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Abstract 

The detailed knowledge of bathymetry pattern represents a key factor in the deep understanding of ocean processes, 
physical oceanography, biology, ecohydraulics, and marine geology. However, the accuracy of bathymetry modeling 
is still low from satellite altimetry, gravity model, and shipborne gravity data. In this paper, a novel scheme is proposed 
based on black-box theory for regional bathymetry modeling in the Persian Gulf and the Oman Sea via geodetic data 
sources such as satellite altimetry, gravity model, and shipborne gravity data. Multi-Layer Perceptron (MLP), Adaptive 
Neuro-Fuzzy Inference System (ANFIS), and Local Linear Model Tree (LOLIMOT) algorithms are used as nonlinear black-
box tools to identify the basic mathematical model. The geoid height, gravity gradient, and gravity anomaly are used 
as inputs to these artificial intelligence models, with the GEBCO bathymetry model as the output. The derived basic 
model is further improved by assimilating with the shipborne bathymetry measurements using the 3D variational 
optimization method to determine the final bathymetry model. The model is validated by the shipborne bathymetry 
in control tracks of regions Chabahar, Genaveh, and Alamshah, and the results show high accuracy and reliability 
with root mean square errors (RMSEs) of about 4, 0.8, and 0.92 m, respectively. The proposed approach is valuable 
for various uses in marine science.
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Introduction
Water currents and tides are generally influenced by the 
overall contours of ocean basins, along with the smaller, 
prominent ocean ridges and seamounts (Wollheim et al. 
2022). Direct measurements of seafloor topography are 
usually performed using ships fitted with echo sound-
ers, which can deliver highly detailed bathymetric data; 

however, the high operational costs render this method 
economically impractical for extensive coverage (Peng 
et  al. 2022). Thus, nowadays, indirect measurements 
based on remote sensing techniques have garnered much 
interest for bathymetry and natural resources monitor-
ing and modeling purposes (Jin et al. 2024; Pirone et al. 
2023). It has been established for some time that gravity 
can be utilized to model the seafloor’s shape (Zhu And 
Wiberg 2022). The seafloor acts as the shallowest density 
interface within the oceanic environment, and variations 
in its depth can be viewed as height changes of mass ele-
ments, determined by the density contrast between rock 
and seawater. These depth variations affect the local grav-
ity field. Parker (1973) suggested a strong correlation 
exists between seafloor topography and sea level grav-
ity anomalies. Alterations in bathymetry lead to gravita-
tional distortions that impact sea surface height, enabling 
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the reconstruction of underlying features like seamounts 
and ridges (Wiehle et al., 2016).

Recent advances have highlighted the importance of 
improved gravity-based methods for reliable bathymetric 
prediction (An et al. 2022). The introduction of satellite 
altimetry has significantly enhanced global marine grav-
ity modeling (Wan et al. 2019; Xu et al. 2023). Successive 
satellites equipped with altimeters have delivered precise 
and dense measurements of sea surface height, which 
can be transformed into estimates of seafloor topogra-
phy. Lecours et al. (2016) provided a comprehensive lit-
erature review of the methods, technologies, and datasets 
employed in bathymetry modeling.

Recently, machine learning techniques, particularly 
neural networks, have gained wide application in sea-
floor modeling. Zhou et  al. (2024, 2025) developed 
global seafloor models using multi-layer perceptrons 
and multi-source marine geodetic data, demonstrating 
the capability of neural networks for large-scale bathym-
etry estimation. Similarly, Zhu and Wiberg (2022) 
applied MLP in a regional case study of the Caribbean 
Sea, confirming the potential of neural networks for 
localized bathymetric modeling. Moreover, deep learn-
ing approaches such as convolutional neural networks 
(CNNs) have shown strong performance in seafloor 
topography inversion from multi-source gravity data (Ge 
et al. 2025), while fully connected deep neural networks 
(FCDNNs) have been applied for seabed depth predic-
tion using multi-scale gravity anomalies, yielding prom-
ising results in regional studies (Yuan et al. 2025). These 
advances highlight the growing role of machine learning 
in enhancing the resolution and accuracy of bathymetric 
models, which motivates the methodology adopted in 
this study.

To address the limitations of traditional physi-
cal models, especially the constraints of Parker-based 
approaches, black-box modeling frameworks rooted in 
artificial intelligence techniques have been increasingly 
employed. More specifically, the most widely used physi-
cal formulas are based on the well-known Parker (1973) 
model (Parker 1973; Oldenburg 1974; Watts 1978). The 
Parker mathematical formula is based on the density dif-
ference between sea water and sea floor, mean thickness 
of the crust, mean depth of sea water, and densities of the 
Earth’s mantle and crust. Some inherent difficulties in 
applying the Parker model are the lack of enough knowl-
edge for the estimation of model parameters and the lin-
earized approximation in the implementation procedure, 
resulting in bias and computational errors. The deter-
mination of bathymetry from gravity anomaly is essen-
tially an inverse problem, which is regarded as a poorly 
defined problem that may have multiple unstable solu-
tions, necessitating some form of regularization (Smith 

And Sandwell, 2005; Dick et al. 2003; Tenzer et al. 2015; 
Yonkee And Weil 2015; Mitchell et  al. 2021). In such a 
case, the bathymetry outcomes associated with high-
frequency components are highly oscillatory, and thus a 
low-pass filter should be applied to smooth the results 
(Thompson And Richards 2011; Olive et  al. 2015; Abu-
laitijiang et al. 2019).

In this study, in order to improve the accuracy of 
bathymetry modeling, the novel scheme based on the 
black-box theory, which has its roots in the artificial 
intelligence algorithms, is used to construct the relation 
between gravity field parameters (geoid height, gravity 
gradients, gravity anomaly) with bathymetry and to pro-
duce a more accurate bathymetry model. Generally, mod-
eling involves abstracting a real process to describe its 
behavior (Zhang et al. 2022). The goal of scientific mod-
eling is to improve the study of phenomena in order to 
uncover and understand cause-and-effect relationships, 
aiming to replicate the ‘key characteristics’ of the system’s 
behavior by selecting its most significant features (Lei 
et al. 2023). Thus, modeling techniques can be classified 
into the following categories (Pirone et al. 2023):

1.	 White-box modeling, in which the model is fully 
understood and can be developed completely based 
on existing knowledge and physical intuition (Ma 
et al. 2022).

2.	 Grey-box modeling, where some physical insight is 
accessible, but numerous parameters still need to be 
ascertained from the collected data (Hossain et  al. 
2021).

3.	 Black-box modeling, which relies merely on the 
data’s behavior (data-driven) without prior knowl-
edge of the system (Zhang et al. 2022). As mentioned 
by Pirone et  al. (2023) among others, the model 
describes how the output data may be connected to 
the inputs, not how the system works from physi-
cal perspective. Therefore, it describes the system’s 
dynamics (such as delays, speed, oscillations, and 
more), although interpreting the results physically 
can be complex.

In addition to the issues with the physical models men-
tioned above, there are other problems that arise, which 
include: (i) the nonlinear relationship between gravity 
field parameters and bathymetry is not well captured by 
existing modeling approaches, highlighting the need for 
more advanced techniques. (ii) There is an absence of 
flexibility and robust modeling methods that can effec-
tively handle the complexity of the gravity field-bathyme-
try relationship, which is crucial for accurate bathymetry 
mapping and modeling. (iii) The limitations of current 
methods in terms of computational efficiency, accuracy, 
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and interpretability suggest the need for innovative 
approaches to improve bathymetry modeling and over-
come the existing challenges (Thompson And Richards 
2011; Olive et al. 2015).

In this study, to overcome the problems mentioned, it 
is assumed that the mathematical model between gravity 
field parameters and bathymetry is unknown. Based on 
previous studies, we know that the relationship between 
the parameters of the Earth’s gravity field and the 
bathymetry is a nonlinear relationship (Fan et  al. 2021), 
so nonlinear models of black-box theory have been used. 
The black-box theory, as it was explained above, seeks 
to find a relation between two sets of data as input and 
output parts. Here, our input and output data would be 
gravity field parameters and available bathymetry data, 
respectively. The gravity field parameters used in this 
study include geoid height obtained by satellite altim-
etry, gravity gradient derived by the XGM2019e gravity 
model, and gravity anomaly, both computed from satel-
lite altimetry using inverse Stokes formula and directly 
measured by shipborne. For bathymetry data, we use the 
global GEBCO model to produce a grid of bathymetry 
consistent with the spatial distribution of our computed 
gravity anomaly. Now, with the aid of powerful tools of 
black-box theory, such as Multi-Layer Perceptron (MLP), 
Adaptive Neuro-Fuzzy Inference System (ANFIS), and 
Local Linear Model Tree (LOLIMOT), these two sets of 
input and output data are connected (Pirone et al. 2023). 
These approaches have been widely validated in recent 
research, demonstrating their effectiveness in capturing 
complex nonlinear relationships in gravity–bathymetry 
studies (Zhou et al. 2024, 2025; Ge et al. 2025; Yuan et al. 
2025). This initial step yields a basic model, which is con-
structed before assimilating observational data; however, 
the final model of bathymetry in this research is deter-
mined by assimilating in situ shipborne measurements by 
echo sounder with the basic model using 3D vibrational 
optimization method (Volpe et  al. 2019). Therefore, by 
employing three black-box modeling techniques and 
integrating gravity data obtained from multiple sources 
with bathymetric local observations from echo sounders, 
this study aims to construct a more accurate and reliable 
bathymetry model, effectively addressing the limitations 
of traditional approaches.

Materials and methods
Data description
The region of study is the Persian Gulf and Oman Sea. 
Specifically, some areas of the Persian Gulf and Oman 
Sea are selected for more focus due to the availability of 
local bathymetry data; these regions are the Genaveh and 
Alamshah in the Persian Gulf, with the locations of (29.1–
29.8°N, 49.7–50.6°E) and (25.9–26.6°N, 52.2–52.8°E), 

respectively, and Chabahar (24.5–25.5°N, 59.4–61.2°E) in 
the Oman Sea (Fig. 1).

Repeated altimetry measurements at identical loca-
tions have been utilized to infer the marine geoid, which 
is an equipotential surface reflecting the internal mass 
distribution of the Earth. This surface, influenced by une-
ven mass, is connected to both the distribution of mass 
and the external shape (Majumdar And Chander 2011). 
The external shape relates to topography or bathymetry, 
while mass distribution is linked to subsurface geological 
structures. The classical geoid is responsive to mass dis-
tribution throughout the Earth. An anomaly (either posi-
tive or negative) in the classical geoid may be caused by a 
bathymetric feature, such as a seamount, trench, or ridge; 
(ii) a lateral density variation in the lithospheric zone; (iii) 
an anomaly, deep-seated inside the earth, i.e., below the 
lithospheric zone, or (iv) any combination of the above 
three features (Majumdar And Chander 2011). To deter-
mine the geoid height using satellite altimetry, the first 
step is to process altimeter data to determine sea surface 
height. It is computed from the difference between satel-
lite height and corrected range. In this study, to calculate 
MSS, the time series of instantaneous sea surface heights 
(SSH) is first obtained using altimetry data from the sat-
ellites listed in Table  1. Then, the least square spectral 
analysis (LSSA) method is implemented to obtain the 
tidal components (see (Soltanpour et al. 2017; Pirooznia 

Fig. 1  Region of study

Table 1  Satellite altimetry features used in this study

Mission Cycles Dates

Envisat 008–094 2002–07-22 21:39:36–2010–10-19 02:56:07

Jason-1 001–259 2002–01-15 06:29:49–2009–01-26 08:49:42

Jason-2 001–303 2008–07-12 01:25:39–2016–10-02 11:45:54

Jason-3 001–033 2016–02-17 10:28:53–2017–01-09 15:40:08

Topex 001–365 1992–09-25 05:24:42–2002–08-15 17:44:37

Poseidon 001–361 1992–10-01 16:45:02–2002–07-12 14:28:19

SARAL 001–035 2013–03-15 0:12:50–2016–07-04 11:04:37
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et  al. 2016)). By removing the tidal components from 
SSH time series, the long-term mean sea surface (MSS) 
is derived. Then the geoid undulation is acquired by sub-
tracting the MSS from the mean dynamic topography 
(MDT). A global MDT model named MDT-DTU-2012 
is used for this purpose. This model has been produced 
by Danish technical university in 2012 (Knudsen And 
Andersen 2012). To achieve marine gravity anomaly 
from satellite altimeters, the computed geoid undulation 
is converted to along-track geoid gradients, in the north 
and east directions on a 1′ × 1′ grid (deflection compo-
nents). The inverse Stokes formula (Rummel et al., 1978) 
is then used to compute marine gravity anomalies from 
the two gradient components (Smith And Moose 1997). 
The data sources for this study include (i) Geophysi-
cal Data Records (GDR) of satellite altimetry missions 
shown in Table 1 for estimation of geoid height and grav-
ity anomaly. (ii) As mentioned above, the MDT of DTU 
for computing geoid height. (iii) The shipborne bathym-
etry data in Genaveh, Alamshah, and Chabahar regions 
for the data fusion process. (iv) The XGM2019e gravity 
model for determination of gravity gradients (Zingerle 
et al. 2020). In this study, the XGM2019e gravity models 
up to degree and order 5399 was used to provide gravity 
data with a spatial resolution of 2 arcminutes. The grav-
ity gradient computations via gravity models is described 
in Kiamehr and Eshagh (2008) and Petrovskaya and Ver-
shkov (2006). (v) GEBCO global bathymetry data as an 
output of black-box models. The GEBCO model used in 
this study is GEBCO_2019. 

Bathymetry modeling
The bathymetry modeling process using black-box theory 
can be outlined as follows:

•	 Input data:

	 The input data include gravity field parameters 
derived by:

	 i.	 Geoid height obtained from satellite altimetry.
	 ii.	 Gravity gradient derived from the XGM2019e 

gravity model. the gradients are considered 
along the satellite’s flight path (along-track) to 
accurately capture variations in the geoid or 
sea surface height along the measurement line.

	 iii.	 Gravity anomaly computed using satellite 
altimetry (inverse Stokes formula) and ship-
borne measurements.

•	 Output data:

	 The available bathymetry data used as the output 
data are the global GEBCO model, which provides 
a grid of bathymetry data consistent with the spatial 
distribution of the computed gravity anomaly.

•	 Non-linear black-box models:
	 Powerful black-box techniques, like Multi-Layer Per-

ceptron (MLP), Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS), and Local Linear Model Tree (LOLI-
MOT), are employed to connect the input gravity 
field parameters with the output bathymetry data. 
These black-box models serve as the basic bathyme-
try models, determining the connection between the 
earth’s gravitational field data and the bathymetry.

•	 Data assimilation and final bathymetry model:
	 The basic bathymetry models are further refined by 

assimilating in situ shipborne echo sounder measure-
ments. A 3D variational optimization method is used 
to incorporate the additional bathymetric data and 
estimate the final bathymetry model.

This integrated approach, leveraging both gravity field 
data and direct bathymetric measurements, aims to over-
come the limitations of relying solely on gravity-based 
models and improve the overall accuracy and reliability 
of the bathymetry mapping process. Figure 2 shows the 
steps of the proposed scheme for bathymetry modeling.

Non‑linear black‑box models
In this section, a brief description of nonlinear black-box 
theory is presented. The aim is to find an appropriate 
earth gravitational field parameters–bathymetry model 
based on an error criterion. The system identification 
problem is defined as follows (Chen et al. 2021):

where x and y are inputs and outputs, respectively, and 
θ is called the parameter of function G . The nonlinear 
black-box modeling addresses subjects ranging from 
approximation theory and estimation theory to non-
parametric regression, algorithms, and contemporary 
topics such as neural networks and fuzzy models. It also 
emphasizes significant connections to traditional statisti-
cal techniques in non-parametric regression and density 
estimation, particularly through kernel methods (Pirone 
et al. 2023).

In the present case study, Multi-Layer Percep-
tron (MLP), Adaptive Neuro-Fuzzy Inference System 
(ANFIS), and Local Linear Model Tree (LOLIMOT) 
approaches are employed to identify the model function.

Multilayer perceptron neural network (MLP)
In recent years, significant efforts have been made to 
replicate a natural neuron that can capture the features 
of various phenomena that are also easy to implement 

(1)y = G(x, θ),
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in neural network models (Raheli et al. 2017; Than et al. 
2021). One of the structures often used by researchers in 
artificial neural networks modeling is the sMultilayer Per-
ceptron Neural Network (MLP). In detail, MLP is a type 
of feedforward artificial neural network composed of 
three layers: input, hidden, and output layers (Ren et al. 
2020; Blaiech et  al. 2012). The input layer takes in the 
input data, feature processing occurs in the hidden layers, 
and the output layer displays the predicted outcomes, and 
the hidden layer can have one or more layers. Initially, 
identification is performed with single hidden layer, and 
if the modeling is not responsive, the number of layers 
will increase. MLP is an enhancement of the standard lin-
ear single perceptron. It is particularly effective for tack-
ling classification tasks that map input vectors to one or 
more groups. By optimizing the weights and thresholds 
for all nodes, the network can model a wide range of clas-
sification functions (Teja And Rao 2011; Palchevsky et al. 
2023). Optimization of the weights can be adjusted using 
the learning algorithm that are classified into supervised 
and unsupervised ones. In a MLP network, {x1, x2 . . . , xn} 
as inputs are connected to neuron through weight func-
tions {w1,w2 . . . ,wn} . Furthermore, a tunable bias can 
be incorporated into the neuron which processes these 
collective inputs, and the output is evaluated against a 

specific threshold value via the activation function. Sig-
moid functions are commonly employed in MLP to add 
nonlinearity to the model (Pirone et al. 2023; Zhang et al. 
2018). A standard feedforward structure for MLP is illus-
trated in Fig. 3.

Each element of MLP based on Fig. 3 computes by the 
following relation:

where n is the number of inputs, q the number of neurons 
in hidden layer, k the number of output that is defined 
by 1 ≤ k ≤ q and Gq is Log-sigmoid transfer function 
(logsig) (Suparta And Alhasa 2013; Engström et al. 2020; 
Koutsellis et al. 2022).

To use MLP, three key points are needed: appropriate 
training algorithm, optimal number of epochs to avoid 
the over-train effect, and select the optimal number of 
neurons to avoid the over-fit effect. In the numerical 
result section, more details are provided. In this study, 
the MLP model is organized into a three-layer struc-
ture, consisting of an input layer, a single hidden layer, 
and an output layer. The inputs and outputs include lati-
tude, longitude, geoid height, gravity anomaly, gravity 

(2)yk = Gq

(

n
∑

i=1

wqnxn + bq

)

,

Fig. 2  The flowchart of bathymetry modeling by black-box theory
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gradients, and bathymetry, respectively. A log-sigmoid 
transfer function is used, and the Levenberg–Marquardt 
algorithm (trainlm) is selected for training the MLP net-
work (Bekas et al. 2021).

Adaptive neuro‑fuzzy inference system (ANFIS)
The adaptive neuro-fuzzy inference system (ANFIS) 
integrates two soft computing techniques: artificial neu-
ral networks and fuzzy logic (Yang et  al. 2019; Zoune-
mat-Kermani et  al. 2020). Fuzzy set theory effectively 
addresses imprecision in decision-making scenarios 
that involve uncertainty and ambiguity in real-world 
applications. Fuzzy inference maps input data to an out-
put dataset based on fuzzy set principles. Knowledge is 
represented through a set of clear linguistic rules that 
are easily comprehensible for individuals without tech-
nical backgrounds. Fuzzy systems can model nonlin-
ear processes using linguistic variables when sufficient 
knowledge about the system is available. The fuzzy logic 
component serves as a decision-making tool to manage 
uncertainties in the decisions made by neural networks 
(Suparta And Alhasa 2013; Yang et al. 2019).

Figure 4 shows as typical the ANFIS utilizes a Sugeno 
fuzzy model featuring three inputs, one output, and three 
rules, organized into five layers. Assume the system has 
three inputs x1 , x2 and x3 , three rules, and one output y:

If x1 is A1 and x2 is B1 and x3 is C1 , then 
f1 = a1x1 + b1x2 + c1x3 + d1.

If x1 is A2 and x2 is B2 and x3 is C2 , then 
f2 = a2x1 + b2x2 + c2x3 + d2.

If x1 is A3 and x2 is B3 and x3 is C3 , then 
f3 = a3x1 + b3x2 + c3x3 + d3.

The first layer serves as the input and fuzzification 
stage. Each node in this layer represents a fuzzy set, 
and the output from these nodes indicates the degree of 
membership, determined by the membership function 
(MF) of the fuzzy set (Suparta And Alhasa 2013).

Generally, the membership function in the generalized 
bell MF or Gaussian MF is utilized in the first layer. This 
layer, known as the rule node, calculates the degree of the 
membership function (MF) using the AND operator for 
each rule. Each output node here represents the firing 
strength of its corresponding rule. The third layer, called 
the normalization node, performs a normalization pro-
cess, calculating the ratio of the activity degree of each 
ith rule to the total activation degrees across all rules. The 
output from this layer is referred to as the normalized fir-
ing strength. The fourth layer is responsible for defuzzi-
fication, where it computes the consequent parameter 
values combined with the normalized firing strengths 
from the previous layer. The final layer, the output node, 
calculates the weighted average of all incoming signals 
from the preceding layer (Shoorehdeli et al. 2007). ANFIS 
employs fuzzy MFs to partition each input dimension, 
with overlapping MFs allowing multiple local regions to 

(3)

wi = µAi(x1)× µBi(x2)× µCi(x3), i = 1, 2, 3,

wi =
wi

w1 + w2 + w3
,

f =
f1w1 + f2w2 + f3w3

w1 + w2 + w3
= w1f1 + w2f2 + w3f3.

Fig. 3  A typical multi-layer perceptron neural network style used in this study with layers, also 1 refers to the first layer of hidden layer
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be activated by a single input. Since simple local mod-
els are used in the ANFIS framework, its approxima-
tion capability depends on how finely the input space is 
divided, which is influenced by the number of MFs and 
layers. Typically, bell-shaped MFs are employed, with a 
maximum value of 1 and a minimum of 0. (Suparta And 
Alhasa 2013; Pirone et al. 2023; Yang et al. 2019):

where 
{

ei, gi, hi
}

 are the parameters of MFs that influence 
their shape.

In the ANFIS architecture, the first and fourth layers 
contain adaptive nodes. To optimize these parameters, 
a learning algorithm is required. Pirone et  al. (2023) 
developed two learning algorithms: the hybrid learn-
ing algorithm and backpropagation. The hybrid learn-
ing algorithm combines two approaches: least squares 
and gradient descent are utilized in this approach, which 
includes two main stages: forward and backward propa-
gation. In the forward stage, the input to the network 
moves through to the fourth layer, where the outcome 
parameters are established using the least squares tech-
nique. In the backward stage, once the error is computed, 
the error signal is sent back, allowing for the adjustment 
of the premise parameters through the gradient descent 
method. In this study, as mentioned before, the inputs 
and output include latitude, longitude, geoid height, 
gravity anomaly, gravity gradients, and bathymetry. The 
generalized bell function is used as the membership 

(4)
µAi(x) =

1

1+

[

(

x−ei
hi

)2
]gi

,

function, and the hybrid learning algorithm is chosen for 
training the ANFIS model.

Local linear model tree (LOLIMOT)
While Neuro-Fuzzy systems have emerged as a compel-
ling and effective data modeling approach by merging the 
established learning principles of neural networks with 
the clear interpretability of fuzzy logic, they face chal-
lenges related to the curse of dimensionality. To address 
high-dimensional issues while preserving the beneficial 
features of Neuro-Fuzzy systems (such as linearity in 
weights, transparency, and the partition of unity), some 
method for reducing model complexity is essential to cre-
ate more parsimonious models. A key consideration for 
the success of the Local Linear Model Tree (LOLIMOT) 
is the divide and conquer strategy (Duncanson et  al. 
2022). As shown by Nelles (2001) among others, LOLI-
MOT is an incremental algorithm for constructing trees 
that partitions the input space using axis-aligned splits. 
The core concept of locally linear neuro-fuzzy models 
involves dividing the input space into smaller subspaces 
defined by fuzzy validity functions. Each resulting linear 
segment, along with its validity function, can be viewed 
as a fuzzy neuron. Consequently, the entire model func-
tions as a neuro-fuzzy network with one hidden layer 
and a linear neuron in the output layer, which computes 
the weighted sum of the outputs from the locally linear 
models. The overall output of the network is determined 
as a weighted sum of the local linear model outputs, 
where the validity function acts as the weighting factors 
dependent on the operating point. Typically, the validity 

Fig. 4  The architecture of ANFIS
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functions are represented as normalized Gaussian dis-
tributions (Duncanson et al. 2022; Nelles 2001). The net-
work structure is illustrated in Fig. 5.

The input–output relationship of locally linear neuro-
fuzzy models is represented in Eq. 5. In this formula Q is 
the number of neurons, x = [x1, x2, . . . , xn]

T is the model 
input,n is number of input dimension, N  is the number of 
input samples and the weights wqn denote the local linear 
model parameters for q th neuron and n th input (Nelles 
2001):

The validity functions are selected as normalized 
Gaussians. Normalization is essential for accurately 
interpreting these validity functions. The formulation of 
the validity functions is presented in Eqs. 6 and 7:

Each Gaussian validity function is defined by two 
parameters: center cqn and standard deviation σqn . Local 
optimization of linear parameters is achieved using 
the least squares technique. The corresponding regres-
sion matrix for the measured data samples is defined in 

(5)

ŷq = wq0 + wq1x1 + wq2x2

+ · · · + wqnxn, ŷ =

Q
∑

q=1

yq�q(x).

(6)�q(x) =
µq(x)

∑Q
n=1 µn(x)

,

(7)

µq(x) = exp

(

(x1 − cq1)
2

−2σ 2
q1

)

+ + exp

(

(xn − cqn)
2

−2σ 2
qn

)

.

Eq. 8. Consequently, the weights can be determined using 
Eqs. 9 and 10, as illustrated in Eq. 11:

and

LOLIMOT is an incremental algorithm that consists of 
three iterative steps. First, the least effective Local Linear 
Model is identified based on local loss functions, and this 
LLM neuron is chosen for division. In the second step, 
all potential divisions of this LLM in the input space are 
generated and evaluated (Schwingshackl et al. 2017). Fig-
ure 6 illustrates the first five iterations of the LOLIMOT 
algorithm applied to a two-dimensional input space.

Data fusion
In order to improve the mathematical modeling of 
bathymetry by local data, the 3DVAR method is used in 
this study (Teruzzi et al. 2014). This method provides the 
optimal estimate of the bathymetry via the minimiza-
tion of the following cost function (Pirooznia et al. 2024, 
2023):

where x is the state vector which includes the improved 
bathymetry, xb is the bathymetry derived by basic 
model,A is coefficient matrix, B is the variance covari-
ance matrix of model and R is the variance covariance 
matrix of observations. Here the matrix B is the covari-
ance matrix of the estimated bathymetry using the 
black-box model, and it is estimated by using the MSEs 
obtained from the model as the diagonal elements, while 

(8)X =









1 x1(1) · · · xn(1)
1 x1(2) · · · xn(2)
...

...
...

...
1 x1(N ) · · · xn(N )









,

(9)Pq =









�q(x(1)) 0 0 0
0 �q(x(2)) 0 0
...

...
...

...
0 0 0 �q(x(N ))









,

(10)Wq = [wq0,wq1,wq2, . . . ,wqn]
T ,

(11)ŷq = XŴq; Ŵq =
(

XTPqX
)−1

XTPqyq .

(12)

J =
1

2

(

x − xb
)T

B−1
(

x − xb
)

+
1

2

(

y− Axb
)T

R−1
(

y− Axb
)

x = xb +W
(

y− Axb
)

W = BAT
(

ABAT + R
)−1

,

Fig. 5  Configuration of a static local linear neuro-fuzzy network 
with Q neurons for N inputs (Hajian et al. 2012)
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the off-diagonal covariance is empirically approximated 
through multiple runs of the model with different initial 
weights.

Also the matrix R is the covariance matrix of the echo 
sounder observations, in the first-order approximation 
forms a diagonal matrix, where the diagonal elements 
represent the instrument precision.

As mentioned before, the nonlinear physical relation 
as an inverse problem between gravity field parame-
ters such as geoid height, gravity anomaly, and gravity 
gradients with bathymetry and the difficulty in reach-
ing a deterministic solution has been proven (Fan et al. 
2021). Therefore, an alternative data-driven method 
based on artificial intelligence algorithms is proposed 
to model bathymetry. In this regard, the input of the 
artificial intelligence algorithms is geoid height deter-
mined by satellite altimetry, gravity gradients of the 
XGM2019e gravity model, and gravity anomaly data 
derived from altimetry and shipborne measurements. 
The output of the model is the bathymetry of GEBCO.

By preparing the above input and output data sets, 
the aim is to identify the model between the input and 

output. Generally, two main steps are done for mode-
ling bathymetry. The first is the identification of appro-
priate artificial intelligence algorithms, such as MLP, 
ANFIS, and LOLIMOT, for modeling bathymetry in the 
Persian Gulf and Oman Sea. The second step is improv-
ing the bathymetry model by data fusion of in  situ 
bathymetry data.

Modeling procedure

•	 MLP modeling

	 In general, in order to identify the model using the 
MLP, it is necessary to consider the following items:

	 i.	  Dividing input and output data into two parts: 
train and test.

	To this end, 70% of the data is given as train data for train-
ing the MLP network, and 30% of the data is 
selected as test data for checking.

Fig. 6  Functioning of the LOLIMOT algorithm during the initial five iterations for a two-dimensional input space
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	 ii.	 If necessary, input and output data will be nor-
malized.

	Inputs and output data are checked, and if the range of 
inputs and output data are not the same, data 
will be normalized.

	 iii.	 Select the training algorithm.
	To do this, the MSE graph of train and test data with 

regard to the number of epochs is drawn, and 
the slope of the convergence of the graph is 
examined; the optimization algorithms that 
have the fastest convergence are chosen as the 
training algorithm. As shown in Fig. 7 Leven-
berg–Marquardt algorithm (trainlm) with a 
learning rate of 0.01 is selected for training the 
MLP network.

	 iv.	 Select the optimal number of epochs to avoid 
the over-train effect.

	To find the optimal number of epochs in the MLP net-
work, the number of epochs increases step 
by step, and the MSE graph for train and test 
data is drawn. The point where, by increasing 
the number of epochs, the MSE of train and 
test data stays constant corresponds to the 
optimal number of training epochs. As shown 
in Figure  8, the optimal number of epochs is 
obtained 10.

	 v.	 Select the optimal number of neurons to avoid 
the overfit effect.

	To find the optimal number of neurons in the MLP net-
work, the number of neurons increases step by 
step, and MSE graphs for train and test data are 
drawn together. The point where the smallest 
MSE for train and test data is obtained corre-
sponds to the optimal number of neurons. As 

shown in Figure 9, the optimal number of neu-
rons is obtained as 26. Finally, the MLP mod-
eling process is done after training the MLP 
network by considering appropriate neurons 
and epochs. Figure  10 shows the bathymetry 
modeling using the MLP network with 84.55% 
fitting on test data.

•	 ANFIS modeling
	 In general, similar to MLP, in order to identify the 

model using the ANFIS, it is necessary to consider 
the following items:

	 i.	 Dividing input and output data into two parts: 
train and test.

Fig. 7  Show the MSE of train to select training algorithm Fig. 8  Show the MSE of train and test data to find optimal number 
of epochs

Fig. 9  Show the MSE of train and test data to find optimal number 
of neurons
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	To this end, 70% of the data is given as train data for train-
ing the ANFIS, and 30% of the data is selected 
as test data for checking.

	 ii.	 If necessary, input and output data will be nor-
malized.

	Input and output data are checked, and if the range of 
input and output data is not the same, data will 
be normalized.

	 iii.	 Determination the optimal number of mem-
bership functions (MFs).

	To find the optimal number of MFs, the number of MFs 
is increased step by step, and the MSE graph 
for train and test data is drawn together. The 
point where the lowest MSE for train and test 
data is obtained corresponds to the optimal 
MFs. In this study, the number of optimal MFs 
is obtained as 3.

	 iv.	 Select the optimal number of epochs to avoid 
the over-train effect.

	Similar to the previous section, to find the optimal num-
ber of epochs, the number of epochs increases 
step by step, and the MSE graph for train and 
test data is drawn together. The point where, 
by increasing the number of epochs, the MSE 
of train and test data stays constant marks the 
optimal training epoch. In this study, the opti-
mal number of epochs is obtained from 15.

	Finally, Fig.  11 shows the bathymetry modeling using 
ANFIS network with 84.76% fitting on test 
data.

•	 LOLIMOT modeling
	 As for the previous two modeling cases, in order to 

use LOLIMOT, it is necessary to consider: Similar to 
previous modeling, dividing input and output data 
into two parts of train and test, normalizing the input 
and output data, and selecting the optimal number 
of epochs and neurons. Here, modeling with con-
sideration of spatial analysis using the LOLIMOT is 
explained in more detail. Figure 12 shows bathymetry 
modeling using LOLIMOT on test data with 90.64% 
fitting.

In summary, the purpose of step 1 includes:

•	 View full details of determination the structure of 
input–output model

•	 Bathymetry modeling in the Persian Gulf and Oman 
Sea

•	 Using this model obtained in the next step for data 
fusion.

Results and analysis
Based on the model structures identified in the previous 
section, the LOLIMOT model demonstrated superior 
accuracy and was therefore selected as the basic model 
for the results. Due to the low quality of input and out-
put data for the modeling procedure, including altim-
eter-derived geoid height and gravity anomaly data, as 
well as available limitations in gravity gradients via the 

Fig. 10  Bathymetry modeling using MLP network on test data
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Fig. 11  Bathymetry modeling using ANFIS on test data

Fig. 12  Bathymetry modeling using LOLIMOT on test data
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XGM2019e global gravity model and GEBCO bathym-
etry used in the basic model, the results are affected by 
the accuracy of the input and output data, particularly 
in shallow water (Hwang 1998), data fusion is used to 
improve the basic model via in situ observations.

To this end, we have three types of bathymetries 
in Chabahar, Genaveh, and Alamshah regions: (i) 
bathymetry observed from shipborne measurements; 
(ii) bathymetry obtained from a basic model; and (iii) 
bathymetry from the global GEBCO model. To validate 
the final model extracted from data fusion, two tracks of 
bathymetry measured by echo sounder are not involved 
in computations, only used for comparison and check-
points. Figure  13 shows a typical comparison between 
the final model and shipborne bathymetry along a track 
profile in the Chabahar region. The comparison between 
the final model and the ship-based bathymetry measure-
ments in the regions of Chabahar, Genaveh, and Alam-
shah (a control track that was not used in the data fusion 
process) resulted in RMSE values of approximately 4 m, 
0.8 m, and 0.92 m, respectively. Prior to the data fusion, 
the RMSE values were 6 m, 2.5 m, and 2 m, respectively, 
in those same regions. It indicates that the final model 
cannot fully reproduce the shipborne bathymetry used. 
Other studies have also confirmed this. See the results 
of Smith et  al. (2005), Smith and Moose (1997), and 
Vrdoljak and Bašić (2023). The final model can extract 

the majority of high-frequency seabed features like sea-
mounts, but it still has large oscillations due to the lack 
of shipborne bathymetry, low accuracy of satellite altim-
etry, and existing restrictions of global gravity models in 
coastal areas. Over the deep parts of the ocean, due to 
the increasing accuracy of satellite altimetry, the modeled 
and shipborne bathymetry agree very well. In Chaba-
har, Genaveh, and Alamshah regions, reefs and hills are 
seen in the final model. Figure 14 shows the final model 
in Chabahar, Genaveh, and Alamshah regions using 
data fusion. This model can utilize the data to gener-
ate bathymetry. Moreover, the final model needs to be 
appropriately adjusted to account for abrupt changes in 
subsurface geology in offshore areas. The availability of 
higher-resolution altimeter data could enhance bathym-
etric predictions.

Discussion
As we know, the traditional approaches to bathymetry 
modeling have primarily relied on well-established for-
mulas, such as the Parker model. The Parker mathe-
matical formula is based on parameters like the density 
difference between seawater and seafloor, the mean thick-
ness of the crust, the mean depth of seawater, and the 
densities of the Earth’s mantle and crust. However, these 
methods face inherent difficulties, including the lack of 
adequate knowledge for accurately estimating the model 

Fig. 13  A typical comparison of shipborne bathymetry and final model along-track in Chabahar region
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Fig. 14  The final model in Chabahar (a), Genaveh (b), and Alamshah (c) regions using data fusion
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parameters and the use of linearized approximations in 
the implementation process, leading to potential bias and 
computational errors. Furthermore, the determination of 
bathymetry from gravity anomaly is essentially an inverse 
problem, which is considered an ill-posed problem. The 
solution to this inverse problem may not be unique and 
can be unstable, necessitating the use of regularization 
techniques to overcome these challenges.

Nowadays, unlike the past where we sought appropri-
ate ways to solve complex and difficult equations, we are 
dealing with a vast amount of data, which has led us to 
focus more on data analysis and processing. With the 
emergence of artificial intelligence, the modeling tools 
have shifted from physical to mathematical approaches. 
In this context, an alternative method for bathymetry 
modeling is presented, which has its own advantages 
and disadvantages. The main advantage of the proposed 
approach is its flexibility and high speed, which allows 
considering various input parameters. The significant 
challenge of this method is its strong dependence on the 
input data, which must be accurate. Therefore, it requires 
careful monitoring and quality control of the input data 
to ensure reliable results. Moreover, there are also some 
computational complexities dealing with overfitting and 
overtraining phenomena as well as selecting the best and 
fastest training algorithm.

The present study demonstrates the effectiveness of 
combining multiple gravity data sources with black-box 
modeling techniques for bathymetry estimation. Com-
pared to traditional approaches, this method allows for 
better representation of nonlinear relationships between 
gravity parameters and seafloor topography.

While previous studies have applied similar 
approaches, our work emphasizes the advantages of inte-
grating satellite altimetry, gravimetry, and shipborne data 
to enhance accuracy, particularly in regions with limited 
observations. In contrast to earlier research that typically 
relied on a single model, this study evaluates three black-
box modeling techniques (MLP, ANFIS, and LOLIMOT) 
as the primary models and further assimilates observa-
tional shipborne bathymetry through 3D variational opti-
mization. This combined strategy leads to improved local 
accuracy and resolution. Moreover, lessons learned from 
earlier studies informed the selection of input param-
eters, model architecture, and data assimilation strategies 
in our research.

Among the limitations, satellite altimetry measure-
ments in coastal areas are influenced by the waveform, 
which adheres to the Brown model in open waters. In 
coastal zones, factors like shallow depths complicate 
this model, causing errors in range determination; 
thus, the retracking correction available in the geo-
physical data records (GDR) file has been applied to 

observations up to 10 km from the shore. Moreover, the 
accuracy of gravity data derived from satellite altimetry 
decreases significantly near coastal regions due to con-
tamination by land signals and complex hydrodynamic 
conditions. In contrast, shipborne gravimetry data gen-
erally provide higher accuracy, although they may still 
be affected by local environmental factors. To mitigate 
these effects, artificial intelligence techniques have 
been employed to assign higher weights to in situ ship-
borne measurements and gravity model data in coastal 
regions. Despite these measures, the accuracy of depth 
estimation in coastal areas remains lower than that 
achieved in offshore regions.

These improved local and regional bathymetry pre-
dictions provide valuable datasets that can support 
the refinement of global bathymetry models such as 
ETOPO5. This study shows that carefully combin-
ing global and local information, while accounting for 
coastal corrections, contributes to both practical appli-
cations and the advancement of oceanographic mod-
eling techniques.

Conclusions
The study presents a novel scheme for regional bathym-
etry modeling in the Persian Gulf and Oman Sea using 
a data-driven approach based on black-box theory. The 
proposed methodology utilizes geodetic data sources 
such as satellite altimetry, gravity model, and shipborne 
gravity data as inputs to train nonlinear black-box mod-
els like MLP, ANFIS, and LOLIMOT. The results dem-
onstrate the effectiveness of the proposed approach, 
with the LOLIMOT model exhibiting the highest accu-
racy among the tested algorithms, achieving a fitting of 
90.64% on the test data. To further improve the bathym-
etry model, the study incorporated in  situ shipborne 
bathymetry measurements using a 3D variational optimi-
zation method. The comparison between the final model 
and the shipborne bathymetry in control tracks yielded 
root mean square errors (RMSEs) of around 4 m, 0.8 m, 
and 0.92  m for the Chabahar, Genaveh, and Alamshah 
regions, respectively, showcasing the accuracy and relia-
bility of the proposed methodology. The study highlights 
the importance of incorporating both geodetic and in situ 
data sources to develop accurate and reliable bathymetry 
models. The proposed approach can be valuable for a 
variety of applications, including physical oceanogra-
phy, marine geology, and ecohydraulics, where detailed 
knowledge of regional bathymetry patterns is crucial. 
The study’s findings contribute to the ongoing efforts to 
improve the understanding of ocean processes and sup-
port sustainable marine resource management.
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