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Abstract

The detailed knowledge of bathymetry pattern represents a key factor in the deep understanding of ocean processes,
physical oceanography, biology, ecohydraulics, and marine geology. However, the accuracy of bathymetry modeling
is still low from satellite altimetry, gravity model, and shipborne gravity data. In this paper, a novel scheme is proposed
based on black-box theory for regional bathymetry modeling in the Persian Gulf and the Oman Sea via geodetic data
sources such as satellite altimetry, gravity model, and shipborne gravity data. Multi-Layer Perceptron (MLP), Adaptive
Neuro-Fuzzy Inference System (ANFIS), and Local Linear Model Tree (LOLIMOT) algorithms are used as nonlinear black-
box tools to identify the basic mathematical model. The geoid height, gravity gradient, and gravity anomaly are used
as inputs to these artificial intelligence models, with the GEBCO bathymetry model as the output. The derived basic
model is further improved by assimilating with the shipborne bathymetry measurements using the 3D variational
optimization method to determine the final bathymetry model. The model is validated by the shipborne bathymetry
in control tracks of regions Chabahar, Genaveh, and Alamshah, and the results show high accuracy and reliability

with root mean square errors (RMSEs) of about 4, 0.8, and 0.92 m, respectively. The proposed approach is valuable

for various uses in marine science.
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Introduction

Water currents and tides are generally influenced by the
overall contours of ocean basins, along with the smaller,
prominent ocean ridges and seamounts (Wollheim et al.
2022). Direct measurements of seafloor topography are
usually performed using ships fitted with echo sound-
ers, which can deliver highly detailed bathymetric data;
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however, the high operational costs render this method
economically impractical for extensive coverage (Peng
et al. 2022). Thus, nowadays, indirect measurements
based on remote sensing techniques have garnered much
interest for bathymetry and natural resources monitor-
ing and modeling purposes (Jin et al. 2024; Pirone et al.
2023). It has been established for some time that gravity
can be utilized to model the seafloor’s shape (Zhu And
Wiberg 2022). The seafloor acts as the shallowest density
interface within the oceanic environment, and variations
in its depth can be viewed as height changes of mass ele-
ments, determined by the density contrast between rock
and seawater. These depth variations affect the local grav-
ity field. Parker (1973) suggested a strong correlation
exists between seafloor topography and sea level grav-
ity anomalies. Alterations in bathymetry lead to gravita-
tional distortions that impact sea surface height, enabling
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the reconstruction of underlying features like seamounts
and ridges (Wiehle et al., 2016).

Recent advances have highlighted the importance of
improved gravity-based methods for reliable bathymetric
prediction (An et al. 2022). The introduction of satellite
altimetry has significantly enhanced global marine grav-
ity modeling (Wan et al. 2019; Xu et al. 2023). Successive
satellites equipped with altimeters have delivered precise
and dense measurements of sea surface height, which
can be transformed into estimates of seafloor topogra-
phy. Lecours et al. (2016) provided a comprehensive lit-
erature review of the methods, technologies, and datasets
employed in bathymetry modeling.

Recently, machine learning techniques, particularly
neural networks, have gained wide application in sea-
floor modeling. Zhou et al. (2024, 2025) developed
global seafloor models using multi-layer perceptrons
and multi-source marine geodetic data, demonstrating
the capability of neural networks for large-scale bathym-
etry estimation. Similarly, Zhu and Wiberg (2022)
applied MLP in a regional case study of the Caribbean
Sea, confirming the potential of neural networks for
localized bathymetric modeling. Moreover, deep learn-
ing approaches such as convolutional neural networks
(CNNs) have shown strong performance in seafloor
topography inversion from multi-source gravity data (Ge
et al. 2025), while fully connected deep neural networks
(FCDNNSs) have been applied for seabed depth predic-
tion using multi-scale gravity anomalies, yielding prom-
ising results in regional studies (Yuan et al. 2025). These
advances highlight the growing role of machine learning
in enhancing the resolution and accuracy of bathymetric
models, which motivates the methodology adopted in
this study.

To address the limitations of traditional physi-
cal models, especially the constraints of Parker-based
approaches, black-box modeling frameworks rooted in
artificial intelligence techniques have been increasingly
employed. More specifically, the most widely used physi-
cal formulas are based on the well-known Parker (1973)
model (Parker 1973; Oldenburg 1974; Watts 1978). The
Parker mathematical formula is based on the density dif-
ference between sea water and sea floor, mean thickness
of the crust, mean depth of sea water, and densities of the
Earth’s mantle and crust. Some inherent difficulties in
applying the Parker model are the lack of enough knowl-
edge for the estimation of model parameters and the lin-
earized approximation in the implementation procedure,
resulting in bias and computational errors. The deter-
mination of bathymetry from gravity anomaly is essen-
tially an inverse problem, which is regarded as a poorly
defined problem that may have multiple unstable solu-
tions, necessitating some form of regularization (Smith
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And Sandwell, 2005; Dick et al. 2003; Tenzer et al. 2015;
Yonkee And Weil 2015; Mitchell et al. 2021). In such a
case, the bathymetry outcomes associated with high-
frequency components are highly oscillatory, and thus a
low-pass filter should be applied to smooth the results
(Thompson And Richards 2011; Olive et al. 2015; Abu-
laitijiang et al. 2019).

In this study, in order to improve the accuracy of
bathymetry modeling, the novel scheme based on the
black-box theory, which has its roots in the artificial
intelligence algorithms, is used to construct the relation
between gravity field parameters (geoid height, gravity
gradients, gravity anomaly) with bathymetry and to pro-
duce a more accurate bathymetry model. Generally, mod-
eling involves abstracting a real process to describe its
behavior (Zhang et al. 2022). The goal of scientific mod-
eling is to improve the study of phenomena in order to
uncover and understand cause-and-effect relationships,
aiming to replicate the ‘key characteristics’ of the system’s
behavior by selecting its most significant features (Lei
et al. 2023). Thus, modeling techniques can be classified
into the following categories (Pirone et al. 2023):

1. White-box modeling, in which the model is fully
understood and can be developed completely based
on existing knowledge and physical intuition (Ma
et al. 2022).

2. Grey-box modeling, where some physical insight is
accessible, but numerous parameters still need to be
ascertained from the collected data (Hossain et al.
2021).

3. Black-box modeling, which relies merely on the
data’s behavior (data-driven) without prior knowl-
edge of the system (Zhang et al. 2022). As mentioned
by Pirone et al. (2023) among others, the model
describes how the output data may be connected to
the inputs, not how the system works from physi-
cal perspective. Therefore, it describes the system’s
dynamics (such as delays, speed, oscillations, and
more), although interpreting the results physically
can be complex.

In addition to the issues with the physical models men-
tioned above, there are other problems that arise, which
include: (i) the nonlinear relationship between gravity
field parameters and bathymetry is not well captured by
existing modeling approaches, highlighting the need for
more advanced techniques. (ii) There is an absence of
flexibility and robust modeling methods that can effec-
tively handle the complexity of the gravity field-bathyme-
try relationship, which is crucial for accurate bathymetry
mapping and modeling. (iii) The limitations of current
methods in terms of computational efficiency, accuracy,
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and interpretability suggest the need for innovative
approaches to improve bathymetry modeling and over-
come the existing challenges (Thompson And Richards
2011; Olive et al. 2015).

In this study, to overcome the problems mentioned, it
is assumed that the mathematical model between gravity
field parameters and bathymetry is unknown. Based on
previous studies, we know that the relationship between
the parameters of the Earth’s gravity field and the
bathymetry is a nonlinear relationship (Fan et al. 2021),
so nonlinear models of black-box theory have been used.
The black-box theory, as it was explained above, seeks
to find a relation between two sets of data as input and
output parts. Here, our input and output data would be
gravity field parameters and available bathymetry data,
respectively. The gravity field parameters used in this
study include geoid height obtained by satellite altim-
etry, gravity gradient derived by the XGM2019e gravity
model, and gravity anomaly, both computed from satel-
lite altimetry using inverse Stokes formula and directly
measured by shipborne. For bathymetry data, we use the
global GEBCO model to produce a grid of bathymetry
consistent with the spatial distribution of our computed
gravity anomaly. Now, with the aid of powerful tools of
black-box theory, such as Multi-Layer Perceptron (MLP),
Adaptive Neuro-Fuzzy Inference System (ANFIS), and
Local Linear Model Tree (LOLIMOT), these two sets of
input and output data are connected (Pirone et al. 2023).
These approaches have been widely validated in recent
research, demonstrating their effectiveness in capturing
complex nonlinear relationships in gravity—bathymetry
studies (Zhou et al. 2024, 2025; Ge et al. 2025; Yuan et al.
2025). This initial step yields a basic model, which is con-
structed before assimilating observational data; however,
the final model of bathymetry in this research is deter-
mined by assimilating in situ shipborne measurements by
echo sounder with the basic model using 3D vibrational
optimization method (Volpe et al. 2019). Therefore, by
employing three black-box modeling techniques and
integrating gravity data obtained from multiple sources
with bathymetric local observations from echo sounders,
this study aims to construct a more accurate and reliable
bathymetry model, effectively addressing the limitations
of traditional approaches.

Materials and methods

Data description

The region of study is the Persian Gulf and Oman Sea.
Specifically, some areas of the Persian Gulf and Oman
Sea are selected for more focus due to the availability of
local bathymetry data; these regions are the Genaveh and
Alamshah in the Persian Gulf, with the locations of (29.1—
29.8°N, 49.7-50.6°E) and (25.9-26.6°N, 52.2-52.8°E),
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Table 1 Satellite altimetry features used in this study

Mission Cycles Dates

Envisat 008-094 2002-07-22 21:39:36-2010-10-19 02:56:07
Jason-1 001-259 2002-01-15 06:29:49-2009-01-26 08:49:42
Jason-2 001-303 2008-07-12 01:25:39-2016-10-02 11:45:54
Jason-3 001-033 2016-02-17 10:28:53-2017-01-09 15:40:08
Topex 001-365 1992-09-25 05:24:42-2002-08-15 17:44:37
Poseidon 001-361 1992-10-01 16:45:02-2002-07-12 14:28:19
SARAL 001-035 2013-03-15 0:12:50-2016-07-04 11:04:37

respectively, and Chabahar (24.5-25.5°N, 59.4—-61.2°E) in
the Oman Sea (Fig. 1).

Repeated altimetry measurements at identical loca-
tions have been utilized to infer the marine geoid, which
is an equipotential surface reflecting the internal mass
distribution of the Earth. This surface, influenced by une-
ven mass, is connected to both the distribution of mass
and the external shape (Majumdar And Chander 2011).
The external shape relates to topography or bathymetry,
while mass distribution is linked to subsurface geological
structures. The classical geoid is responsive to mass dis-
tribution throughout the Earth. An anomaly (either posi-
tive or negative) in the classical geoid may be caused by a
bathymetric feature, such as a seamount, trench, or ridge;
(ii) a lateral density variation in the lithospheric zone; (iii)
an anomaly, deep-seated inside the earth, i.e., below the
lithospheric zone, or (iv) any combination of the above
three features (Majumdar And Chander 2011). To deter-
mine the geoid height using satellite altimetry, the first
step is to process altimeter data to determine sea surface
height. It is computed from the difference between satel-
lite height and corrected range. In this study, to calculate
MSS, the time series of instantaneous sea surface heights
(SSH) is first obtained using altimetry data from the sat-
ellites listed in Table 1. Then, the least square spectral
analysis (LSSA) method is implemented to obtain the
tidal components (see (Soltanpour et al. 2017; Pirooznia
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et al. 2016)). By removing the tidal components from
SSH time series, the long-term mean sea surface (MSS)
is derived. Then the geoid undulation is acquired by sub-
tracting the MSS from the mean dynamic topography
(MDT). A global MDT model named MDT-DTU-2012
is used for this purpose. This model has been produced
by Danish technical university in 2012 (Knudsen And
Andersen 2012). To achieve marine gravity anomaly
from satellite altimeters, the computed geoid undulation
is converted to along-track geoid gradients, in the north
and east directions on a1’ x 1’ grid (deflection compo-
nents). The inverse Stokes formula (Rummel et al., 1978)
is then used to compute marine gravity anomalies from
the two gradient components (Smith And Moose 1997).
The data sources for this study include (i) Geophysi-
cal Data Records (GDR) of satellite altimetry missions
shown in Table 1 for estimation of geoid height and grav-
ity anomaly. (ii) As mentioned above, the MDT of DTU
for computing geoid height. (iii) The shipborne bathym-
etry data in Genaveh, Alamshah, and Chabahar regions
for the data fusion process. (iv) The XGM2019e gravity
model for determination of gravity gradients (Zingerle
et al. 2020). In this study, the XGM2019e gravity models
up to degree and order 5399 was used to provide gravity
data with a spatial resolution of 2 arcminutes. The grav-
ity gradient computations via gravity models is described
in Kiamehr and Eshagh (2008) and Petrovskaya and Ver-
shkov (2006). (v) GEBCO global bathymetry data as an
output of black-box models. The GEBCO model used in
this study is GEBCO_2019.

Bathymetry modeling
The bathymetry modeling process using black-box theory
can be outlined as follows:

+ Input data:

The input data include gravity field parameters
derived by:

i. Geoid height obtained from satellite altimetry.

ii. Gravity gradient derived from the XGM2019e

gravity model. the gradients are considered

along the satellite’s flight path (along-track) to

accurately capture variations in the geoid or

sea surface height along the measurement line.

ili. Gravity anomaly computed using satellite

altimetry (inverse Stokes formula) and ship-
borne measurements.

« Output data:
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The available bathymetry data used as the output
data are the global GEBCO model, which provides
a grid of bathymetry data consistent with the spatial
distribution of the computed gravity anomaly.

+ Non-linear black-box models:

Powerful black-box techniques, like Multi-Layer Per-
ceptron (MLP), Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS), and Local Linear Model Tree (LOLI-
MOT), are employed to connect the input gravity
field parameters with the output bathymetry data.
These black-box models serve as the basic bathyme-
try models, determining the connection between the
earth’s gravitational field data and the bathymetry.

+ Data assimilation and final bathymetry model:

The basic bathymetry models are further refined by
assimilating in situ shipborne echo sounder measure-
ments. A 3D variational optimization method is used
to incorporate the additional bathymetric data and
estimate the final bathymetry model.

This integrated approach, leveraging both gravity field
data and direct bathymetric measurements, aims to over-
come the limitations of relying solely on gravity-based
models and improve the overall accuracy and reliability
of the bathymetry mapping process. Figure 2 shows the
steps of the proposed scheme for bathymetry modeling.

Non-linear black-box models

In this section, a brief description of nonlinear black-box
theory is presented. The aim is to find an appropriate
earth gravitational field parameters—bathymetry model
based on an error criterion. The system identification
problem is defined as follows (Chen et al. 2021):

where x and y are inputs and outputs, respectively, and
0 is called the parameter of function G. The nonlinear
black-box modeling addresses subjects ranging from
approximation theory and estimation theory to non-
parametric regression, algorithms, and contemporary
topics such as neural networks and fuzzy models. It also
emphasizes significant connections to traditional statisti-
cal techniques in non-parametric regression and density
estimation, particularly through kernel methods (Pirone
etal. 2023).

In the present case study, Multi-Layer Percep-
tron (MLP), Adaptive Neuro-Fuzzy Inference System
(ANFIS), and Local Linear Model Tree (LOLIMOT)
approaches are employed to identify the model function.

Multilayer perceptron neural network (MLP)

In recent years, significant efforts have been made to
replicate a natural neuron that can capture the features
of various phenomena that are also easy to implement
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Fig. 2 The flowchart of bathymetry modeling by black-box theory

in neural network models (Raheli et al. 2017; Than et al.
2021). One of the structures often used by researchers in
artificial neural networks modeling is the sMultilayer Per-
ceptron Neural Network (MLP). In detail, MLP is a type
of feedforward artificial neural network composed of
three layers: input, hidden, and output layers (Ren et al.
2020; Blaiech et al. 2012). The input layer takes in the
input data, feature processing occurs in the hidden layers,
and the output layer displays the predicted outcomes, and
the hidden layer can have one or more layers. Initially,
identification is performed with single hidden layer, and
if the modeling is not responsive, the number of layers
will increase. MLP is an enhancement of the standard lin-
ear single perceptron. It is particularly effective for tack-
ling classification tasks that map input vectors to one or
more groups. By optimizing the weights and thresholds
for all nodes, the network can model a wide range of clas-
sification functions (Teja And Rao 2011; Palchevsky et al.
2023). Optimization of the weights can be adjusted using
the learning algorithm that are classified into supervised
and unsupervised ones. In a MLP network, {x1, x5 ..., %}
as inputs are connected to neuron through weight func-
tions {w1,wsy...,w,}. Furthermore, a tunable bias can
be incorporated into the neuron which processes these
collective inputs, and the output is evaluated against a
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specific threshold value via the activation function. Sig-
moid functions are commonly employed in MLP to add
nonlinearity to the model (Pirone et al. 2023; Zhang et al.
2018). A standard feedforward structure for MLP is illus-
trated in Fig. 3.

Each element of MLP based on Fig. 3 computes by the
following relation:

n
Yk =Gy (Z WaqnXn + bq> : (2)
i—1

where 7 is the number of inputs, g the number of neurons
in hidden layer, k the number of output that is defined
by 1 <k < g and G; is Log-sigmoid transfer function
(logsig) (Suparta And Alhasa 2013; Engstrom et al. 2020;
Koutsellis et al. 2022).

To use MLP, three key points are needed: appropriate
training algorithm, optimal number of epochs to avoid
the over-train effect, and select the optimal number of
neurons to avoid the over-fit effect. In the numerical
result section, more details are provided. In this study,
the MLP model is organized into a three-layer struc-
ture, consisting of an input layer, a single hidden layer,
and an output layer. The inputs and outputs include lati-
tude, longitude, geoid height, gravity anomaly, gravity
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Fig. 3 A typical multi-layer perceptron neural network style used in this study with layers, also 1 refers to the first layer of hidden layer

gradients, and bathymetry, respectively. A log-sigmoid
transfer function is used, and the Levenberg—Marquardt
algorithm (trainlm) is selected for training the MLP net-
work (Bekas et al. 2021).

Adaptive neuro-fuzzy inference system (ANFIS)

The adaptive neuro-fuzzy inference system (ANFIS)
integrates two soft computing techniques: artificial neu-
ral networks and fuzzy logic (Yang et al. 2019; Zoune-
mat-Kermani et al. 2020). Fuzzy set theory effectively
addresses imprecision in decision-making scenarios
that involve uncertainty and ambiguity in real-world
applications. Fuzzy inference maps input data to an out-
put dataset based on fuzzy set principles. Knowledge is
represented through a set of clear linguistic rules that
are easily comprehensible for individuals without tech-
nical backgrounds. Fuzzy systems can model nonlin-
ear processes using linguistic variables when sufficient
knowledge about the system is available. The fuzzy logic
component serves as a decision-making tool to manage
uncertainties in the decisions made by neural networks
(Suparta And Alhasa 2013; Yang et al. 2019).

Figure 4 shows as typical the ANFIS utilizes a Sugeno
fuzzy model featuring three inputs, one output, and three
rules, organized into five layers. Assume the system has
three inputs x1, x2 and «3, three rules, and one output y:

If 1 is A1 and xy is B; and x3 is Ci, then
f1 = ai1x1 + bixy + c1x3 + d1.

If % is Ay and %7 is By and x3 is C,, then
f2 = ayx1 + byxy + cyx3 + do.

If 1 is A3 and %o is Bz and x3 is Cs3, then
J3 = azx1 + b3xoy + c3x3 + d3.

wi = 4, (x1) X up;(x2) X pnc;(x3),i =1,2,3,

— wi

w; = )
w1+ wy + w3 (3)
W1+ oawa +faws _ _

f R RIS G s+ .

w1+ wo + w3

The first layer serves as the input and fuzzification
stage. Each node in this layer represents a fuzzy set,
and the output from these nodes indicates the degree of
membership, determined by the membership function
(MEF) of the fuzzy set (Suparta And Alhasa 2013).

Generally, the membership function in the generalized
bell MF or Gaussian MF is utilized in the first layer. This
layer, known as the rule node, calculates the degree of the
membership function (MF) using the AND operator for
each rule. Each output node here represents the firing
strength of its corresponding rule. The third layer, called
the normalization node, performs a normalization pro-
cess, calculating the ratio of the activity degree of each
ith rule to the total activation degrees across all rules. The
output from this layer is referred to as the normalized fir-
ing strength. The fourth layer is responsible for defuzzi-
fication, where it computes the consequent parameter
values combined with the normalized firing strengths
from the previous layer. The final layer, the output node,
calculates the weighted average of all incoming signals
from the preceding layer (Shoorehdeli et al. 2007). ANFIS
employs fuzzy MFs to partition each input dimension,
with overlapping MFs allowing multiple local regions to
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be activated by a single input. Since simple local mod-
els are used in the ANFIS framework, its approxima-
tion capability depends on how finely the input space is
divided, which is influenced by the number of MFs and
layers. Typically, bell-shaped MFs are employed, with a
maximum value of 1 and a minimum of 0. (Suparta And
Alhasa 2013; Pirone et al. 2023; Yang et al. 2019):

1

14 [(h)f o)

where {ei, i hi} are the parameters of MFs that influence
their shape.

In the ANFIS architecture, the first and fourth layers
contain adaptive nodes. To optimize these parameters,
a learning algorithm is required. Pirone et al. (2023)
developed two learning algorithms: the hybrid learn-
ing algorithm and backpropagation. The hybrid learn-
ing algorithm combines two approaches: least squares
and gradient descent are utilized in this approach, which
includes two main stages: forward and backward propa-
gation. In the forward stage, the input to the network
moves through to the fourth layer, where the outcome
parameters are established using the least squares tech-
nique. In the backward stage, once the error is computed,
the error signal is sent back, allowing for the adjustment
of the premise parameters through the gradient descent
method. In this study, as mentioned before, the inputs
and output include latitude, longitude, geoid height,
gravity anomaly, gravity gradients, and bathymetry. The
generalized bell function is used as the membership

na; (x) =

function, and the hybrid learning algorithm is chosen for
training the ANFIS model.

Local linear model tree (LOLIMOT)

While Neuro-Fuzzy systems have emerged as a compel-
ling and effective data modeling approach by merging the
established learning principles of neural networks with
the clear interpretability of fuzzy logic, they face chal-
lenges related to the curse of dimensionality. To address
high-dimensional issues while preserving the beneficial
features of Neuro-Fuzzy systems (such as linearity in
weights, transparency, and the partition of unity), some
method for reducing model complexity is essential to cre-
ate more parsimonious models. A key consideration for
the success of the Local Linear Model Tree (LOLIMOT)
is the divide and conquer strategy (Duncanson et al
2022). As shown by Nelles (2001) among others, LOLI-
MOT is an incremental algorithm for constructing trees
that partitions the input space using axis-aligned splits.
The core concept of locally linear neuro-fuzzy models
involves dividing the input space into smaller subspaces
defined by fuzzy validity functions. Each resulting linear
segment, along with its validity function, can be viewed
as a fuzzy neuron. Consequently, the entire model func-
tions as a neuro-fuzzy network with one hidden layer
and a linear neuron in the output layer, which computes
the weighted sum of the outputs from the locally linear
models. The overall output of the network is determined
as a weighted sum of the local linear model outputs,
where the validity function acts as the weighting factors
dependent on the operating point. Typically, the validity
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functions are represented as normalized Gaussian dis-
tributions (Duncanson et al. 2022; Nelles 2001). The net-
work structure is illustrated in Fig. 5.

The input—output relationship of locally linear neuro-
fuzzy models is represented in Eq. 5. In this formula Q is
the number of neurons, x = [x1,%3,. .. ,xn]T is the model
input,n is number of input dimension, N is the number of
input samples and the weights w, denote the local linear
model parameters for g th neuron and # th input (Nelles
2001):

Jq = Wq0 + wq1X1 + wgaxa
Q
(5)

+---+ anxmj/ = qu¢q(ﬁ)~
gq=1

The validity functions are selected as normalized
Gaussians. Normalization is essential for accurately
interpreting these validity functions. The formulation of
the validity functions is presented in Egs. 6 and 7:

Mg ()
S =—— 6
Z;?:l n (%) (©)
<(x1 - Cq1)2>
—202
g @) = exp o

2
+ +exp <(xn_zaczn) )
qn
7)
Each Gaussian validity function is defined by two
parameters: center c¢qn and standard deviation og,. Local
optimization of linear parameters is achieved using

the least squares technique. The corresponding regres-
sion matrix for the measured data samples is defined in

Fig. 5 Configuration of a static local linear neuro-fuzzy network
with Q neurons for N inputs (Hajian et al. 2012)
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Eq. 8. Consequently, the weights can be determined using
Egs. 9 and 10, as illustrated in Eq. 11:

L xi(1) -+ xa(1)
1 x1(2) -+ x4(2)
X=1. . . | (®)
1xi(N) - 2(N)
D4(x(1)) 0 0 0
0  P;x2)0 0
Py = : : : : ’ ©)
0 0 0 Py(x(N))
Wy = [Wq0, W1, Wg2, . . . ’an]T: (10)
and
A 7Y T “lor
By = X W5 Wy = (XTP,X) X7 Py (11)

LOLIMOT is an incremental algorithm that consists of
three iterative steps. First, the least effective Local Linear
Model is identified based on local loss functions, and this
LLM neuron is chosen for division. In the second step,
all potential divisions of this LLM in the input space are
generated and evaluated (Schwingshackl et al. 2017). Fig-
ure 6 illustrates the first five iterations of the LOLIMOT
algorithm applied to a two-dimensional input space.

Data fusion

In order to improve the mathematical modeling of
bathymetry by local data, the 3DVAR method is used in
this study (Teruzzi et al. 2014). This method provides the
optimal estimate of the bathymetry via the minimiza-
tion of the following cost function (Pirooznia et al. 2024,
2023):

J = % (¢—2) gt (v =)
+ % (v—ax) g (v-ax)
x=xb+ W(y—Axb>
W =BAT (ABAT +R>_l,

where x is the state vector which includes the improved
bathymetry, x? is the bathymetry derived by basic
model,A is coefficient matrix, B is the variance covari-
ance matrix of model and R is the variance covariance
matrix of observations. Here the matrix B is the covari-
ance matrix of the estimated bathymetry using the
black-box model, and it is estimated by using the MSEs
obtained from the model as the diagonal elements, while
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Fig. 6 Functioning of the LOLIMOT algorithm during the initial five iterations for a two-dimensional input space

the off-diagonal covariance is empirically approximated
through multiple runs of the model with different initial
weights.

Also the matrix R is the covariance matrix of the echo
sounder observations, in the first-order approximation
forms a diagonal matrix, where the diagonal elements
represent the instrument precision.

As mentioned before, the nonlinear physical relation
as an inverse problem between gravity field parame-
ters such as geoid height, gravity anomaly, and gravity
gradients with bathymetry and the difficulty in reach-
ing a deterministic solution has been proven (Fan et al.
2021). Therefore, an alternative data-driven method
based on artificial intelligence algorithms is proposed
to model bathymetry. In this regard, the input of the
artificial intelligence algorithms is geoid height deter-
mined by satellite altimetry, gravity gradients of the
XGM2019e gravity model, and gravity anomaly data
derived from altimetry and shipborne measurements.
The output of the model is the bathymetry of GEBCO.

By preparing the above input and output data sets,
the aim is to identify the model between the input and

output. Generally, two main steps are done for mode-
ling bathymetry. The first is the identification of appro-
priate artificial intelligence algorithms, such as MLP,
ANFIS, and LOLIMOT, for modeling bathymetry in the
Persian Gulf and Oman Sea. The second step is improv-
ing the bathymetry model by data fusion of in situ
bathymetry data.

Modeling procedure
+ MLP modeling

In general, in order to identify the model using the
MLP, it is necessary to consider the following items:

i. Dividing input and output data into two parts:
train and test.

To this end, 70% of the data is given as train data for train-
ing the MLP network, and 30% of the data is
selected as test data for checking.
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ii. If necessary, input and output data will be nor-
malized.

Inputs and output data are checked, and if the range of
inputs and output data are not the same, data
will be normalized.

ili. Select the training algorithm.

To do this, the MSE graph of train and test data with
regard to the number of epochs is drawn, and
the slope of the convergence of the graph is
examined; the optimization algorithms that
have the fastest convergence are chosen as the
training algorithm. As shown in Fig. 7 Leven-
berg—Marquardt algorithm (trainlm) with a
learning rate of 0.01 is selected for training the
MLP network.

iv. Select the optimal number of epochs to avoid
the over-train effect.

To find the optimal number of epochs in the MLP net-
work, the number of epochs increases step
by step, and the MSE graph for train and test
data is drawn. The point where, by increasing
the number of epochs, the MSE of train and
test data stays constant corresponds to the
optimal number of training epochs. As shown
in Figure 8, the optimal number of epochs is
obtained 10.

v. Select the optimal number of neurons to avoid
the overfit effect.

To find the optimal number of neurons in the MLP net-
work, the number of neurons increases step by
step, and MSE graphs for train and test data are
drawn together. The point where the smallest
MSE for train and test data is obtained corre-
sponds to the optimal number of neurons. As
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shown in Figure 9, the optimal number of neu-
rons is obtained as 26. Finally, the MLP mod-
eling process is done after training the MLP
network by considering appropriate neurons
and epochs. Figure 10 shows the bathymetry
modeling using the MLP network with 84.55%
fitting on test data.
« ANFIS modeling

In general, similar to MLP, in order to identify the

model using the ANFIS, it is necessary to consider

the following items:

i. Dividing input and output data into two parts:
train and test.
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To this end, 70% of the data is given as train data for train-

ing the ANFIS, and 30% of the data is selected
as test data for checking.

ii. If necessary, input and output data will be nor-
malized.

Input and output data are checked, and if the range of

input and output data is not the same, data will
be normalized.

Determination the optimal number of mem-
bership functions (MFs).

iii.

To find the optimal number of MFs, the number of MFs

is increased step by step, and the MSE graph
for train and test data is drawn together. The
point where the lowest MSE for train and test
data is obtained corresponds to the optimal
MFs. In this study, the number of optimal MFs
is obtained as 3.

Select the optimal number of epochs to avoid
the over-train effect.

iv.

Similar to the previous section, to find the optimal num-

ber of epochs, the number of epochs increases
step by step, and the MSE graph for train and
test data is drawn together. The point where,
by increasing the number of epochs, the MSE
of train and test data stays constant marks the
optimal training epoch. In this study, the opti-
mal number of epochs is obtained from 15.

Finally, Fig. 11 shows the bathymetry modeling using

ANFIS network with 84.76% fitting on test
data.

1.5

samples

.

LOLIMOT modeling

As for the previous two modeling cases, in order to
use LOLIMOT, it is necessary to consider: Similar to
previous modeling, dividing input and output data
into two parts of train and test, normalizing the input
and output data, and selecting the optimal number
of epochs and neurons. Here, modeling with con-
sideration of spatial analysis using the LOLIMOT is
explained in more detail. Figure 12 shows bathymetry
modeling using LOLIMOT on test data with 90.64%
fitting.

In summary, the purpose of step 1 includes:

View full details of determination the structure of
input—output model

Bathymetry modeling in the Persian Gulf and Oman
Sea

Using this model obtained in the next step for data
fusion.

Results and analysis

Based on the model structures identified in the previous
section, the LOLIMOT model demonstrated superior
accuracy and was therefore selected as the basic model
for the results. Due to the low quality of input and out-
put data for the modeling procedure, including altim-
eter-derived geoid height and gravity anomaly data, as
well as available limitations in gravity gradients via the
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XGM2019e global gravity model and GEBCO bathym-
etry used in the basic model, the results are affected by
the accuracy of the input and output data, particularly
in shallow water (Hwang 1998), data fusion is used to
improve the basic model via in situ observations.

To this end, we have three types of bathymetries
in Chabahar, Genaveh, and Alamshah regions: (i)
bathymetry observed from shipborne measurements;
(ii) bathymetry obtained from a basic model; and (iii)
bathymetry from the global GEBCO model. To validate
the final model extracted from data fusion, two tracks of
bathymetry measured by echo sounder are not involved
in computations, only used for comparison and check-
points. Figure 13 shows a typical comparison between
the final model and shipborne bathymetry along a track
profile in the Chabahar region. The comparison between
the final model and the ship-based bathymetry measure-
ments in the regions of Chabahar, Genaveh, and Alam-
shah (a control track that was not used in the data fusion
process) resulted in RMSE values of approximately 4 m,
0.8 m, and 0.92 m, respectively. Prior to the data fusion,
the RMSE values were 6 m, 2.5 m, and 2 m, respectively,
in those same regions. It indicates that the final model
cannot fully reproduce the shipborne bathymetry used.
Other studies have also confirmed this. See the results
of Smith et al. (2005), Smith and Moose (1997), and
Vrdoljak and Basi¢ (2023). The final model can extract

the majority of high-frequency seabed features like sea-
mounts, but it still has large oscillations due to the lack
of shipborne bathymetry, low accuracy of satellite altim-
etry, and existing restrictions of global gravity models in
coastal areas. Over the deep parts of the ocean, due to
the increasing accuracy of satellite altimetry, the modeled
and shipborne bathymetry agree very well. In Chaba-
har, Genaveh, and Alamshah regions, reefs and hills are
seen in the final model. Figure 14 shows the final model
in Chabahar, Genaveh, and Alamshah regions using
data fusion. This model can utilize the data to gener-
ate bathymetry. Moreover, the final model needs to be
appropriately adjusted to account for abrupt changes in
subsurface geology in offshore areas. The availability of
higher-resolution altimeter data could enhance bathym-
etric predictions.

Discussion

As we know, the traditional approaches to bathymetry
modeling have primarily relied on well-established for-
mulas, such as the Parker model. The Parker mathe-
matical formula is based on parameters like the density
difference between seawater and seafloor, the mean thick-
ness of the crust, the mean depth of seawater, and the
densities of the Earth’s mantle and crust. However, these
methods face inherent difficulties, including the lack of
adequate knowledge for accurately estimating the model
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parameters and the use of linearized approximations in
the implementation process, leading to potential bias and
computational errors. Furthermore, the determination of
bathymetry from gravity anomaly is essentially an inverse
problem, which is considered an ill-posed problem. The
solution to this inverse problem may not be unique and
can be unstable, necessitating the use of regularization
techniques to overcome these challenges.

Nowadays, unlike the past where we sought appropri-
ate ways to solve complex and difficult equations, we are
dealing with a vast amount of data, which has led us to
focus more on data analysis and processing. With the
emergence of artificial intelligence, the modeling tools
have shifted from physical to mathematical approaches.
In this context, an alternative method for bathymetry
modeling is presented, which has its own advantages
and disadvantages. The main advantage of the proposed
approach is its flexibility and high speed, which allows
considering various input parameters. The significant
challenge of this method is its strong dependence on the
input data, which must be accurate. Therefore, it requires
careful monitoring and quality control of the input data
to ensure reliable results. Moreover, there are also some
computational complexities dealing with overfitting and
overtraining phenomena as well as selecting the best and
fastest training algorithm.

The present study demonstrates the effectiveness of
combining multiple gravity data sources with black-box
modeling techniques for bathymetry estimation. Com-
pared to traditional approaches, this method allows for
better representation of nonlinear relationships between
gravity parameters and seafloor topography.

While previous studies have applied similar
approaches, our work emphasizes the advantages of inte-
grating satellite altimetry, gravimetry, and shipborne data
to enhance accuracy, particularly in regions with limited
observations. In contrast to earlier research that typically
relied on a single model, this study evaluates three black-
box modeling techniques (MLP, ANFIS, and LOLIMOT)
as the primary models and further assimilates observa-
tional shipborne bathymetry through 3D variational opti-
mization. This combined strategy leads to improved local
accuracy and resolution. Moreover, lessons learned from
earlier studies informed the selection of input param-
eters, model architecture, and data assimilation strategies
in our research.

Among the limitations, satellite altimetry measure-
ments in coastal areas are influenced by the waveform,
which adheres to the Brown model in open waters. In
coastal zones, factors like shallow depths complicate
this model, causing errors in range determination;
thus, the retracking correction available in the geo-
physical data records (GDR) file has been applied to
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observations up to 10 km from the shore. Moreover, the
accuracy of gravity data derived from satellite altimetry
decreases significantly near coastal regions due to con-
tamination by land signals and complex hydrodynamic
conditions. In contrast, shipborne gravimetry data gen-
erally provide higher accuracy, although they may still
be affected by local environmental factors. To mitigate
these effects, artificial intelligence techniques have
been employed to assign higher weights to in situ ship-
borne measurements and gravity model data in coastal
regions. Despite these measures, the accuracy of depth
estimation in coastal areas remains lower than that
achieved in offshore regions.

These improved local and regional bathymetry pre-
dictions provide valuable datasets that can support
the refinement of global bathymetry models such as
ETOPOS5. This study shows that carefully combin-
ing global and local information, while accounting for
coastal corrections, contributes to both practical appli-
cations and the advancement of oceanographic mod-
eling techniques.

Conclusions

The study presents a novel scheme for regional bathym-
etry modeling in the Persian Gulf and Oman Sea using
a data-driven approach based on black-box theory. The
proposed methodology utilizes geodetic data sources
such as satellite altimetry, gravity model, and shipborne
gravity data as inputs to train nonlinear black-box mod-
els like MLP, ANFIS, and LOLIMOT. The results dem-
onstrate the effectiveness of the proposed approach,
with the LOLIMOT model exhibiting the highest accu-
racy among the tested algorithms, achieving a fitting of
90.64% on the test data. To further improve the bathym-
etry model, the study incorporated in situ shipborne
bathymetry measurements using a 3D variational optimi-
zation method. The comparison between the final model
and the shipborne bathymetry in control tracks yielded
root mean square errors (RMSEs) of around 4 m, 0.8 m,
and 0.92 m for the Chabahar, Genaveh, and Alamshah
regions, respectively, showcasing the accuracy and relia-
bility of the proposed methodology. The study highlights
the importance of incorporating both geodetic and in situ
data sources to develop accurate and reliable bathymetry
models. The proposed approach can be valuable for a
variety of applications, including physical oceanogra-
phy, marine geology, and ecohydraulics, where detailed
knowledge of regional bathymetry patterns is crucial
The study’s findings contribute to the ongoing efforts to
improve the understanding of ocean processes and sup-
port sustainable marine resource management.
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