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Abstract— Global navigation satellite system (GNSS) is one of
the most effective means for landslide monitoring. At present,
most studies on GNSS-based landslide monitoring focus on the
long-term landslide analysis, while short-term landslide displace-
ment is not clear. The purpose of this article is to explore
a short-term displacement detection method based on GNSS
kinematic positioning for landslide monitoring. The significance
and feasibility of short-term landslide monitoring are presented,
and a short-term displacement detection method based on GNSS
kinematic positioning time series segmentation is proposed. The
coordinate time series is reconstructed by the Daubechies wavelet
to extract the abrupt components. The detection window is
formed by the current epoch coordinates and the previous epochs’
coordinates and segmented according to the segmentation index.
The segmentation point obtained by segmenting the detection
window is regarded as a possible change point (PCP), and a
test is conducted to determine whether the segmentation point
is a change point (CP). Simulation and field experiments were
carried out to verify the proposed method. The results show
the feasibility and effectiveness of the method for short-term
landslide change detection. The influence of the detection window
size and segmentation index on the proposed method is discussed,
and suggestions for the selection of detection window size as well
as segmentation index are given.

Index Terms— Global navigation satellite system (GNSS), kine-
matic positioning, landslide, short-term displacement detection,
segmentation.

I. INTRODUCTION

LANDSLIDE is a natural phenomenon in which the soil
or rock mass on the slope slides downward in a whole or

scattered manner under the influence of rainfall, earthquake,
and other factors [1]. It is one of the most damaging and
deadly natural hazards [2]. In the last two decades, there has
been a surge of interest in investigating the global naviga-
tion satellite system (GNSS) for landslide monitoring. Com-
pared with the traditional landslide monitoring technology,
GNSS observation has the following technical advantages:
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independent of the weather, no requirement for visibility
between monitoring points, high accuracy, and diverse time
scales [3]. Besides, with the continuous development of GNSS
technology, the cost of the receiver is decreasing, and the
positioning accuracy has been significantly improved [4].

Previous landslide surface displacement monitoring was
a simple but effective method for landslide monitoring and
analysis [5]. There are a large number of studies that pre-
sented the applications of GNSS for landslide monitoring.
Gili et al. [6] first examined the feasibility of the global
positioning system (GPS) applied to landslide monitoring,
in which more than 26 months of GPS observation data
were used to calculate the displacement. Compared with the
measurement results of electronic distance meters, inclinome-
ter, and wire extensometer, the GPS measurement has the
horizontal accuracy of 12–16 mm and the vertical accuracy
of 18–24 mm. Abidin et al. [7] conducted a repeated GPS
survey to detect land displacements in the landslide-prone
area and obtained the landslide displacement by the coordinate
difference between two consecutive GPS measurements, which
showed that the GPS was a reliable method for studying
and monitoring landslide displacement. To determine the
experimental accuracy of GPS measurements for continuous
landslide monitoring, Su et al. [8] installed three GPS receivers
to measure ground displacement in the landslide area. By com-
paring with surface extensometers data on-site, the results
showed that GPS could be used for long-term monitoring of
high-mountain landslides. To evaluate the feasibility of rapid
static and relative real-time kinematic (RTK) for landslide
monitoring, Rawat et al. [9] conducted a study in the case of
Bakthang landslide, Gangtok, East Sikkim, India. The result
indicated that these techniques were very reliable for landslide
monitoring. Similarly, Wang [10] conducted a comparative
study on a single station and network solutions for long-term
landslide monitoring [11], which showed that the network
solution was more favorable to eliminate gross errors and
improve the accuracy and robustness of landslide monitoring.
Lytvyn et al. [12] proposed using the single-frequency precise
point position (PPP) for landslide monitoring and developed
a landslide monitoring system based on single-frequency PPP.
To reduce the cost of landslide monitoring, Xiao and He [13]
proposed GPS multiantenna switching technology and devel-
oped a multiantenna monitoring system. The experimen-
tal results showed that for long-term landslide monitoring,
the accuracy level of multiantenna switching was comparable
to that of the single antenna single receiver. Overall, the studies
described above are mainly concerned with the feasibility of
GPS for long-term landslide monitoring.
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There are few high-quality studies dedicated to short-term
landslide monitoring. Li and Kuhlmann [14] proposed a mul-
tiple Kalman filter model to capture the abrupt, in which
different filters represent different deformation types. How-
ever, the coordinate time series were processed epoch by
epoch, which was easily affected by measurement errors.
To evaluate whether the mass-market GNSS receiver is suit-
able for short-term landslide monitoring, Cina and Piras [15]
used a special metal slide to simulate the landslide and
the vertical and horizontal displacement of the antenna that
could be fine-tuned by micrometers. A control experiment
of single-frequency GNSS receiver accuracy evaluation was
carried out by using this device. The results showed that under
certain conditions, the accuracy of single-frequency GNSS can
reach millimeter, which is suitable for landslide displacement
monitoring. However, in their study, the mechanism of change
detection was not described in detail. Bellone et al. [16]
conducted a similar study using the same device to evaluate the
single-frequency receiver Ublox and the geodetic receiver. The
data collected from these receivers were processed in the
network RTK positioning mode, and then, the Chow test was
performed on the positioning results. The results showed that
the Chow test was an effective displacement detection tool.
However, only ultrashort baseline experiments were carried
out, and the selection strategy of window size for the statisti-
cal test was not given. Besides, Dabove and Manzino [17]
proposed a cluster-based method for dynamic deformation
analysis, but this method did not perform well on real data.
These studies mentioned above were of some significance to
short-term landslide monitoring, but there are some limitations.

Studies over the past two decades have provided important
information on GNSS-based landslide monitoring, but most
of which are only suitable for offline application. Up to now,
less research has been carried out on short-term displacement
detection. Although the displacement can be directly obtained
by the difference between GNSS coordinates, it is still a
challenge to detect the change and extract the displacement
effectively in a short time due to the influence of measurement
error. At present, the displacement detection process of most
existed methods is carried out epoch by epoch, which is easily
affected by the gross error and observation noise [18].

This article proposes a new methodology for displacement
identification and extraction. The primary aim of this study is
to find a straightforward and feasible displacement detection
method based on GNSS kinematic positioning, which can
be used for short-term landslide monitoring. The approach
taken in this study is a mixed methodology based on the
GNSS kinematic positioning and time series segmentation.
The time series obtained from GNSS kinematic positioning
is used as the basic processing unit. Before displacement
detection, the Daubechies wavelet is used to reconstruct the
signal and extract the abrupt component. Then, the detection
window is formed and segmented according to the segmen-
tation index to find the possible change point (PCP). Finally,
a test is performed to determine whether the segmentation
point is a change point (CP). The experimental work presented
here is one of the first investigations to explore short-term
displacement identification and extraction from the GNSS

Fig. 1. Ideal diagram of slope body displacement [19].

Fig. 2. Landslide grade according to velocity.

real-time kinematic positioning by time series segmentation.
The remaining part is as follows. Section II shows the method-
ology used for this study, Section III presents the experimental
results, the discussion is given in Section IV, and finally,
the conclusion is given in the last section.

II. METHODOLOGY

In this section, the concept of landslide short-term moni-
toring is presented first. Then, displacement detection based
on time series segmentation is proposed, and GNSS kine-
matic positioning is introduced. Finally, the workflow of
displacement detection by time series segmentation of the GPS
real-time kinematic positioning is given.

A. Landslide Short-Term Monitoring

According to the monitoring data of a large number of
landslide examples, the spatial change characteristics of the
slope can be summarized, as shown in Fig. 1. The evolution
of a slope into a landslide generally undergoes three defor-
mation stages [19]: the initial deformation stage, the stable
deformation stage, and the accelerated deformation stage.
During the initial deformation phase, deformation begins to
form, and as time goes by, the deformation slows down
and enters the stable phase. In the stable deformation stage,
the deformation is slow, and long-term monitoring is generally
carried out at this stage. In the accelerated deformation stage,
the deformation rate increases continuously until the landslide
occurs. Studies show that the accelerated deformation stage of
the slope is the basis and prerequisite for the occurrence of
landslides [19], [20]. Therefore, the accelerated deformation
stage of the slope is of great significance to landslide predic-
tion [19]. Besides, the landslide can be divided into six grades
according to the landslide velocity [21], as shown in Fig. 2. We
define short-term landslide monitoring as slope displacement
acceleration deformation stage monitoring, or slow, moderate,
and rapid landslide monitoring. The purpose of short-term
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Fig. 3. Schematic of displacement detection based on time series segmen-
tation.

monitoring is to provide early warning of landslides, and
GNSS kinematic positioning mode is recommended [22].
According to the monitoring data of landslide cases [20], [23],
the overall trend of the deformation time curve conforms to
the above three-stage evolution law, but it is not as smooth
as in Fig. 1 [19], [20], and the local is often stepped [19].
Therefore, in the following, displacement detection is aimed
at the abrupt displacement.

B. Displacement Detection Based on Time Series
Segmentation

A time series window is expressed as x1, x2, . . . , xn , where
n is the size of the window. For a classical time series
segmentation problem, it is assumed that there are m change
points in the time series, and the corresponding sequence
number is τ = [τ1, τ2, . . . τm]. The entire time series is divided
into m + 1 segments by these m change points. The statistical
mean value of each segment is expressed as follows:

x̄(k) = 1

τk+1 − τk

τk+1−1∑
j=τk

x j (1)

where τ0 and τm+1 are defined as τ0 = 1 and τm+1 = n + 1,
respectively, and k = (0, 1, . . . ,m) denotes the kth segment.

For the short-term displacement detection of landslides
using GNSS, more attention is paid to the time and degree
of change, rather than segmenting the entire time series.
Besides, multichange point detection is generally computa-
tionally intensive and not suitable for online implementation.
Therefore, the detection window as shown in Fig. 3 is defined
for short-term displacement detection. As shown in Fig. 3,
the mean and variance of the two segments divided by τ are
expressed as h0 and h1 and σ0

2 and σ1
2, respectively. Then,

the displacement before and after the change point can be
estimated as follows:

�h = h0 − h1. (2)

After defining such a detection window, the first task is to
find the most likely segmentation point or the PCP according
to the detection index. Therefore, various detection indices are
introduced in the following.

C. Detection Window Segmentation Indices

There are many different indices for window segmentation,
the most commonly used ones are introduced here. Window
segmentation based on these indicators is the state-of-the-art
segmentation methods in time series segmentation. However,
the segmentation points obtained by these segmentation meth-
ods are called PCP here. These PCPs are not necessarily CP
due to local disturbance. The final CP will be determined based
on these PCP statistics. In the experimental section, the direct
PCP output of these segmentation methods will be given as a
comparison.

1) Variance Test (VT): For time series segmentation,
the objective function is constructed based on the statistic of
each section, and the most common statistical value is the
variance [24], [25]

J (τ ) =
m∑

k=0

τk+1−1∑
i=τk

(xi − x̄(k))2 (3)

where J (τ ) represents the objective function. The meaning of
other symbols is consistent with that in Section II-B. For the
window segmentation problem described above, the objective
function is simplified as follows:

J (τ ) = σ 2
0 + σ 2

1 =
τ−1∑
i=1

⎛
⎝xi − 1

τ − 1

τ−1∑
j=1

x j

⎞
⎠

2

+
n∑

i=τ

⎛
⎝xi − 1

n − τ + 1

n∑
j=τ

x j

⎞
⎠

2

(4)

in which τ is the PCP that needs to be estimated in each detec-
tion window. Then, the PCP detection problem is transformed
into

τ̂ = arg min
τ

J (τ ), 2 ≤ τ ≤ n (5)

where τ̂ represents the optimal estimate. For any detection
window, a value τ can always be found to minimize the above
formula, that is, the segmentation point is not necessarily a
CP. How to determine CP based on PCP statistics will be
introduced later.

2) Standard Normal Homogeneity Test (SNHT): SNHT is
one of the widely used anomaly detection methods in hydrom-
eteorology, which is used to study the inhomogeneities in the
mean value of the observations [26]. The test statistic is

τ̂ =arg max
τ

[(τ−1)x̄(0)2+(n−τ+1)x̄(1)2], 2≤τ≤n (6)

where x̄(0), x̄(1) can be obtained according to (1). Similar
to the index VT introduced above, this formula can only
determine PCP, and further decision on CP is needed.

3) Pettitt’s Test (PETT): Pettitt’s test is a nonparametric
approach to the change-point problem, and the test statistic
is [27]

Uτ,n = Uτ−1,n +
n∑

j=τ+1

sgn(xτ − x j), 2 ≤ τ ≤ n (7)
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where

sgn(xi − x j)
�=

⎧⎪⎨
⎪⎩

1, xi − x j > 0

0, xi − x j = 0

−1, xi − x j < 0.

Under the null hypothesis, for each τ , the distribution of Uτ,n is
symmetric about zero, that is, E(Uτ,n) = 0. The segmentation
point corresponding to the statistic with the largest absolute
value is considered to be the most likely change point

K τ̂ ,n = max
∣∣Uτ,n

∣∣, τ = 1, 2, . . . , n. (8)

The significant probability of K τ̂ ,n is approximately calculated
as

p � 2 exp

(−6K τ̂ ,n
2

n3 + n2

)
. (9)

The probability of PCP as CP can be obtained according to
the statistical value.

4) Z Test (ZT): The Z test is often used to detect the
significance of the mean difference, and the test statistic is
defined as follows:

Zτ = h1 − h0√
σ0

2

τ−1 + σ1
2

n−τ+1

= �ĥ√
σ0

2

τ−1 + σ1
2

n−τ+1

, 2 ≤ τ ≤ n. (10)

The test statistic is also called the z score. The segmentation
point corresponding to the maximum absolute z score is
considered to be the most likely change point

τ̂ = arg max
τ

|Zt |, 2 ≤ τ ≤ n. (11)

The probability of PCP becoming CP can be obtained accord-
ing to the statistical value, which is assumed to follow the
standard normal distribution.

For a certain detection window, a PCP can always be
found through the above tests. As for whether the epoch
corresponding to the PCP is a CP, continuous tracking and
statistics of the epoch are required, which will be introduced
next.

D. PCP Statistics

The detection window formed by the current observation
epoch and several previous epochs is segmented according
to the indices described above, and the PCP of the current
detection window is found. It is necessary to further determine
whether the PCP is a CP. For the detection window of size
n, the number of times an epoch participates in the window
segmentation is n, which starts from the epoch entering the
detection window to leaving the detection window completely.
In the process of window segmentation, the more times the
epoch is divided into PCP, the more likely it is to be a CP.
The statistic counti is defined as the number of times that the
epoch i is divided into PCP. If the counti of an epoch is greater

than a certain threshold, the epoch is regarded as a CP. The
uncertainty of the epoch i identified as the change point is

u_cpi = n − counti
n

(12)

where u_cpi is defined as the percentage of PCP that cannot
support the i th epoch as the change point; n − counti denotes
the number of times that the epoch i is not divided into PCP
for the detection window of size n. It can be seen from the
definition that for a fixed detection window, the greater the
statistical count, the smaller the uncertainty.

For an epoch with counti PCPs, there are also counti
displacement estimates, which is expressed as follows:

�hi j = hi j0 − hi j1, 1 ≤ j ≤ counti (13)

where �hi j is the j th displacement estimate of the i th
epoch; hi j0 and hi j1, respectively, represent the mean value
of the coordinates of the two parts of the window segmen-
tation, as shown in Fig. 3. Since counti PCPs correspond
to counti segmentation windows, it is impossible to evaluate
the reliability of these displacement estimates using indices
described above. Similar to the determination of CP, the more
concentrated �hi j is, the closer it is to the true value. Based
on this idea, the displacement is divided into equal intervals
according to the displacement estimation range of PCPs

binik = div
(
min(�hi j),max(�hi j), s

)
, 1 ≤ k ≤ s (14)

where the div(x1, x2, s) operator indicates generating s inter-
vals, and the interval width is ((x2−x1)/s). Then, based on the
count the number of �hi j falling into each interval, the final
displacement estimate is

̂�hi = f

(
arg max

binik

(count(binik))

)
(15)

where s is the number of intervals divided and count(binik)
denotes the number of�hi j falling into binik . f is the mapping
function from displacement interval to displacement. In this
work, s is set to 100, and f is defined as the mean of the
displacement interval. It can be seen from (2) and Fig. 3 that
the uncertainty of the extracted displacement is determined by
the uncertainty of the mean of the segments

u_dispi =
√
σ 2

0 + σ 2
1 . (16)

It is assumed that the variance of single-epoch observations
is σ and independent of each other. Then, the variances
of segment 0 with n0 observations and segment 1 with n1

observations are

σ 2
0 = σ 2

n0
(17)

σ 2
1 = σ 2

n1
. (18)

Then, the uncertainty of the extracted displacement is

u_dispi =
√

n0 + n1

n0n1
σ. (19)
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The following inequality exists between the number of obser-
vations of the two segments

(n0 + n1)
2 ≥ 4n0n1. (20)

According to (19) and (20), the lower limit of the extracted
displacement uncertainty is obtained

u_dispi ≥ 2√
n
σ. (21)

From the above derivation, it can be seen that the uncertainty
of the extracted displacement has no direct relationship with
the displacement. The introduction of displacement detection
based on time series segmentation is given above, and the
source of time series is introduced next.

E. Relative Real-Time Kinematic (RTK)

RTK is widely used in structural health monitoring, land-
slide monitoring, and other fields due to its high positioning
accuracy and real-time efficiency. The observation model,
the state model, and the extended Kalman filtering process
of RTK are introduced next.

1) Observation Model: The double-difference (DD) obser-
vation equation of relative positioning among base receiver,
rover receiver, and satellites j and k is defined in (22), as
shown at the bottom of the page [18].

In this observation equation, �∇ denotes the DD operator,
i denotes the frequency; b and r denote base station and rover
station, respectively.�∇ P jk

ibr
and�∇� jk

ibr
denote pseudo-range

and carrier-phase DD observations, respectively. �∇ρ jk
br is

the DD geometric distance between receivers and satellites.
�∇M jk

Pibr
and�∇M jk

�ibr
denote pseudo-range and carrier-phase

multipath error, respectively. �∇ε jk
Pibr

and �∇ε jk
�ibr

repre-
sent DD observation error of pseudo-range and carrier-phase,
respectively. �∇ I jk

�ibr
is the DD ionospheric delay between

receivers and satellites, and the ionospheric error has the
same absolute value but the opposite sign on pseudo-range
and carrier-phase observations.�∇T jk

br is the DD tropospheric
delay between receivers and satellites. For the short baseline,
the atmospheric error can be ignored, so the above DD
observation equation is simplified as

�∇ P jk
ibr

= �∇ρ jk
br +�∇M jk

Pibr
+�∇ε jk

Pibr

�∇� jk
ibr

= �∇ρ jk
br − λi�∇N jk

ibr
+�∇M jk

�ibr
+�∇ε jk

�ibr

}
. (23)

By ignoring the influence of multipath, linearizing equa-
tion (23), we get

y = Hx + ε (24)

where y is the observation minus the computed, H is the
linearized design matrix [28], x � [rr,�∇N]T is the state
vector, which contains the rover station coordinate rr and the
DD integer ambiguity �∇N; ε is the observation noise and
its covariance matrix is expressed as Rε. After forming the

observation equation, the “float” solution of the parameter can
be obtained by the standard least square method. To obtain
high-precision positioning results, it is necessary to fix the
integer ambiguity. The ‘’float” solution and variance of integer
ambiguity are expressed as �∇Ñ and Q�∇Ñ, respectively.
Then, the problem of ambiguity fixing can be described
as (25) [29]

�∇N̂

= arg min
�∇N∈Z

((
�∇N −�∇Ñ

)
Q−1
�∇Ñ

(
�∇N −�∇Ñ

)T
)

.(25)

There are many methods referring to integer ambiguity res-
olution, among which LAMBDA (Least-squares Ambiguity
Decorrelation Adjustment) [29] method is the most widely
used one. The integer ambiguity is obtained by the integer least
square method. Then, the test process is executed to determine
whether to accept or reject the integer ambiguity [30], [31].
If the test is passed, the fixed integer ambiguity can be
substituted into (24) to resolve the fixed solution; otherwise,
the “float” solution will be maintained.

2) State Model: The state model is defined as follows [37]:

xk = Fxk−1 + w (26)

where

F
�=

[
I3×3 0

0 I(2n−2)(2n−2)

]
is the transition matrix from epoch k − 1 to epoch k, I
denotes the identity matrix, and n represents the number of
satellites observed simultaneously by the base station and the
rover station. Only GPS L1 and L2 frequency observations
are considered, so 2n − 2 DD ambiguities are formed. w
is the process noise, and its covariance matrix is expressed
as Gw. For kinematic positioning, the coordinate covariance
component is set to be large to capture dynamic features, while
the ambiguity covariance component is set to 0 to ensure the
stability of positioning.

3) Extended Kalman Filtering: Kalman filtering includes
two processes: prediction update and measurement
update [32]. The prediction process is as follows:

x̂k|k−1 = Fx̂k−1 (27)

Qk|k−1 = FQk−1FT + Gw(k) (28)

where x̂k|k−1 and Qk|k−1 represent the predicted value and
the corresponding covariance, respectively. According to the
definition of the state transition matrix above, it can be
seen that the state value of the previous epoch remains
unchanged. However, the coordinate covariance component
becomes larger, while the ambiguity covariance component
remains unchanged. The measurement update process is as
follows:

vk = y(k)− Hk x̂k|k−1 (29)

Sk = HkQk|k−1HT
k + Rε(k) (30)

K = Qk|k−1HT
k S−1

k (31)

�∇ P jk
ibr

= �∇ρ jk
br −�∇ I jk

�ibr
+�∇T jk

br +�∇M jk
Pibr

+�∇ε jk
Pibr

�∇� jk
ibr

= �∇ρ jk
br +�∇ I jk

�ibr
+�∇T jk

br − λi�∇N jk
ibr

+�∇M jk
�ibr

+�∇ε jk
�ibr

}
(22)
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where vk denotes the innovation vector, Sk is the covariance
matrix of the innovation vector, Hk is the design matrix at
epoch k, and K is the state estimation gain matrix. The final
state is estimated as follows:

x̂k = x̂k|k−1 + Kvk (32)

Qk = Qk|k−1 − KSkKT (33)

where x̂k is the final estimate, Qk is the corresponding covari-
ance matrix, and x̂k is the only input of the proposed method.

Due to the complex spatiotemporal characteristics of obser-
vation errors, there are unmodeled error components in
time series [33]. To weaken the influence of these factors,
the wavelet analysis tool is introduced as follows.

F. Wavelet Analysis

A wavelet analysis has been developed for decades and
is widely used in signal denoising, anomaly detection, data
compression, and other fields [34]. Compared with the Fourier
transform, wavelet analysis is a more effective time–frequency
analysis tool. Wavelet analysis refines the signal step by
step through stretching and translation operations and finally
achieves time subdivision at high frequency and frequency
subdivision at low frequency. It can automatically adapt to
the requirements of time–frequency signal analysis, to focus
on any details of the signal [35].

1) Wavelet Transform: The definition of continuous wavelet
transform is as follows [35]:

CWT(a, b) = 1√
a

∞∫
−∞

x(t)ψ∗
(

t − b

a

)
dt (34)

where a and b are scaling and translation factors, respectively.
x(t) is the time series to be analyzed. ψ(·) is the mother
wavelet function, and ψ∗(·) is the conjugate of ψ(·). By adjust-
ing the scaling factor a and translation factor b, the wavelet
with different time–frequency width can be obtained to match
any position of the original signal, to achieve the purpose of
time–frequency localization analysis of the signal. The scaling
factor and translation factor of continuous wavelet transform
are real numbers, which is very inconvenient in engineering
applications. Discrete wavelet transform (DWT) is often used
in the numerical calculation of practical problems and is
defined as follows [35]:

DWT(m, n) = 1√
am

0

∞∫
−∞

x(t)ψ∗
(

t

am
0

− nb0

)
dt (35)

where the integers m and n are the scaling factor and the
translation factor, respectively. a0 is a specified fixed scaling
step parameter, which is greater than 1, and b0 is the location
parameter, which must be greater than zero.

2) Wavelet Function: One of the most important problems
in the application of wavelet analysis in engineering is the
choice of mother wavelet because different mother wavelets
will produce different results for the same problem. In this
article, the purpose of the wavelet transform is to extract
the abrupt component in the signal. Many different wavelet
functions that fulfill this requirement can be used in practice.
The work presented in this article utilizes the Daubechies

wavelet function, which is constructed by Inrid Daubechies,
a famous wavelet analysis scholar in the world. The wavelet
basis in the Daubechies family is denoted as dbN , where N
is the sequence, satisfying N = 1, 2..10. The regularization
coefficient of the db1 wavelet has the greatest similarity with
the Lipschitz index of the signal at the abrupt, which can most
effectively characterize the abrupt [36]. Therefore, db1 is used
as the basis function to decompose the original signal.

G. Workflow of Displacement Detection

In the previous paragraphs, landslide short-term monitoring
is introduced, and the short-term displacement detection based
on time series segmentation is proposed. The principle of
relative real-time kinematic positioning and wavelet analysis
are given. The flowchart of change detection by time series
segmentation of the GPS real-time kinematic positioning is
given in Fig. 4.

As shown in Fig. 4, to begin this process, the kinematic
positioning is performed to obtain the coordinates time series
to form the processing unit. Prior to displacement detection,
the wavelet tool is used to denoise the processing unit.
In Fig. 4, s denotes the original time series and ai and di

represent the approximation coefficients and detail coefficients,
respectively. After obtaining the wavelet reconstructed time
series, the whole process enters the displacement detection
module. The so-called detection window is formed based
on the coordinates of the current epoch and the previous
several epochs. On getting the detection window, the window
is segmented according to the indices, and a PCP can be
obtained. Finally, test the PCP according to the PCP statistics
to determine whether the PCP is a CP. Wavelet reconstruction
is not a must because abrupt components may not be effec-
tively extracted for small displacement, which will be seen in
later experiments.

III. EXPERIMENTS AND RESULTS

To verify the feasibility of the proposed method, we carried
out a series of experiments, including simulation experiments
and field experiments. In the simulation experiment, data
affected by noise and a trend item are simulated. In the
field experiment, several displacement changes were triggered
manually, and the relative real-time kinematic model is used
to process the GNSS observations.

A. Simulation Experiments

In the simulation experiment, we only simulate the position
measurement. GPS positioning results are affected by mea-
surement noise, ionospheric delay, tropospheric delay, multi-
path effects, and other errors. Although combined observations
or models are used to deal with these errors, there are still
unmodeled trend term and observation noise in the final posi-
tioning results [33]. Therefore, the designed simulation data
include observation noise, trend term, and specially designed
abrupt displacement. The designed position measurement is
affected by both the observation noise and a trend item. The
trend item is defined as follows:

dtrend = 0.005t (36)
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Fig. 4. Workflow of displacement detection by time series segmentation of the GPS real-time kinematic positioning.

Fig. 5. Simulation data with multiple changes.

where t denotes time. For RTK positioning mode, the hori-
zontal positioning accuracy is 20–30 mm, whereas the vertical
positioning accuracy is about 50 mm. Therefore, the standard
deviation of observation noise in the simulation data is set
to 50 mm.

1) Case 1—Significant Displacement: To evaluate the detec-
tion effect of this method on sudden displacements of different
amplitudes, abrupt displacements of one time, two times, and
three times the standard deviation are designed in the simula-
tion data. At 500, 1000, and 1500 s, the displacements of 50,
100, and 150 mm are added, respectively. The simulation
results are shown in Fig. 5.

Fig. 6. Detection result of simulation data with VT as the index.

As shown in Fig. 5, the simulation data are synthesized by
the Gaussian noise, the trend item, and displacement changes.
The simulation data are processed by the method proposed
above, and the displacement, PCPs are shown in Fig. 6.

As shown at the top of Fig. 6, after reconstructed by the
designed wavelet, the time series shows more obvious abrupt
characteristics. The bottom of Fig.6 shows the PCPs obtained
by window segmentation, where the detection window size
is 300. The influence of the detection window size on the
detection results will be discussed later. From the above
results, it can be seen that some PCPs do not change as the
detection window moves. The PCB distribution of the wavelet
reconstructed signal is more concentrated, and PCP statistics
are shown in Fig. 7.

As shown at the top of Fig. 7, the PCP counts at the three
abrupt are 281, 297, and 296, respectively, and are close to the
size of the detection window, i.e., 300. Although the design
displacement is small and at the same level as the standard
deviation of the observation noise, all three design abrupt
changes have been detected. As the displacement becomes
larger, the statistical count increases, and the corresponding
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Fig. 7. PCP statistics of simulation data with VT as the index.

Fig. 8. Detection result of small displacement simulation data with VT as
the index.

uncertainty obtained according to (12) decreases. The three
displacements obtained from the segmented window are 43.6,
93.4, and 141.1 mm, respectively. The error percentages of
the three displacements extracted by the proposed method are
12.8%, 6.1%, and 5.9%, respectively. It can be seen from the
above simulation experiment results that the proposed method
can be effectively applied to displacement detection.

2) Case 2—Small Displacement: To further verify the per-
formance of this method for small displacement, another set
of data is simulated, and the displacements at 500, 1000, and
1500 s are set at 20, 30, and 40 mm, respectively. Other
simulation options are consistent with those in the above
simulation data. The simulation data are processed by the
proposed method, and the results are shown in Figs. 8 and 9.

It can be seen from Fig. 8 that the displacement smaller than
the standard deviation of the observation noise is difficult to
be identified visually, even though reconstructed by wavelet
transform. From the statistics of PCP, it can be seen that
the statistical count is smaller than that of the previous one,
and the identification of these small displacements is more
easily affected by local disturbance. The statistical count of
these small displacements is less than that of the previous
experiment, and the corresponding uncertainty is greater than
that of the previous experiment. The identified abrupt changes
are at 457, 1001, and 1505 s. Lowering the threshold can
identify these displacements, but the uncertainty is greater and

Fig. 9. PCP statistics of small displacement simulation data with VT as the
index.

the false alarm rate is higher. The extracted displacements
of the three abrupt changes at 457, 1001, and 1505 s are
19.5, 37.3, and 38.4 mm, respectively. The error percentages
of the three displacements extracted by the proposed method
are 2.5%, 9%, and 4%, respectively. From the above analysis,
it can be seen that the displacement less than the standard
deviation can be identified, but with greater uncertainty. The
following section will give the results of the field experiment.

B. Field Experiments

1) Case 1—Ultrashort Baseline: The experiment was car-
ried out on the roof of a building on the campus of Wuhan
University. In the experiment, the equipment deployment is
shown in Fig. 10. A hard plank is pressed with large stones
to ensure that the plank remains as fixed as possible during
moving the object hanging on the plank. One receiver antenna
is fixed on the plank as a rover; the other receiver antenna is
fixed on a tripod beside it as the base station. Both antennas are
connected to BD992 original equipment manufacturer (OEM)
boards on the table, and the OEM boards are connected
to the laptops for data collection. As shown in subgraphs
(c) and (d), the height of the antenna is measured with a
tape before and after each movement of the object hanging
on the plank. Besides, markers are made on the ground and
on the antenna to ensure that the same position is referenced
for each measurement. The sampling frequency of the GNSS
receiver is set to 1 Hz. The whole experiment lasted for nearly
1 h, during which the object hanging on the plank was moved
several times manually.

As shown in Fig. 10, the object hanging on the plank was
moved toward the antenna in three steps. There is uncertainty
in manual measurement. On the one hand, it comes from the
reading error; on the other hand, because the displacement
control device is not completely controllable, the antenna is
always shacking under the influence of external environments,
such as breeze and touching. Therefore, before and after
moving the target, the antenna height from the ground was
measured five times to reduce the uncertainty. The measured
height and calculated displacement are shown in Table I. The
GNSS observation data collected above are processed by the
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Fig. 10. Field experiment configuration. (a) Overview of the experiment.
(b) BD992 OEM boards and data collection computers. (c) Displacement
control device. (d) Displacement measurement.

TABLE I

MEASURED HEIGHT BEFORE AND AFTER EACH MOVEMENT

OF THE OBJECT HANGING ON THE PLANK, UNIT (MM)

open-source software RTKLIB [37], using relative real-time
kinematic mode. The so-called processing unit is formed by
the positioning result and is used as the input of wavelet
reconstruction. The size of the detection window is set to
360. The wavelet reconstruction results as well as the obtained
PCPs are shown in Fig. 11.

As shown at the top of Fig. 11, the measured data are
much more complex than the simulated data. This is mainly
caused by the complex spatiotemporal characteristics of GNSS
measurement error, and there are unmodeled errors after data
processing. Besides, breeze and touch during height mea-
surement may cause the antenna’s vibration. The results of
wavelet reconstruction roughly show several abrupt changes
of displacement. As shown at the bottom of Fig. 11, PCPs are
mainly distributed at the abrupt change or local disturbance.
PCPs obtained from time series reconstructed by the designed
wavelet are less affected by local disturbance. PCP distribution

Fig. 11. Detection result of field data with VT as the index.

Fig. 12. PCP statistics of field data with VT as the index.

of the wavelet reconstructed signal is more concentrated, and
PCP statistics are shown in Fig. 12.

PCP count and displacement estimates are shown in Fig. 12.
As shown at the top of Fig. 12, all manually triggered changes
are detected, and the corresponding PCP counts are 339,
353, and 290, respectively. Besides, there are some local
peaks, which may be caused by breeze and multipath during
the experiment. The three displacements obtained from the
segmented window are 29.3, 20.5, and 16.4 mm, respectively.
As shown in Table I, the three displacements measured by
tape are 20.7, 21.3, and 19.6 mm, respectively. The error per-
centages of the three displacements extracted by the proposed
method are 41.5%, 3.76%, and 16.3%, respectively. The first
displacement error is not at the same level as the other two
extracted displacement errors, which may be caused by out of
sync between the measured displacement time and segmented
time.

2) Case 2—Short Baseline: To further explore the impact
of baseline length on this method, we have used a continuous
operating reference station (CORS) as the base station, which
is about 6.3 km away from the rover station. The reference
station is located on the campus of Hubei University, and
the sampling rate of the receiver is also 1 Hz. To facilitate
comparison, the data corresponding to the time range in the
previous experiment are selected for processing. The data
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Fig. 13. Detection result of a longer baseline with VT as the index.

Fig. 14. PCP statistics of a longer baseline with VT as the index.

processing is the same as above, except that the data of the
base station are replaced by the data of the CORS station.
The detection result, as well as the PCP statistics, are shown
in Figs. 13 and 14, respectively.

Compared with the time series in Fig. 11, it can be seen
from Fig. 13 that the noise level of the time series is higher
than that of the ultrashort baseline. This is mainly due to the
influence of atmospheric error that has not been eliminated.
Similar to the ultrashort baseline, PCPs are mainly distributed
at the abrupt and local disturbance. Compared with Fig. 12,
the local disturbance at the top of Fig. 14 is more serious,
but the abrupt can still be identified. The three extracted
displacements are 38, 14.6, and 25.9 mm, respectively. The
error percentages of the three displacements are 83.6%, 31.6%,
and 32.1%, respectively. Similar to the ultrashort baseline,
the first displacement error is not at the same level as the other
two extracted displacement errors, which is mainly caused
by out of sync between the measured displacement time and
segmented time. As can be seen from the top of Fig. 13,
the variance of the segmentation window in the first abrupt
is larger than the other two.

It can be seen from the above results that the pro-
posed method can accurately detect displacement changes.
When the segmentation window is stable, the displacement
obtained by the average of the segmentation window can reach

Fig. 15. PCPs for various segmentation indices.

subcentimeter accuracy. However, local disturbances in the
detection window will cause a decrease in the accuracy of the
extracted displacement. The influence of local disturbance can
be suppressed by wavelet reconstruction. We will discuss the
factors that influence detection results in the following section.

IV. DISCUSSION

In the data processing of the field experiments above,
the segmentation index of the detection window is only set to
VT, so the influence of various indices on the detection result
will be discussed here. Besides, the effect of the detection
window size on the detection results will also be discussed
here.

A. Different Segmentation Indices

The proposed method is executed based on the ultrashort
baseline data when the window segmentation index is set to
VT, SNHT, PETT, and ZT. The detection window size remains
unchanged and is always set to 360. PCPs, as well as the PCP
count, are shown in Figs. 15 and 16, respectively.

As shown in Figs. 15 and 16, the performance of the PETT
is weaker than the other three indices. The PETT index is
susceptible to interference from local disturbances, and the
corresponding PCPs are more scattered than other indices. The
PCP count of the PETT index at the abrupt change is also
significantly smaller than other indices. VT, SNHT, and ZT
have s similar performance, but VT is less affected by local
small disturbance than the other two indices. Therefore, it is
recommended to use VT as the index of window segmentation
in the proposed method.
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Fig. 16. PCP count for various segmentation indices.

B. Set the Appropriate Detection Window Size

To further investigate the relationship between the detection
window size and the captured PCPs, we set the size of the
detection window between 50 and 750 and then get the
PCPs from the proposed method. The small displacement
simulation data and the ultrashort baseline field data are
processed separately. For the convenience of comparison,
the normalized PCP count is given, which can be obtained by
the ratio of absolute PCB count to window size. The statistical
results of the small displacement simulation data are shown
in Figs. 17 and 18.

It can be seen from Fig. 17 that when the size of the
detection window is small, many local disturbances appear due
to the influence of observation noise. With the increase of the
detection window size, the PCPs gradually tend to be stable,
and the local disturbance decreases gradually. Compared with
the original time series, the PCP distribution obtained from
the wavelet reconstruction time series is more concentrated.
It can be seen from Fig. 18 that with the increase of the
detection window size, the PCPs count caused by local dis-
turbance is decreasing. Since the designed wavelet filters out
the high-frequency noise, the normalized PCP count of the
wavelet reconstruction signal is larger. When the window
size is small, each small-displacement step in the wavelet
reconstruction time series is reflected in the normalized PCP
count. With the increase of detection window size, the influ-
ence of these small-displacement steps gradually weakens. The
statistical results of the ultrashort baseline field data are shown
in Figs. 19 and 20.

Fig. 17. PCPs of small displacement simulation data with VT as the index
for various detection window sizes.

Fig. 18. Normalized count of PCPs of small displacement simulation data
with VT as the index for various detection window size. Top: original. Bottom:
wavelet reconstructed.

Similarly, it can be seen from Figs. 19 and 20 that increas-
ing the window size helps to weaken the local disturbance.
However, large windows can cause some problems. On the one
hand, a large window size will reduce the detection granularity
because multiple displacements may be located in the same
detection window. On the other hand, a large window size
will reduce the timeliness of detection.

From the above discussion, it can be concluded that dis-
placement detection is affected by the detection window
size. When the window size is small, the change detection
is significantly affected by the observation noise. A large
window size helps to weaken the local disturbance. However,
the window size directly affects the timeliness of displacement
detection, and the larger the window size, the worse the
timeliness. Besides, a large window size will reduce the
detection granularity. Therefore, it is recommended to set
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Fig. 19. PCPs of ultrashort baseline field data with VT as the index for
various detection window sizes.

Fig. 20. Normalized count of PCPs of ultrashort baseline field data
with VT as the index for various detection window sizes. Top: kinematic
positioning. Bottom: wavelet reconstructed.

the window size according to the detection granularity and the
allowed time delay. To summarize, this study and the proposed
methodology differ from previous research efforts in several
aspects.

1) Displacement identification and extraction are imple-
mented through the segmentation of the GNSS kinematic
positioning time series. Compared with the traditional
model, this reduces the influence of the gross error and
observation noise.

2) Displacement identification is based on the statistics of
PCP obtained by time series segmentation, so as to
reduce the influence of local disturbance.

3) Displacement extraction is based on the mean value
of segments, and its accuracy is better than that of
single-epoch displacement extraction.

4) The size of the segmentation window can be flexibly set
according to the requirements of detection granularity
and timeliness.

One limitation of this method is the detection of small dis-
placement. For the detection of small displacement, wavelet
cannot effectively reconstruct the abrupt component. The
influence of local disturbance can be reduced by increasing
the size of the detection window, but it will increase the
delay time and reduce the detection granularity. Besides, with
the increase of window size, the trend term in GNSS time
series cannot be ignored. Further work needs to be done to
eliminate the influence of these low-frequency trend terms,
and longer experiments needed to be carried out to verify
the small-displacement detection in the follow-up work. In
addition, the current method of displacement detection and dis-
placement extraction is separate and complex. In the follow-up
work, Bayesian inference will be considered to simplify the
process of displacement detection and displacement extraction.

V. CONCLUSION

In this article, we developed a method aiming at short-term
landslide monitoring based on GNSS kinematic positioning
and time series segmentation. The detection window is formed
by the current epoch and the previous epochs coordinates
obtained by GNSS kinematic positioning. The segmentation
point is obtained by segmentation of the detection window,
and a test is conducted to determine whether the segmentation
point is a change point. To verify the approach, we con-
ducted two sets of experiments. In the simulation experiment,
the observation data that are affected by both noise and a
trend item were constructed. The results show that the three
abrupt changes designed can be accurately detected. In the
field experiment, RTK kinematic positioning mode was used
to process observations, and two baselines with different
lengths were processed. The results show that the method
can accurately detect the manually trigger displacement, and
the accuracy of the extracted displacement can reach the
subcentimeter level. Finally, we discussed the main issues
of the proposed method: window segmentation indices and
detection window size. VT is less affected by local small
disturbance than the other indices, and it is recommended to
use VT as the index of window segmentation in the proposed
method. When the detection window size is small, the change
detection is significantly affected by local disturbance. Wavelet
reconstruction and increasing window size are recommended
to suppress the influence of local disturbance. For small dis-
placement, wavelets can not effectively reconstruct the abrupt
component but it is also suggested to increase the window size
to detect the original time series.
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