only and GPS/Galileo kinematic PPP kinematic positioning errors in 
three components. Furthermore, Fig. 12 depicts the visible satellite 
number and corresponding positioning dilution of precision (PDOP) 
values of the Galileo and GPS/Galileo system. The mean values for the 
visible Galileo and GPS/Galileo satellite number are 5.7 and 8.5, 
respectively, and the corresponding PDOP values are 2.6 and 2.0. Fig. 13 
shows the sky plot of the Galileo and GPS/Galileo satellites for the rover 
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Fig. 11. Positioning errors for the Galileo-only and GPS/Galileo kinematic 
PPP solutions. 

Fig. 12. Visible Galileo and GPS/Galileo satellite number and corresponding 
PDOP values. 

(a) Galileo

(b) GPS + Galileo

Fig. 13. Sky plots of Galileo and GPS/Galileo satellites at the rover station.  

Table 5 
Accuracy of the Galileo kinematic PPP models.  

Accuracy North (cm) East (cm) Up (cm) 3-D (cm) 

DF  14.7  43.4  72.6  85.9 
TF  13.1  34.1  66.1  75.5 
FF1  12.5  27.5  49.7  58.2 
FF2  12.5  27.6  49.6  58.1 
FF3  12.6  27.7  49.6  58.2 
FF4  12.1  24.8  50.4  57.4 
DF (G+R)  2.1  11.3  8.2  14.1  
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station. During the whole experiment period, only Galileo satellites E02, 
E03, E05, E08, E24 and E30 can be observed. The observed Galileo 
satellite number is relatively limited in the tested region. 

To evaluate the Galileo kinematic PPP positioning accuracy, Table 5 
shows the root mean square (RMS) values of the positioning errors for 
different kinematic PPP solutions since the rover station moved, in 
which the initialization phase is end and the three-dimension posi
tioning errors have been relative stable. The positioning accuracy of FF1, 
FF2 and FF3 is as well basically the same in kinematic scenarios. How
ever, distinguished from the static PPP solutions, the positioning accu
racy of Galileo five-frequency PPP is significantly improved compared 
with the dual- and triple-frequency solutions. For instance, compared 
with Galileo-only DF scheme, the positioning accuracy of the FF3 solu
tion can be improved by 14.3%, 36.2% and 31.7% in the north, east and 
up components, respectively. The contribution of the multi-frequency 
signals in PPP is obvious and can improve the positioning accuracy 
and reliability in real kinematic situations. The performance of the 
Galileo-only kinematic PPP is relatively poor and mainly affected by the 
limited observed satellites. Only 5–6 Galileo satellites can be observed 
during the whole experimental period. By adding the GPS observations, 
it’s apparent that the positioning accuracy of the DF solution is 
improved by 85.7%, 74.0% and 83.6% in three directions. With the 
inclusion of the ionosphere constraint, the Galileo five-frequency PPP 3- 
D positioning accuracy is slightly improved at approximately 0.8 cm, 
which is influenced by that the estimated ionospheric delay parameters 
and receiver DCB are effectively separated. 

4. Conclusion 

In this contribution, we develop the five-frequency Galileo PPP 
models and evaluate the corresponding performance. The Galileo-only 
dual- and triple-frequency IF PPP solutions are also conducted for 
comparison. The former two models use IF combinations, and latter two 
models employ the raw measurements. With the additional observa
tions, receiver IFBs need to be considered in FF1, FF3 and FF4 models. 

The receiver E1/E5a DCB also needs to be considered in FF4 model. 
Statistical results indicate that the positioning errors have an accu

racy of few millimeters in three-dimensional components for dual-, tri
ple and five-frequency PPP models in static scenarios. The kinematic 
PPP solutions have an accuracy of decimeter level. The positioning ac
curacy of the north component is the best, followed by the east and up 
components. By comparing the results among FF1, FF2, and FF3 
schemes, their performance has shown great consistencies. The 
convergence time of FF4 model is deteriorated for the static datasets, but 
the positioning accuracy is improved, especially obvious for the kine
matic scenarios. Compared to dual- and triple-frequency IF PPP, the 
positioning performance of Galileo five-frequency PPP in terms of 
positioning accuracy and convergence time is both improved. 
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Appendix A 

In this part, we give the coefficients derivation in FF2 model. Rearranging Eq. (4) gives: 

F = kT ⋅q⋅k+ ξ1⋅(eT ⋅k − 1)+ ξ2⋅uT ⋅k (A1)  

where ξ1 and ξ2 are also unknown parameters. 
The partial derivatives of the function regarding to k can be expressed as: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F/∂k1 = 2⋅q2
1⋅k1 + ξ1 + ξ2 = 0

∂F/∂k2 = 2⋅q2
2⋅k2 + ξ1 + ξ2⋅u2 = 0

∂F/∂k3 = 2⋅q2
3⋅k3 + ξ1 + ξ2⋅u3 = 0

∂F/∂k4 = 2⋅q2
4⋅k4 + ξ1 + ξ2⋅u4 = 0

∂F/∂k5 = 2⋅q2
5⋅k5 + ξ1 + ξ2⋅u5 = 0

(A2) 

Then, the above equations can be transformed into: 
{

ξ1⋅A + ξ2⋅B = 0
ξ1⋅C + ξ2⋅A = − 2⋅D (A3)  

with 
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A = D/q2
1 + u2⋅D/q2

2 + u3⋅D/q2
3 + u4⋅D/q2

4 + u5⋅D/q2
5

B = D/q2
1 + u2

2⋅D/q2
2 + u2

3⋅D/q2
3 + u2

4⋅D/q2
4 + u2

5⋅D/q2
5

C = D/q2
1 + D/q2

2 + D/q2
3 + D/q2

4 + D/q2
5

D = q2
1⋅q2

2⋅q2
3⋅q2

4⋅q2
5

(A4) 

Squaring Eq. A(3) gives 
⎧
⎪⎪⎨

⎪⎪⎩

ξ1 =
2⋅B⋅D

A2 − B⋅C

ξ2 =
− 2⋅A⋅D

A2 − B⋅C

(A5) 

Substituting Eq. A(4) and Eq. A(5) into Eq. A(2), the coefficients can be obtained successfully. 
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