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A B S T R A C T

Detecting buildings from satellite imagery presents challenges related to computational effi
ciency, model adaptation, and occlusion. This paper introduces a novel method called the Secant 
Deep Belief Network-Hyperbolic Cosine Whale Optimization (SDBN-HCWO) for building detec
tion in satellite images. The research utilizes the SDBN-HCWO method to enhance building 
detection accuracy in satellite images. It addresses challenges like computational efficiency, oc
clusion, and dataset adaptation. The method integrates a multi-layer structure, including Hy
perbolic Cosine Prey Encircling for edge identification, Shrinking Encircle for optimal edge 
linking, and Secant Object Detection for accurate identification. Additionally, a Densely Con
nected Convolutional Network (DCCN) and Depth-wise Separable Convolution (DSC) optimize 
feature extraction, reducing computational costs. The model is evaluated on both quantitative and 
qualitative metrics, ensuring high accuracy and low false positive rates. The research findings 
demonstrate that the SDBN-HCWO method significantly improves building detection accuracy in 
satellite imagery. It enhances detection efficiency by integrating Discrete Latent Deep Rein
forcement Learning and a bubble-net mechanism, reducing false positives by 58 %. The model 
outperforms conventional approaches, achieving an 18 % increase in PSNR, 34 % rise in CA, and 
19 % reduction in training time. High AP scores (90.40 %–92.67 %) confirm its reliability, though 
challenges persist in medium-damage detection. It surpasses YOLOv3, YOLOv4, and Faster R-CNN 
in accuracy and efficiency. This research significantly advances building detection in satellite 
imagery, facilitating more accurate urban planning, disaster response, and environmental 
monitoring.

1. Introduction

Detecting buildings from aerial imagery is a complex task due to various challenges. These challenges include obstructions from 
nearby trees, shadows cast by surrounding structures, a variety of rooftop textures and colours, and the wide range of building shapes 
and sizes. These factors often make it difficult for modern models to accurately identify and outline building boundaries. Access to 
high-resolution aerial imagery datasets is crucial for evaluating different detection techniques and has fuelled growing interest in the 
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applications of aerial imagery within machine learning and computer vision research. This technology plays a crucial role in 
geographic information systems (GIS), which are vital for urban planning, enabling city planners to visualize and manage urban 
growth effectively. Furthermore, it aids in disaster monitoring by providing timely and accurate data about structures in affected areas, 
facilitating better response strategies and recovery efforts. As the demand for sophisticated mapping and analysis tools continues to 
grow, building detection remains at the forefront of innovation in remote sensing and spatial analysis. (Zhang, 1999). The accurate and 
efficient identification of buildings from satellite images is essential, but it poses significant challenges, such as reducing distortions 
and minimizing noise while ensuring high precision (Zeng et al., 2022). Deep learning (DL) has become a powerful tool, providing 
structured methodologies for knowledge-based decision-making. By extracting patterns from large datasets, DL models can make 
accurate predictions for unseen inputs, which makes them highly effective for tasks such as object detection (Ayemowa et al., 2024). 
One of the main challenges in deep learning-based building detection is the selection and optimization of model parameters, which 
directly affects performance. To tackle this issue, researchers have increasingly adopted bio-inspired optimization techniques. By 
integrating nature-inspired algorithms, they aim to enhance parameter selection and improve the accuracy of the models (Wu et al., 
2024; Luo et al., 2021). These methods have shown great promise in enhancing deep learning models, making them more robust and 
efficient for detecting buildings in satellite images.

Building detection accuracy has been a significant area of research in remote sensing and computational intelligence, with 
numerous techniques developed to improve both precision and efficiency. Huang et al. (2025) developed PP-BCD, a deep 
learning-based building change detection framework utilizing pixel-wise and patch-wise fusion strategies. Tested on Pleiades imagery, 
PP-BCD showed improved accuracy, outperforming traditional methods and reducing sample collection costs (Huang et al., 2025). Luis 
et al. developed a YOLOv8-based deep learning model for building damage detection using high-resolution satellite imagery. Their 
approach, optimized with SGD, improved prediction reliability and speed, offering a scalable tool for real-time disaster assessment 
(Luis et al., 2025). Bhardwaj et al. introduced an integrated ResNet-U-Net model for post-disaster building damage assessment using 
satellite imagery. The model achieved 96.91 % accuracy on unbalanced datasets, improving efficiency and reliability for disaster 
response applications (Bhardwaj et al., 2025). Khankeshizadeh et al. proposed the WETUM model for post-earthquake building 
damage assessment using UAV data. The model achieved a 78.26 % damage detection rate, outperforming deep learning and machine 
learning models by integrating spectral and geometrical features (Khankeshizadeh et al., 2024). Xie et al. (2024) developed a landslide 
extraction framework using a two-branch network and context association features. Their method improved accuracy, achieving a 
0.92 %–16.94 % higher IoU compared to 17 contemporary deep learning methods (Xie et al., 2024). Sun et al. developed a deep 
convolutional network model for detecting dumpsites from high-resolution satellite imagery. Their approach improved detection 
efficiency, reducing investigation time by 96.8 %, enabling large-scale analysis of global waste distribution factors (Sun et al., 2023). 
Chen et al. proposed a novel approach integrating aerial imagery with BIM for automated concrete defect detection. Their method, 
using bundle registration, improved accuracy by reducing false positives and enhancing 3D defect reconstruction, achieving 6.4 % 
higher IoU (Chen et al., 2023a). Singh and Nongmeikapam employed Deep-Unet for semantic segmentation of satellite images, 
enhancing land cover mapping. Their method, integrating FAAGKFCM and SLIC Superpixel, improved accuracy, achieving 90.6 % 
global accuracy and outperforming existing models (Singh and Nongmeikapam, 2022). Tanim et al. developed a machine-learning 
framework for urban flood detection using Sentinel-1 satellite imagery and ground reports. Their unsupervised model improved ac
curacy (0.87) over RF, SVM, and MLC, enhancing rapid flood mapping and risk management (Tanim et al., 2022). PushpaRani et al. 
proposed a deep learning approach using U-Net for geological information extraction from satellite imagery. Their method, enhanced 
by data augmentation, improved accuracy, achieving a 92 % F1 score and 95 % precision, reducing manual processing time 
(PushpaRani et al., 2024). Sirko et al. developed a U-Net-based pipeline to improve building detection accuracy from high-resolution 
satellite imagery. Validated on 100k African images, their approach used mix-up augmentation and soft KL loss, enhancing seg
mentation and contributing to the Open Buildings dataset (Sirko et al., 2021). Corbane et al. developed a deep-learning framework 
using convolutional neural networks for global human settlement mapping from Sentinel-2 imagery. Their model, validated on 277 
sites, improved accuracy in built-up area extraction, enhancing urbanization and sustainability assessments (Corbane et al., 2021). 
Abdollahi et al. introduced the Seg-Unet model, combining Segnet and Unet for building segmentation from high-resolution aerial 
images. Their method improved accuracy to 92.73 % on the Massachusetts dataset, outperforming FCN, Segnet, and Unet in precise 
building extraction (Abdollahi et al., 2022). Rahnemoonfar et al. introduced FloodNet, a high-resolution UAV imagery dataset aimed 
at post-flood scene understanding through semantic segmentation and visual question answering. While primarily developed for 
disaster assessment, its high-resolution data and annotated flooded buildings make it highly relevant for building detection tasks. The 
dataset supports training deep learning models to recognize and segment partially submerged or occluded structures, a challenge 
commonly encountered in building detection, especially in complex or post-disaster urban environments (Rahnemoonfar et al., 2021).

Sharma and Singhai developed a Modified GrabCut Partitioning algorithm for building detection, incorporating bio-inspired 
optimization to improve segmentation accuracy. Their method demonstrated significant enhancements in energy minimization, 
which typically struggles in complex boundary scenarios due to its dependence on local optimization. However, the study lacks 
evaluation across diverse urban datasets and varying image conditions, indicating the need for broader generalizability testing 
(Sharma and Singhai, 2021). Additionally, Argyrou and Agapiou explored a computational intelligence model for analysing remote 
sensing images, categorizing methodologies into assessment algorithms and neural networks. The study also reviewed expansion 
rankings and future advancements in remote sensing image registration, offering insights into the evolving perspectives in this field 
(Argyrou and Agapiou, 2022). A novel building detection technique was proposed by Huang et al. In their study, vegetation regions 
were first identified from satellite images. They used local directional fuzzy landscapes to analyze shadow regions and illumination 
direction in order to determine the presence of buildings. Subsequently, a graph-based algorithm was employed to differentiate be
tween foreground and background pixels across the entire landscape, resulting in improved detection accuracy (Huang et al., 2020). A 
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bio-inspired method known as the Jellyfish Search Algorithm (JSA) was explored by Chou and Molla as an optimization technique for 
building detection. Due to the vast amount of remote sensing data, JSA was recognized as a robust metaheuristic method, drawing 
inspiration from the food-finding behavior of jellyfish in the ocean. The study emphasized the algorithm’s effectiveness, demonstrating 
that it outperformed several established metaheuristic approaches across various benchmark functions and real-world applications 
(Chou and Molla, 2022). The Manta Ray Foraging Optimization (MRFO) technique was used by Rai et al. in conjunction with the 
Radial Basis Function Neural Network (RBFNN) to efficiently extract hidden building information. The trained neural network was 
essential in identifying concealed data, and the use of spectral indices further improved its performance (Rai et al., 2023). Further
more, research has investigated the use of super-resolution techniques for large-scale building detection. Chen et al. utilized both low- 
and high-resolution open-source datasets for model segmentation, applying color normalization and a super-resolution algorithm to 
enhance image quality and improve instance segmentation accuracy. They developed a Mask R-CNN model based on the MPViT 
backbone, which demonstrated better object-wise performance compared to mainstream instance segmentation approaches. However, 
the study identified challenges in applying super-resolution models across different magnification scales and in improving the sepa
ration of closely located buildings. Additionally, it was observed that unsupervised learning-based building extraction did not 
significantly improve the effectiveness of the proposed method (Chen et al., 2023b).

Günen, Öztürk, and Aliyazıcıoğlu proposed a modified weighted differential evolution-based viewshed analysis (mWDE-WS) to 
optimize the visibility of historical structures in Türkiye’s Kromni Valley. Their method improved visibility from 64 % to 84.37 %. 
However, the model’s adaptability to other regions and exclusion of cultural or symbolic factors limits broader generalization (Günen 
et al., 2025). Günen proposed a novel framework combining VHR imagery, topographic indices, and machine learning for accurate 
rooftop detection. Random forest achieved the highest performance (98.72 % accuracy) using full feature sets. The study’s key lim
itation lies in reduced model effectiveness for RGB-only data and potential generalization issues across varying urban landscapes or 
less-structured environments (Günen, 2024).

Overall, Existing research has introduced various bio-inspired and deep learning techniques aimed at improving building detection 
accuracy. However, challenges still exist in optimizing computational efficiency, adapting models to diverse datasets, and addressing 
occlusion-related issues in urban environments. The accuracy for building detection using various existing deep learning methods is 
generally 80 % or lower. Future advancements should focus on integrating multi-scale feature extraction and hybrid optimization 
frameworks to further enhance detection precision. One promising approach is the Secant Deep Belief Network-based Hyperbolic 
Cosine Whale Optimization (SDBN-HCWO), which aims to improve building detection by addressing local optima problems and 
achieving a balanced trade-off between exploration and exploitation. The SDBN-HCWO method combines bio-inspired Hyperbolic 
Cosine Whale Optimization with the Secant Deep Belief Network (SDBN), which consists of both visible and hidden layers. Specifically, 
it employs three hidden layers, each serving a different purpose in refining object detection. 

• The first hidden layer uses a Hyperbolic Cosine Prey Encircling-based Best Edge Identification model to pinpoint the most relevant 
edges, laying a strong foundation for precise detection.

• The second hidden layer applies a Shrinking Encircle and Spiral Update-based Optimal Edge Linking model to effectively connect 
the detected edges while reducing distortions and false detections.

• Finally, the third hidden layer utilizes the Secant Object Detection model to achieve accurate and reliable building identification.

The SDBN-HCWO method evaluates both quantitative and qualitative performance based on the best fitness values, ultimately 
ensuring higher accuracy and a lower false positive rate in building detection. This comprehensive approach significantly enhances 
detection performance, making it a promising solution for object identification in satellite images. In addition, the SDBN-HCWO model 
innovatively integrates the Densely Connected Convolutional Network (DCCN) for enhanced feature extraction and computational 
efficiency, departing from traditional deep learning structures. By linking every layer to all preceding layers, DCCN improves feature 
reuse and gradient flow, addressing vanishing gradients and feature loss. The model uses dense blocks and transition layers with batch 
normalization and pooling to optimize feature extraction while maintaining detection accuracy, allowing efficient processing of large- 
scale input data. Additionally, Depth-wise Separable Convolution (DSC) reduces computational costs and parameters, enabling real- 
time object detection without sacrificing accuracy. Finally, the H-Swish activation function improves gradient propagation and 
convergence speed, enhancing reliability and adaptability for real-time applications in resource-constrained environments.

The research innovation are followings. 

• Development of the SDBN-HCWO Framework: Introduced a novel hybrid architecture combining Secant Deep Belief Network 
(SDBN) with Hyperbolic Cosine Whale Optimization (HCWO) to enhance building detection accuracy and computational 
efficiency.

• Integration of Densely Connected Convolutional Network (DCCN): Leveraged dense connections between layers to enhance feature 
reuse, gradient flow, and reduce the impact of vanishing gradients and feature loss, thereby boosting learning efficiency and 
accuracy.

• Use of Depth-wise Separable Convolution (DSC): Applied DSC to significantly reduce computational cost and model parameters, 
enabling real-time object detection without compromising precision.

• Implementation of H-Swish Activation Function: Adopted the H-Swish activation to improve gradient propagation and conver
gence speed, enhancing the model’s adaptability and reliability for real-time applications in resource-limited environments.
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• Performance Gains Over Existing Methods: Demonstrated superior accuracy and lower false positive rates compared to traditional 
deep learning methods, with the proposed model achieving building detection performance above 80 %, addressing challenges like 
occlusion, diverse datasets, and local optima.

• Balanced Exploration-Exploitation Strategy: The hybrid HCWO mechanism ensures a balanced trade-off between exploration and 
exploitation, avoiding convergence to local optima and improving the global search capabilities of the detection model.

2. Methods and models

2.1. SDBN-HCWO model

The rapid advancements in satellite communication have made high-resolution satellite imagery increasingly important across 
various fields. However, detecting buildings from single monocular images is a complex and computationally demanding task because 
these images do not provide clear information about a building’s size, shape, or color. Traditional methods for building detection rely 
on statistical relationships between training and test image data, which can limit their effectiveness in accurately identifying struc
tures. To overcome these limitations, Mayank Dixit and colleagues introduced the Dilated-ResUnet deep learning model. This model 
incorporates dilated convolution and residual blocks to improve feature extraction from satellite imagery (Dixit et al., 2021). While 
this approach improved detection accuracy, it did not effectively reduce false detections. In a related study, Lingling Fang, Xiyue Fang, 
and Liang proposed an optimization model that utilizes a nonlinear binary grasshopper whale algorithm. This model incorporates a 
novel position updating strategy to achieve a higher accuracy rate (Fang and Liang, 2023a). Although this approach improved 
detection accuracy, it did not sufficiently reduce false detections. In a similar vein, Lingling Fang and Xiyue Fang proposed an opti
mization model that utilizes a nonlinear binary grasshopper whale algorithm. They incorporated a novel position updating strategy to 
achieve a higher accuracy rate (Fang and Liang, 2023b).

The Secant Deep Belief Network (SDBN) is a cutting-edge machine learning approach designed for high-precision building 
detection from satellite imagery, particularly in urban environments where structural complexity and occlusions challenge traditional 
detection methods. By integrating the deep learning principles of Deep Belief Networks (DBNs) with the Secant method’s optimization 
capabilities, SDBN significantly enhances feature extraction and convergence efficiency. The model processes high-resolution satellite 
images to capture intricate spatial patterns and architectural variations, learning hierarchical representations of building features with 
minimal manual intervention. Compared to conventional convolutional networks, SDBN achieves superior detection accuracy, 
reduced false positives, and faster training convergence due to its hybrid architecture. Its applications extend to urban planning, 
disaster response, and smart city development, where accurate and automated building footprint extraction is critical (Mozafari and 
Moattar, 2025).

The Hyperbolic Cosine Whale Optimization (HCWO) Algorithm is an advanced metaheuristic optimization technique tailored for 
high-precision building detection from satellite imagery. This method combines the natural foraging behavior of humpback whales, as 
modelled in the traditional Whale Optimization Algorithm (WOA), with the hyperbolic cosine function to improve exploration and 
exploitation balance during optimization. When applied to satellite image analysis, HCWO enhances the tuning of deep learning model 
parameters, enabling more accurate extraction of building footprints in complex urban landscapes. Its non-linear search dynamics help 
avoid local minima, allowing the algorithm to optimize feature selection and classifier weights more effectively. By integrating HCWO 
with deep neural networks, the approach achieves superior segmentation accuracy, especially in densely built or visually noisy regions. 
This makes HCWO highly valuable in geospatial intelligence, urban monitoring, and post-disaster infrastructure assessment (Xu and 
Zhang, 2024).

To achieve an optimal balance between exploration and exploitation while avoiding local optima, this research developed a novel 
method called SDBN-HCWO for building detection from satellite images. This approach features an innovative mechanism that 
controls the positioning of whales by modifying the Hyperbolic Cosine function during the optimization process. Additionally, the 

Fig. 1. Structure of SDBN-HCWO method.
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method incorporates rectification features to fine-tune the adjustments of search agents within the search space. It leverages the Secant 
Deep Belief Network to enhance precision. These improvements ensure a well-balanced trade-off between exploration and exploita
tion, allowing the model to effectively identify buildings while maintaining curvature constraints. By refining the search process, the 
SDBN-HCWO method facilitates increased accuracy and robustness in detecting structures from satellite imagery. This represents a 
significant advancement in deep learning-based object detection. The structural framework of the SDBN-HCWO model is illustrated in 
Fig. 1, which depicts its systematic approach to optimizing building detection.

Fig. 1 illustrates the structural framework of the SDBN-HCWO method, which consists of hidden states and a visible state, featuring 
inter-layer connections while avoiding intra-layer links. The visible state, also known as the visible layer, represents the input layer 
where observed data is introduced. In contrast, the hidden states, or hidden layers, carry out the core processing tasks. Specifically, the 
SDBN-HCWO model comprises three hidden layers and two visible layers, providing a structured approach to building detection. 
Initially, satellite images are input into the visible layer, where a bio-inspired optimization process is performed using Hyperbolic 
Cosine Whale Optimization across the three hidden layers. In the first hidden layer, the best edge identification occurs during the prey- 
encircling phase, where the “prey” represents the targeted buildings. The identified edges are then sent back to the visible layer, 
serving as input for the second hidden layer, where the exploitation phase optimally links the detected edges while minimizing false 
positives. In the final hidden layer, the exploration phase refines object detection to ensure high accuracy. Ultimately, based on the 
proximity of the detected objects to the current estimates, the secant equation is applied in the visible layer to finalize the building 
detection process. This structured, multi-layered approach significantly enhances detection accuracy while reducing computational 
errors.

Table 1 presents a comparative overview of the control parameters utilized by the proposed SDBN-HCWO model in contrast with 
several existing optimization algorithms, highlighting the superior configurability and adaptability of the proposed approach. Unlike 
CSA-PS and FOA-PS, which are parameter-free and thus less flexible for fine-tuning, TLBO-PS introduces minimal control through a 
fixed teaching factor, and PSO-PS relies on standard acceleration coefficients (c1 = c2 = 1.80) and inertia weight (ω = 0.60). JADE-PS 
incorporates adaptive parameters such as crossover rate (c ∈ (Luo et al., 2021; Sharma and Singhai, 2021)) and selection probability (p 
∈ [5 %N, 20 %N]). In contrast, the SDBN-HCWO framework integrates a comprehensive set of tunable parameters, including popu
lation size (30–50), maximum iterations (100–200), convergence coefficient (ranging from 2 to 0), and a hyperbolic cosine scaling 
factor (1.5–3.0), which collectively enhance the model’s optimization performance. Furthermore, the model supports fine-grained 
control of deep learning parameters, such as learning rate (0.001–0.01), number of layers (3–5), hidden units per layer ([500, 300, 
100]), batch size (32–128), epochs (50–200), and a secant gradient threshold (10− 6). This rich parameterization enables the 
SDBN-HCWO model to effectively adapt to the complexities of high-precision building detection from satellite imagery, offering 
improved accuracy and robustness over traditional methods.

2.2. Problem formulation

The optimization process in the SDBN-HCWO method starts with initializing training vectors in the visible units, which correspond 
to the visible layer. During this stage, sample images used for simulation are placed in the visible layer, providing the foundational 
input for the optimization procedure. Each whale position within the population represents a potential solution and is encoded as a 
position vector made up of pixel intensity values. These values, which range from 0 to t, establish the initial thresholds for processing 
the satellite images. This structured initialization ensures that the optimization process can effectively explore and exploit image 
features, enabling precise and efficient building detection. By representing each image as a set of pixel intensity variations, equation 
(1) creates a robust framework that enhances detection accuracy while maintaining computational efficiency. 

Oi =(Ii1, Ii2,……., Iin) (1) 

Table 1 
A comparison of the control parameters of SDBN-HCWO with existing algorithms.

Methods Control Parameters

CSA-PS (Günen et al., 
2024)

No parameter

TLBO-PS (Günen et al., 
2024)

Teaching factor = (Chen et al., 2023a)

PSO-PS (Günen et al., 
2024)

c1 = c2 = 1.80, ω = 0.60

FOA-PS (Günen et al., 
2024)

No parameter

JADE-PS (Günen et al., 
2024)

c ∈ (Luo et al., 2021; Sharma and Singhai, 2021), p ∈ [5 %N,20 %N]

SDBN-HCWO Population size (Fang and Liang, 2023b; Mozafari and Moattar, 2025; Xu and Zhang, 2024; Günen et al., 2024; Cao et al., 2023; Han 
et al., 2022; Hossain et al., 2021; Li et al., 2024; Langerman et al., 2020; Ju et al., 2024; Shi et al., 2021; Senussi and Kang, 2024; 
Massachusetts Buildings Dataset; Deep learning for satellite image; Kononchuk et al., 2022; Basha and Logu, 2024; Dhanaraj et al., 
2021; Balyan et al., 2022; Javed et al., 2021; Uddin et al., 2022; Sanhudo et al., 2021), Maximum iterations [100–200], Convergence 
coefficient [2 to 0], Hyperbolic cosine scaling factor [1.5–3.0], Secant gradient threshold [10− 6], Learning rate [0.001–0.01], Number 
of layers (Ayemowa et al., 2024; Wu et al., 2024; Luo et al., 2021), Hidden units per layer [500, 300, 100], Batch size [32–128], 
Epochs [50–200].
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where the parameter ‘n’ represents the population size of whales, which corresponds to the total number of sample images used for simulation. 
Likewise, ‘Ii1’ refers to the actual image under consideration in the detection process. To ensure a diverse and well-distributed search 
space, the initial positions of the whales (symbolizing the sample images) are generated randomly using a predefined mathematical 
formulation. This randomized initialization prevents premature convergence and enhances the model’s ability to explore multiple 
potential solutions effectively. By incorporating this strategy, the optimization process gains a strong foundation for refining the 
detection of buildings in satellite images, ensuring improved accuracy and robustness in identifying structural patterns. The subse
quent equation provides the computational framework for this initialization, laying the groundwork for further refinement in the 
detection process. 

Iij =Resmin +(Resmax − Resmin)× random(0,1), Iij ∈0i&j=1, 2,…..m (2) 

where ‘Resmin’ and ‘Resmax’ denote the minimum and maximum intensity levels of the sample images in the histogram, respectively. 
These values establish the range of pixel intensities crucial for image processing in the SDBN-HCWO framework. The model in
corporates three hidden layers, each assigned a specific function to enhance building detection accuracy. In the first hidden layer, the 
prey encircling phase is executed, where the system identifies and localizes potential buildings. The second hidden layer then carries 
out the exploitation phase, refining edge detection and minimizing false positives. Finally, the exploration phase in the third hidden 
layer ensures optimal object identification by adjusting the model’s focus on significant features. As the process transitions between 
hidden layers, updates are systematically applied to the corresponding hidden or visible layers, following a structured update 
mechanism outlined in the subsequent equations. This multi-layered approach enhances detection precision while maintaining 
computational efficiency. 

Fig. 2. Flow chart of SDBN-HCWO.
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Prob(Hidi =1|Vis)= σ
(

bj +
∑1

i
VisiWij

)

(3) 

Prob(Visi =1|Hid)= σ
(

ai +
∑1

j
HidiWij

)

(4) 

From Equations (3) and (4), the update mechanism between the visible and hidden layers in the SDBN-HCWO method is governed 
by the sigmoid function outcomes. Given the visible layer ‘Vis’, the corresponding hidden layer ‘Hidi’ is updated based on the sigmoid 
function result ‘σ’ and the bias term ‘bj’ associated with ‘Hidi’. Similarly, when the hidden layer ‘Hid’ is provided, the visible layer ‘Visi’ 
is updated using the sigmoid function outcome ‘σ’ along with the bias parameter ‘ai’ of ‘Hidj’. These iterative updates ensure effective 
feature learning and enhance the accuracy of building detection. As outlined in the SDBN-HCWO framework, a structured three-step 
process is executed within the hidden layers: the first layer performs the prey encircling phase, the second layer handles the exploi
tation phase, and the third layer conducts the exploration phase. This hierarchical processing approach optimizes the balance between 
detection precision and computational efficiency. The complete flow of the SDBN-HCWO method is visually represented in Fig. 2, 
illustrating the sequential interactions between layers and the systematic refinement of building detection outcomes.

As illustrated in Fig. 2, the prey encircling phase is crucial for determining the optimal position vector of the prey, which in this 
context refers to the best-identified building images. This phase lays the groundwork for the subsequent stages of processing by 
identifying the most relevant structural features. Following this, two key procedures are implemented: the exploitation phase and the 
exploration phase. The exploitation phase focuses on connecting the best edges to enhance structural continuity, while the exploration 
phase is responsible for searching and refining the detected buildings. These two phases work in tandem to achieve a finely tuned 
building detection outcome. By systematically adjusting the positions of the detected structures, the model ensures greater accuracy 
and minimizes false positives. A more detailed explanation of the processes within the three hidden layers, including their specific roles 
in enhancing detection efficiency, is provided in the following subsections.

2.3. Developed best edge identification model

In the first hidden layer, the prey encircling phase is performed, during which the position of the prey is determined based on its 
proximity to the target. To improve this process, Di Cao et al. introduced an enhanced dynamic opposite learning approach along with 
an adaptive encircling prey mechanism. They utilized a novel whale optimization technique to facilitate classification based on me
chanical building identification characteristics (Cao et al., 2023). Despite advancements in the field, the accuracy of classification has 
not improved. To address this limitation, the SDBN-HCWO method introduces Hyperbolic Cosine Prey Encircling for edge identifi
cation. In this phase, each humpback whale is represented by sample images, and the movement of the fine agent, which denotes edges, 
is tracked through the remaining sample images. However, if the positional adjustments during the search are not sufficient, the entire 
sample image may fail to undergo the necessary behavioural changes needed to identify the optimal building edges. To overcome this 
challenge, the method employs dual adjustment coefficients, AC1 and AC2, which dynamically regulate changes in the coefficient 
values, thereby enhancing edge detection accuracy. The mathematical formulation (Equations (5) and (6)) of this behavior further 
refines the edge identification process, ensuring more precise classification outcomes. 

Fig. 3. (a), (b), (c), (d) – sample input images (e), (f), (g), (h) – Output result after applying Hyperbolic Cosine Prey Encircling-based Best Edge 
Identification.
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PVi(t+1)=
PVbest(t) − CV1Di

AC1
(5) 

Di =
CV2PVbest(t) − PVi(t)

AC1
(6) 

Equations (5) and (6) describe the relationship between key variables in the optimization process. Specifically, PVbest(t) represents 
the best position vector identified in the current iteration t, while PVi(t) denotes the position vector of the individual whale (i.e., sample 
image) at that same iteration. The coefficient vectors CV1 and CV2 are used to guide the search process, influencing the movement and 
adjustment of the whales. Additionally, Di captures the difference between the best position vector PVbest(t) achieved up to that point 
and the current position vector PVi(t) for the ith whale at iteration t. This variation helps track the progress and adjustments made 
during the optimization. The best edges are determined by analysing the changes in these position vectors, with the coefficient vectors 
CV1 and CV2 being mathematically defined as outlined below. 

CV1 =(2av − 1)dv=(2av − 1)(2 − t)cosh
(

2π
max(t)

)

(7) 

CV2 =2 × av (8) 

From the above equations (7) and (8), on the basis of arbitrary vector av and decreasing vector dv, the coefficient vectors CV1 and 
CV2 are obtained. To improve the positioning of search agents (i.e., edges) and avoid local optima caused by insufficient knowledge of 
the best possible search agent, this research employed a Hyperbolic Cosine function in the decreasing vector (dv) to guide the opti
mization process. This function ensures a smooth balance between exploration and exploitation throughout the overall iteration 
process, thereby enhancing the Peak Signal-to-Noise Ratio (PSNR). Fig. 3 illustrates the results of the best edge identification using the 
Hyperbolic Cosine Prey Encircling-based Best Edge Identification model.

Fig. 3 shows the results of best edge identification using the Hyperbolic Cosine Prey Encircling model. The figure includes four 
sample images, labelled (a) to (d), each representing different input scenarios. The corresponding edge identification results for these 
images are displayed in panels (e) to (h). This highlights the model’s effectiveness in accurately detecting edges across various samples. 
This visual representation emphasizes the model’s ability to optimize edge detection and produce reliable outputs in diverse contexts.

2.4. Developed optimal edge linking model

In the exploitation phase, after identifying the best edges during the prey encircling phase in the first hidden layer, the focus shifts 
to optimal edge linking. This phase is executed using the bubble-net mechanism, which involves two key tasks: the shrinking encircling 
task and the spiral updating task. Both tasks are performed in the second hidden layer. In this context, whales symbolize the search 
agents that utilize the bubble-net mechanism to encircle the prey while forming bubbles in a helix-shaped pattern. In the SDBN-HCWO 
model, the edges that are detected are linked together to minimize errors and ensure more accurate edge identification. The bubble-net 
mechanism is vital as it creates distinctive helix-shaped bubbles that connect the relevant edges. Additionally, the imaging coefficient 
vectors CV1 and CV2 are adjusted in a random manner within the shrinking encircling technique, with shifts occurring from 2 to 0 to 
fine-tune the coefficients. This dynamic shifting mechanism facilitates smooth horizontal motion across all iterations. Following this, 

Fig. 4. (a), (b), (c), (d) – edge detected images (e), (f), (g), (h) – Output result after applying Shrinking Encircle and Spiral Update model.
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the spiral updating equation is applied during the exploitation phase. This involves using an adjustment coefficient to enhance the edge 
sequence, resulting in a helix-like structure that improves edge continuity and consistency throughout the process. 

PVi(t+1)=
[
Dʹ

iebl cosh(2πl) + PVbest(t)
]

AC2
(9) 

Dʹ
i =PVbest(t) − PV(t) (10) 

Equations (9) and (10) describe the distance Dʹ
i, which represents the difference between the best position vector PVbest(t) at 

iteration t, with b and l denoting the parameters for a logarithmic spiral shape and a random number within the range of [− 1, 1], 
respectively. The logarithmic spiral is used to connect the best or relevant edges while effectively removing isolated ones, which 
minimizes errors in detecting objects during the final stages of the process. This technique ensures more accurate and consistent edge 
identification. Fig. 4 visually presents the results of optimal edge linking, achieved through the Shrinking Encircle and Spiral Update 
model. This demonstrates the effectiveness of the method in refining edge connectivity and enhancing the overall detection process.

Fig. 4 (a)–(d) show the input images after edge detection, while the results produced by the Shrinking Encircle and Spiral Update 
model are illustrated in Fig. 4(e)–(h).

2.5. Developed SDBN-HCWO object detection model

The proposed SDBN-HCWO method executes a prey-searching phase that corresponds to object detection, enabling accurate 
identification of objects. Han et al. introduced a Mask Region-CNN for building detection; however, their model did not consider the 
time needed for weight updates during classification, which ultimately impacted the overall accuracy (Han et al., 2022). To overcome 
this limitation, the Secant Object Detection Model has been developed. The main goal of the exploration phase is to thoroughly 
investigate the entire search space (i.e., the sample images for analysis) beyond the current best solution in order to identify a more 
optimal option in a way that is computationally efficient. This process is facilitated by updating the position of coefficient vectors (CV1, 
CV2), as outlined below. 

PVi(t+1)=
PVrand − CV1Di

AC2
(11) 

Di =
CV2.PVrand − PVi(t)

AC1
(12) 

From equations (11) and (12), ‘PVrand’ represents a randomly selected position vector for the current iteration (t). Based on the 
position of the coefficient vectors (CV1, CV2), the randomly chosen position vector for the corresponding image is updated iteratively. 
This process continues until the termination condition is met. To find a solution to the secant equation, the approach takes into account 
how close the target is to the current estimate while ensuring that the curvature condition in the visible layer is satisfied, as outlined 
below. 

Resi+1 =
(
I − γiPViSecT

i
)
Resi

(
I − γi SeciPVT

i
)
+ γiPViPVT

i (13) 

PVi =PVbest − PV, γi =
1

PVT
i Seci

(14) 

According to equations (13) and (14), a building is identified when the resultant class value exceeds zero; otherwise, no building is 
detected.

The algorithm for the SDBN-HCWO is outlined below. 

Algorithm I.

Input: Dataset ‘DS’, Images ‘I = I1, I2, …, In’

Output: Robust building detection

1: Initialize ‘n’, arbitrary vector ‘av = [0,1]’, decreasing vector ‘dv = [2 → 0]’, iteration ‘t’ 
2: Initialize adjustment coefficients ‘AC1 = 2.5’, ‘AC2 = 1.5’ 
3: Begin 
4: For each Dataset ‘DS’ with Images ‘I’ 
//visible layer 
5: Formulate series of pixel intensity values as given in (1) 
6: Generate initial position of the whales (i.e., sample images considered for simulation) as given in (2) 
7: Formulate switching between hidden layers or visible layer as given in (3) and (4) 
//Prey encircling phase (i.e., building edge detection) – Hidden layer 1 
8: Observe the behavior of the whales (i.e., sample images considered for simulation) as given in (5) and (6) 
9: Evaluate the coefficient vectors ‘CV1’ and ‘CV2’ as given in (7) and (8) 
10: Return best edges 

(continued on next page)
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(continued )

Input: Dataset ‘DS’, Images ‘I = I1, I2, …, In’

Output: Robust building detection

//Exploitation phase (i.e., edge linking) – Hidden layer 2 
//shrinking encircling technique 
11: Fine-tune coefficient vectors ‘CV1’ and ‘CV2’ arbitrarily from ‘2’ to ‘0’ 
//spiral updating techniques 
12: Perform spiral updating employing adjustment coefficient as given in (9) and (10) 
13: Return optimal edge linkages 
//Exploration phase (i.e., object detection) – Hidden layer 3 
14: Explore overall search space (i.e., sample image for analysis) to obtain the current best solution as given in (11) and (12) 
15: Return predicted results 
//Visible layer (i.e., building detection) 
16: Evaluate resultant value as given in (13) and (14) 
17: If ‘Resi+1 > 0’ then ‘FRes = building detected’ 
18: Else ‘FRes = no building detected’ 
19: End if 
20: End for 21: End

Algorithm I outlines the process of building detection while minimizing the false positive rate using the Secant Deep Belief Network 
with Hyperbolic Cosine Whale Optimization (SDBN-HCWO) method, which incorporates bio-inspired optimization within a deep 
learning framework. This approach employs a novel Secant Deep Belief Network (SDBN) consisting of a visible layer and three hidden 
layers, each performing specific operations related to the Hyperbolic Cosine Whale Optimization technique. The visible layer processes 
multiple input images and sends them to the first hidden layer, where edge detection is conducted using the Hyperbolic Cosine Prey 
Encircling function. The optimal edges identified are then refined in the second hidden layer, which establishes relationships between 
the edges of the corresponding images. This is achieved by fine-tuning the initialized coefficient vectors through the Shrinking Encircle 
and Spiral Update functions. Lastly, the Secant Object Detection function is applied in the third hidden layer to achieve accurate 
building detection with well-linked edges.

2.6. Development of feature extraction network in SDBN-HCWO model

To enhance feature extraction while minimizing computational costs, this study utilizes a backbone network. The Densely Con
nected Convolutional Network (DCCN) for SDBN-HCWO method, detailed in Table 2, consists of three key components: 3 × 3 con
volutional layers as the initial processor, multiple dense blocks with transition layers for feature extraction and reuse, and a fully 
connected (FC) layer for classification. Dense blocks serve as the core structural units, ensuring efficient information flow, while 
transition layers downsample feature maps to improve computational efficiency. Each transition layer includes batch normalization 
(BN) to stabilize activations, a 1 × 1 convolutional layer for feature refinement, and a 2 × 2 pooling layer for resolution reduction. To 
optimize detection performance, the dense blocks incorporate batch normalization, the H-Swish activation function, and convolutional 
layers. By maintaining consistent feature map sizes and interconnecting layers along the channel dimension, the architecture enhances 
feature propagation, gradient flow, and overall network performance compared to previous deep learning studies.

Unlike ResNet’s residual structure, which utilizes skip connections to bypass layers and prevent vanishing gradients, DCCN for 
SDBN-HCWO method employs a dense connection strategy. In residual networks, only selected layers are connected, whereas DCCN 
connects every layer to all preceding layers. This design enables each layer to receive inputs from all previous layers and concatenate 
their outputs along the channel dimension. As a result, it facilitates feature reuse, preserves extracted features, and enhances feature 

Table 2 
Selection of DCCN parameters.

Layer Output size DCCN

Convolution 128 × 128 7 × 7 conv, stride = 2
Pooling 64 × 64 3 × 3 max pool, stride = 2
Dense block-1 64 × 64 6 × (1 × 1 conv, 3 × 3 conv)
Transition Layer-1 64 × 64 1 × 1 conv

32 × 32 2 × 2 average pool, stride = 2
Dense block-2 32 × 32 12 × (1 × 1conv, 3 × 3conv)
Transition Layer-2 32 × 32 1 × 1 conv

16 × 16 1 × 1 conv
Dense block-3 16 × 16 24 × (1 × 1conv, 3 × 3conv)
Transition Layer-3 16 × 16 1 × 1 conv

8 × 8 2 × 2 average pool, stride = 2
Dense block-4 8 × 8 16 × (1 × 1conv, 3 × 3conv)
Classification layer 1 × 1 7 × 7 global average pool

– 1000D fully-connected, SoftMax

Note: conv is 3 × 3 Convolution.
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representation. The dense connections also improve gradient flow during backpropagation, thereby reducing the risk of vanishing 
gradients. Additionally, this approach promotes parameter efficiency by reusing features instead of adding extra parameters for skip 
connections. Consequently, DCCN boosts network efficiency while supporting effective feature propagation and learning. The total 
number of connections in DCCN can be calculated using the following equation: 

C=1 + 2 + 3 + …… + (L − 1) =
L(L + 1)

2
(15) 

In this equation, C signifies the total number of connections, while L represents the number of layers in the network.

2.7. Improvement of computational efficiency in SDBN-HCWO model

Depth-wise Separable Convolution (DSC) is a widely recognized technique for improving the computational efficiency of deep 
neural networks. Originally introduced in MobileNet (Hossain et al., 2021), DSC has since been integrated into various lightweight 
deep learning architectures. Unlike standard convolution, which applies a single convolutional kernel across all channels of an image 
(leading to a quadratic increase in parameters and computational cost) DSC significantly reduces these demands while maintaining 
comparable accuracy (Li et al., 2024). It achieves this by breaking down standard convolution into two steps: depth-wise convolution, 
where a unique 3 × 3 filter is applied to each channel individually, and point-wise convolution (1 × 1 convolution), which combines 
feature maps across channels to ensure effective feature extraction. This approach drastically lowers computational expense while 
preserving essential feature representations. In the SDBN-HCWO detection model, DSC is employed in the neck and head to reduce 
both computational complexity and the number of parameters. Research indicates that replacing traditional convolutions with DSC 
can lead to a substantial reduction in computational cost, typically measured by comparing Floating Point Operations per Seconds 
(FLOPs) before and after its implementation (Langerman et al., 2020). Furthermore, DSC-based optimizations have been shown to 
enhance real-time performance in object detection models like YOLO, SSD, and EfficientDet, where low-latency inference is critical (Ju 
et al., 2024). By incorporating DSC into SDBN-HCWO, the model achieves greater efficiency while maintaining detection accuracy, 
aligning with broader advancements in deep learning optimization. The mathematical expression representing the output of a standard 
convolution is given as follows: 

Yk,l,n =
∑

m

∑

i

∑

j
Ki,j,m,n.Fk+i− 1,l+j− 1,m (16) 

In the equation: Yk,l,n represents the value at spatial location (k, l) in the nth channel of the output feature map. Ki,j,m,n denotes the 
convolution kernel parameters, where i and j represent the spatial positions within the kernel, and mmm corresponds to the input 
channel index. Fk+i− 1,l+j− 1,m represents the value in the mth channel of the input feature map at the corresponding spatial position.

The computational cost expressions for standard convolution and DSC are derived based on the following parameters: Number of 
input channels (N), Number of output channels (M), Spatial dimensions (width and height) of the input feature map (GF), Spatial 
dimensions of the convolution kernel (GK). For a standard convolution, the computational cost is determined by the number of 
floating-point operations (FLOPs) required to compute the output. The expression is: 

Cos tstd =M × N × GF2 × GK2 (17) 

DSC breaks the standard convolution into two operations: depth-wise convolution and point-wise convolution (1 × 1 convolution). 
Each input channel is convolved with its own filter (depth-wise), so the cost for this operation is: 

Cos tdw =N × GF2 × GK2 (18) 

After the depth-wise convolution, a 1 × 1 point-wise convolution is applied to combine the outputs of the depth-wise convolutions. 
The cost for the point-wise convolution is: 

Cos tpw =N × M × GF2 (19) 

Thus, the total computational cost for DSC is: 

Cos tDSC =Cos tdw +Cos tpw =
(
N×GF2 ×GK2)+

(
N×M×GF2) (20) 

Cos tDSC

Cos tstd
=

1
M

+
1

GK2 (21) 

As shown in the equations, DSC reduces the computational cost compared to standard convolution, especially when the number of 
output channels M is large.

The mathematical expression for the mth channel of the output feature map in a DSC can be written as: 

Ŷk,l,n =
∑

i

∑

j
K̂i,j,m.Fk+i− 1,l+j− 1,m (22) 

In the equation: Ŷk,l,n represents the value at spatial position (k, l) in the mth channel of the output feature map. K̂i,j,m denotes the 
depth-wise convolution kernel parameters, where (i, j) represent the spatial positions within the kernel. The depth-wise separable 
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convolution mechanism is shown in Figs. 5 and 6.

2.8. Improve detection performance in SDBN-HCWO model

In deep learning-based object detection, selecting the right activation function is crucial for model accuracy and efficiency. 
Research shows that activation functions significantly impact feature extraction, gradient flow, and overall model convergence. 
YOLOv4, a popular object detection model, uses the Conv2d Leaky ReLU activation function in its backbone network to tackle the issue 
of neuron death (Shi et al., 2021). By permitting a small gradient for negative input values, Leaky ReLU helps ensure continuous 
learning during backpropagation. However, studies have revealed that its performance can vary across different data distributions, 
leading to unreliable feature representations and limiting the model’s ability to generalize effectively. To address these limitations in 
detecting building, the proposed SDBN-HCWO model incorporates H-Swish as its primary activation function. H-Swish, a refined 
version of Swish, is known for its smooth and continuous characteristics, which enhance gradient propagation and computational 
efficiency. Unlike Leaky ReLU, which follows a fixed piecewise linear approach, H-Swish features a self-gating mechanism that 
dynamically adjusts activation values, thereby improving network stability and representational power. Previous research has 
demonstrated its effectiveness, especially in lightweight models, making it a suitable choice for real-time object detection applications. 
The implementation of H-Swish in the proposed model aims to enhance detection accuracy and reliability across various conditions, as 
illustrated in the comparative function graphs in Fig. 8. The mathematical expression for the Leaky ReLU activation function is: 

Leaky ReLU(x)=
{

x if x ≥ 0
αx if x < 0 (23) 

where, x represents the input value to the activation function. α is a small positive constant (typically 0.01), allowing a slight gradient 
for negative input values to prevent neuron death. The mathematical expression for the H-Swish (Hard-Swish) activation function is: 

H − Swish(x) = x
ReLU6(x + 3)

6
Here ReLU6(x) = min[max(0, x),6] (24) 

The flow-diagram of DSC in SDBN-HCWO model for computational efficiency is shown in Fig. 7.
The H-Swish activation function offers numerous benefits, making it an appealing choice for deep learning models, particularly in 

object detection tasks. Like ReLU, it does not have an upper limit, which helps avoid gradient saturation—a common problem where 
gradients become too small to propagate effectively, thereby slowing down the model’s learning process. This characteristic enables 
the model to continue learning efficiently, preventing training slowdowns. Additionally, H-Swish has a lower bound that causes its 
values to approach zero on the negative side. This property helps prevent overfitting by promoting more balanced weight updates, 
particularly when training with extreme values. Another significant advantage of H-Swish is its non-monotonicity, meaning it can 
retain small negative values instead of zeroing them out. This feature contributes to a more stable flow of gradients throughout the 
network, which is vital for consistent learning. In contrast to standard activation functions like ReLU, which discard negative values 
and risk leaving neurons inactive, H-Swish maintains these small negative values, ensuring proper weight adjustments. Furthermore, 
the function is continuous and differentiable, allowing for smoother optimization and more efficient weight updates, which enhances 
the convergence process. Ultimately, H-Swish provides excellent generalization and optimization capabilities, significantly improving 
model performance and recognition accuracy in tasks such as object detection. These qualities highlight its effectiveness in enhancing 
both the accuracy and training stability of neural networks.

In conclusion, the H-Swish activation function enhances detection precision, particularly for identifying damaged illegal con
struction objects. Its non-monotonicity prevents neuron saturation, promoting stable learning and improving model accuracy. 
Additionally, the lower bound helps reduce overfitting by limiting extreme values during training. H-Swish also offers improved 
computational efficiency over the Swish function, accelerating training and minimizing resource consumption. This makes it suitable 
for real-time applications that require rapid processing and low latency. Overall, H-Swish is an effective activation function for 
enhancing both the accuracy and efficiency of detection models.

Fig. 5. Framework of depth-wise separable convolution mechanism.
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2.9. Developed high accuracy object detection model with SDBN-HCWO

Fig. 9, presents the architecture of the proposed SDBN-HCWO detection model, which outperforms YOLOv4 in accuracy and 
parameter efficiency. Replacing CSPDarkNet53 (Senussi and Kang, 2024) with DCCN improves feature extraction while maintaining 

Fig. 6. Mechanism of DSC for proposed SDBN-HCWO.

Fig. 7. Functional flow-diagram of DSC in SDBN-HCWO model for computational efficiency.
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key network components like the 3 × 3 convolutional layer, pooling layers, and dense blocks. DCCN enhances feature transfer, 
mitigates gradient vanishing, and optimizes feature utilization, boosting recognition accuracy. While feature layer channels are 
adjusted, their size remains unchanged, and dense connections reduce parameter count, improving efficiency. Further enhancements 
include replacing the standard 3 × 3 convolution in the neck and head with depth wise separable convolution (DSC) to lower 
computational costs. H-Swish, a more effective activation function than Leaky ReLU, improves nonlinear feature extraction and 
generalization. Experiments confirm that these modifications enhance detection accuracy while reducing computational costs, making 

Fig. 8. Graphical change of the H-Swish and Leaky ReLU activation functions.

Fig. 9. Architectural network of proposed building detection model with SDBN-HCWO model.
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SDBN-HCWO superior to other state-of-the-art (SOTA) models for illegal construction detection.
The loss function of SDBN-HCWO consists of multiple key components, including the object position loss function (Ll), classification 

loss function (Lc), confidence loss function (Lcf ), IoU loss (Liou), scale-invariant loss (Ls), and edge loss (Ledge). The overall loss function 
can be expressed as: 

L= λlLl + λcLc + λcf Lcf + λiouLiou + λsLs + λedgeLedge (25) 

Where, λl, λc, λcf , λiou, λs, λedge are weighting factors to controls the relative importance of its corresponding loss component. 

Ll =1 −
B ∩ B̂
B ∪ B̂

(26) 

Where, B ∩ B̂ is the overlapping area between the predicted and ground truth bounding boxes. B ∪ B̂ is the total area covered by both 
boxes. 

Lc =
∑N

i=1
yi log(ŷi)+ (1 − yi)log(1 − ŷi) (27) 

Where, N is the number of samples. yi is the ground truth label (1 if the object belongs to the positive class, 0 if it belongs to the negative 
class). ŷi is the predicted probability of the object belonging to the positive class. 

Lcf = −
∑N

i=1
ci log(ĉi)+ (1 − ci)log(1 − ĉi) (28) 

Where, ci is the ground truth confidence (1 for object present, 0 for no object). ̂ci is the predicted confidence score for bounding box N, 
representing the probability that an object is detected in the box. 

Ll(IoU)=

{
0.5(IoU − 1)2 if |(IoU − 1)| < 1
|(IoU − 1)| − 0.5 Otherwise

(29) 

If IoU is close to 1 (i.e., the predicted box is nearly identical to the ground truth), the loss is small. If IoU is far from 1 (i.e., the 
predicted box does not overlap well with the ground truth), the loss is larger. 

Lscale =
1
2

(⃒⃒wpred − wgt
⃒
⃒

wpred + wgt
+

⃒
⃒hpred − hgt

⃒
⃒

hpred + hgt

)

(30) 

Where, 
⃒
⃒wpred − wgt

⃒
⃒ is the absolute difference in width between the predicted and ground truth bounding boxes. 

⃒
⃒hpred − hgt

⃒
⃒ is the 

absolute difference in height between the predicted and ground truth bounding boxes. The sum wpred + wgt and hpred+ hgt in the de
nominator normalizes the loss, making it scale-invariant. 

Ledge =
1
N
∑N

i=1

[⃒
⃒Epred(i) − Egt(i)

⃒
⃒2
]

(31) 

Where, Epred(i) represents the predicted edge at pixel i. Egt(i) represents the ground truth edge at pixel i. N is the total number of pixels in 
the boundary region.

3. Experiments and results

3.1. Experimental setup

The proposed SDBN-HCWO method, along with the existing Mask R-CNN and Dilated ResUnet deep learning models, is evaluated 
using Python to assess its effectiveness in recognizing buildings from satellite images. These building detection methods utilize the 
Massachusetts Buildings Dataset, which is available on Kaggle (Massachusetts Buildings Dataset). The Massachusetts Buildings Dataset 
comprises 151 aerial images capturing the Boston area, each with a resolution of 1500 × 1500 pixels, representing an area of 2.25 
square kilometres per image. Collectively, the dataset spans approximately 340 square kilometres. It is divided into 1137 images for 
training, 216 for testing, and 104 for validation. The building footprint maps were created by rasterizing data sourced from the 
OpenStreetMap project, focusing on areas with an omission noise level of around 5 % or lower. The dataset benefits from high-quality 
building footprint data, largely due to the City of Boston’s contribution of comprehensive building outlines to OpenStreetMap. It 
primarily covers urban and suburban regions and includes buildings of various sizes, such as houses and garages. The imagery, 
provided by the state of Massachusetts, is standardized to a resolution of 1 pixel per square meter. To enhance evaluation accuracy, the 
target maps for the test and validation sets underwent manual corrections.

To evaluate the effectiveness of the SDBN-HCWO method, this research conducted a comparative analysis against the Mask R-CNN 
and Dilated-ResUnet models. This comparison utilized various performance metrics, including PSNR, false positive rate, Classification 
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Accuracy (CA), and Confusion Matrix (CM). These metrics provide a comprehensive evaluation of each method’s performance in 
building detection tasks. The performance of building detection using the proposed SDBN-HCWO method is evaluated and compared 
with traditional building detection approaches. Specifically, it is compared against the Mask R-CNN developed by Han et al. and the 
Dilated-ResUnet deep learning model introduced by Dixit et al. (Dixit et al., 2021; Han et al., 2022). The comparison is based on key 
performance metrics, including PSNR, false positive rate, classification accuracy, and classification time. To ensure a fair and 
consistent evaluation, we used 130 diverse image samples as input across all three methods. Additionally, an average of 10 simulation 
runs was conducted to account for variability and enhance the reliability of the results. This comparison provides a comprehensive 
assessment of the effectiveness and efficiency of the SDBN-HCWO method in building detection tasks.

In addition, the SDBN-HCWO model is used in various scenarios, such as damage detection in natural disasters (Deep Learning for 
Satellite Image Processing), including identifying buildings in initial images and assessing the extent of damage to each building after a 
disaster. The dataset comprises 9168 samples, including 3240 images that depict damaged structures. Due to research constraints, only 
a subset of the dataset is used for training: 810 (25 % total datasets) images are allocated for training, 324 (10 % total datasets) for 
validation, and 162 (5 % total datasets) as testing samples. Although this limited sample size is not sufficient for fully training a 
segmentation model, it offers a controlled setting to evaluate the SDBN-HCWO methodologies. In the experimental setup, the dataset is 
categorized into four distinct classes, ensuring a multi-class classification framework suited for object detection or recognition tasks. 
The model is trained over 100 epochs, allowing sufficient iterations for learning complex patterns within the data. A batch size of 4 is 
employed, which facilitates frequent weight updates and enhances learning stability, particularly when computational resources are 
limited or when dealing with high-resolution input data. Additionally, a learning rate of 0.001 is adopted, striking a balance between 
convergence speed and training stability. This learning rate enables the model to make gradual yet effective adjustments to its pa
rameters, reducing the risk of overshooting the optimal solution during training.

Data augmentation is a crucial technique in deep learning, particularly for image-based tasks, as it enhances model generalization 
by artificially expanding the training dataset. Two commonly used augmentation methods are flipping and rotation. Flipping involves 
horizontally or vertically inverting an image, which allows the model to learn invariant features despite the orientation. Rotation, on 
the other hand, involves turning the image by a certain angle, such as 90◦, 180◦, or random degrees, which further exposes the model to 
various spatial representations of the same object. The dataset is processed under consistent conditions to ensure reproducibility, 
utilizing a fixed random seed and deterministic GPU execution mode. For a thorough analysis, using the full dataset is recommended to 
validate the scalability of the findings. To aid in defect identification, the dataset is categorized into four groups, as outlined in Table 3.

3.2. Visual display of the experiments

Fig. 10(a)–(d) present the input edge-linked images, which highlight the structural outlines and contours within the scenes, serving 
as a crucial pre-processing step for enhancing feature extraction. These edge-linked representations help in emphasizing the geometric 
boundaries of objects, thereby facilitating more accurate localization in the subsequent detection phase. Correspondingly, Fig. 10(e)– 
(h) illustrate the output results after applying the SDBN-HCWO. The model successfully identifies and localizes the target objects 
within each scene, demonstrating its effectiveness in interpreting edge-based input data and translating it into accurate detection 
outputs. This comparison between input and output visually underscores the model’s capability in transforming low-level edge in
formation into meaningful object detection results.

3.3. Performance of PSNR

The Peak Signal-to-Noise Ratio (PSNR) is calculated using the mean square error (MSE), which measures the difference between the 
original and processed images. PSNR quantifies the quality difference between these two images, with higher values indicating better 
image quality and less distortion. Mathematically, PSNR is defined as a logarithmic function of the MSE, creating a scale for evaluating 
the effectiveness of image processing methods. This metric is widely used in tasks such as image compression, restoration, and 
detection to assess how closely the processed image resembles the original. The calculation of PSNR is given by the following formula 
(Kononchuk et al., 2022; Basha and Logu, 2024): 

PSNR=10 × log10

[
M2

SME

]

(32) 

SME =
[
Sizepreprocessed − Sizeoriginal

]2 (33) 

From equations (15) and (16), the term Sizepreprocessed refers to the size of the processed image, specifically the best positive vector, 

Table 3 
Category and definition of building damage assessment task.

No. Category Definition

1 Destroyed Buildings The damage is irreversible, with major collapses, severe cracks, or total destruction of walls, roofs, and foundations.
2 Light Damaged Buildings Damage may include small cracks, broken windows, minor roof or wall damage, and cosmetic issues.
3 Medium Damaged Buildings Damage includes large cracks, partial wall collapses, deformed structures, and weakened load-bearing elements.
4 Non-Damaged Buildings These structures have no visible damage and remain completely functional.
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while Sizeoriginal denotes the size of the original image. PSNR, or Peak Signal-to-Noise Ratio, is measured in decibels (dB) and provides a 
quantitative assessment of image quality by comparing original and processed images. A higher PSNR value indicates better image 
quality with less distortion. The results of the comparative analysis of PSNR for the proposed method and existing methods are pre
sented in Fig. 11. This figure offers a clear comparison of the performance of each approach in terms of image quality.

Fig. 11 illustrates the PSNR performance for various image sizes derived from the Massachusetts Buildings dataset. The PSNR values 
achieved using the proposed SDBN-HCWO method are compared with those from existing methods, such as Mask R-CNN and Dilated- 
ResUnet deep learning models, to assess the effectiveness of building detection. The comparison clearly shows that the SDBN-HCWO 
method outperforms the existing methods in terms of PSNR, indicating superior image quality and detection accuracy in building 
recognition tasks.

Fig. 11 presents the performance analysis of PSNR for the proposed SDBN-HCWO method in comparison to existing techniques. The 
x-axis represents the varying image sizes measured in megabytes (MB), while the y-axis displays the corresponding PSNR values for 
each method. The results show that PSNR remains relatively stable across all three methods for images ranging from 4.34 MB to 4.93 
MB, followed by a gradual decline and then an increase. This fluctuation in PSNR is attributed to the presence of occlusion in the 
images. Specifically, simulations with a 4.34 MB image size yield a PSNR of 39.75 dB for the proposed SDBN-HCWO method, 37.25 dB 
for the Mask R-CNN, and 33.73 dB for the Dilated-ResUnet deep learning method. Notably, the SDBN-HCWO method consistently 
achieves higher PSNR values, indicating superior performance in building detection compared to the existing methods.

The PSNR achieved by the proposed SDBN-HCWO method can be attributed to the integration of the Hyperbolic Cosine function. 
This function is essential for reducing the risk of position updates in the best edge selection process from becoming trapped in local 

Fig. 10. (a), (b), (c), (d) – edge linked images (e), (f), (g), (h) – Output result after applying proposed SDBN-HCWO.

Fig. 11. Results PSNR using SDBN-HCWO, Mask R-CNN and Dilated-ResUnet deep Learning.
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optima, which is a common issue in optimization. To tackle this challenge, a decreasing vector is used to effectively manage local 
optimal solutions. The Hyperbolic Cosine function facilitates a balanced process of exploration and exploitation, contributing to the 
enhancement of PSNR in the SDBN-HCWO method. Simulation results indicate that the proposed method improves PSNR by 9 % 
compared to the Mask R-CNN and by 17 % compared to the Dilated-ResUnet deep learning approach, highlighting its superior per
formance in edge detection.

3.4. Performance of FPR

The False Positive Rate (FPR) is calculated by examining the number of negative instances. Specifically, the objects that are not 
classified as building pixels but are incorrectly identified as positive (i.e., building pixels). To compute the FPR, you divide the number 
of false positives (FP) by the total number of actual negative instances (TN). This measurement indicates how often non-building pixels 
are mistakenly classified as building pixels. The formula for estimating the FPR is as follows (Dhanaraj et al., 2021; Balyan et al., 2022): 

FPR=
FP

FP + TN
(34) 

In Equation (17), ‘FP’ refers to false positives, while ‘TN’ stands for true negatives. FPR quantifies the proportion of incorrectly 
identified positive instances compared to the total number of actual negative cases. Fig. 12 provides a comprehensive summary of the 
varying FPR results, showcasing the performance of the different methods under consideration. This figure highlights the differences in 
accuracy and error rates across the models, offering valuable insights for comparison.

Specifically, Fig. 12 displays the FPR results derived from a diverse set of sample images taken from the Massachusetts Buildings 
Dataset. In the simulations, a total of 130 distinct images, ranging in size from 13 to 130, were utilized. All three methods effectively 
reduced the FPR in the building detection task. However, the proposed SDBN-HCWO method demonstrated superior performance by 
achieving a lower FPR compared to the existing Mask R-CNN and Dilated-ResUnet deep learning methods. This indicates that the 
SDBN-HCWO approach enhances accuracy by minimizing false positives during building detection.

Fig. 12 presents the simulation output of the FPR for 130 distinct input images. As shown in the figure, the FPR increases with the 
number of input images, which can be attributed to the varying image sizes and corresponding noise levels. This variation in noise 
results in a proportional increase in falsifications during the edge linking process used for building detection. Despite this challenge, 
the simulations conducted across various image sizes demonstrate that the proposed SDBN-HCWO method outperforms other methods 
by achieving the lowest FPR. This improvement is largely due to the application of the Spiral Updating Equation, which incorporates 
an adjustment coefficient during the exploitation phase. The equation resembles a helix-shaped series of edges, effectively linking the 
best edges while eliminating isolated ones. As a result, the FPR of the SDBN-HCWO method is reduced by 44 % compared to the Mask 
R-CNN and by 64 % compared to the Dilated-ResUnet deep learning methods.

3.5. Performance of classification accuracy

Classification accuracy (CA) is an important performance metric used in building detection tasks. It quantifies how effectively a 
detection method identifies buildings by comparing the number of correctly classified building pixels to the total number of pixels, 
including both buildings and non-buildings. This measure is essential for evaluating the reliability and precision of detection models, 
as it offers insights into the overall accuracy of the classification process. By assessing CA, researchers can determine how well pro
posed methods distinguish between relevant and irrelevant features, thereby ensuring the quality and efficiency of the building 

Fig. 12. Results FPR using SDBN-HCWO, Mask R-CNN and Dilated-ResUnet deep learning.
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detection system (Javed et al., 2021; Uddin et al., 2022). 

CA=
∑n

i=1

Samplescc

Samplesi
× 100 (35) 

In equation (18), “CA” stands for Classification Accuracy, which measures the proportion of correctly identified building objects 
within a set of images. The variable “Samplesi” refers to the total number of sample images used for evaluation, while “SamplesCC” 
indicates the number of sample images that were correctly classified, representing the building objects accurately detected as 
buildings. Classification accuracy is expressed as a percentage (%), providing a clear insight into the model’s performance.

Fig. 13 presents a detailed breakdown of classification accuracy for 130 distinct sample images, enabling a comparative analysis of 
the proposed method against other detection techniques. The experimental results shown in Fig. 13 illustrate the CA across various 
sample sizes, ranging from 13 to 130 images. During the simulation, the CA performance of the proposed SDBN-HCWO method was 
compared to that of existing methods. The results indicate a significant improvement in classification accuracy when utilizing the 
SDBN-HCWO approach. Specifically, this proposed method consistently outperformed the existing techniques, demonstrating a 
marked increase in the accuracy of building detection. This improvement underscores the effectiveness of the SDBN-HCWO method in 
enhancing classification performance compared to traditional approaches.

Fig. 13 presents the classification accuracy results for the proposed SDBN-HCWO method, along with the Mask R-CNN and Dilated- 
ResUnet deep learning approaches. The horizontal axis indicates the number of sample images used in the simulation, while the 
vertical axis displays the corresponding classification accuracy. The figure shows a slight decline in classification accuracy as the 
number of input images increases. This decrease is due to the difficulties in accurately identifying and linking edges as the sample size 
grows, which can lead to a reduction in the accuracy of building detection. Despite this trend, the SDBN-HCWO method achieved a 
classification accuracy of 92.3 % when tested with 26 sample images, surpassing the Mask R-CNN (76.92 %) and Dilated-ResUnet 
(69.23 %) techniques. These results highlight the superior performance of the SDBN-HCWO method in maintaining high accuracy 
across varying sample sizes.

Additionally, the Secant Object Detection model integrated into the SDBN-HCWO method significantly contributes to achieving 
higher classification accuracy. This model effectively explores the entire search space by expanding from the current best solution to 
identify optimal choices. By applying the secant equation, the method utilizes the proximity of the target to the current estimate, 
ensuring precise building detection. This approach guarantees that the curvature constraints encompass the entire image within the 
visible layer. As a result, the SDBN-HCWO method demonstrates a 12 % improvement in classification accuracy compared to the Mask 
R-CNN and a significant 35 % increase over the Dilated-ResUnet method. These findings underscore the superior performance of the 
SDBN-HCWO method in accurately classifying sample images.

3.6. Performance of CT

The time taken for image classification in building detection is analysed. This time, referred to as Classification Time (CT), mea
sures the duration needed to execute three distinct processes across three hidden layers involved in building detection. The classifi
cation time is expressed in milliseconds (ms), providing a precise quantification of the computational effort required to categorize 
images. This measurement is essential for evaluating the efficiency of the proposed method, ensuring that the classification process is 
both accurate and time-efficient (Sanhudo et al., 2021; Pin Tan et al., 2021). 

Fig. 13. Results classification accuracy using SDBN-HCWO, Mask R-CNN and Dilated-ResUnet deep learning.
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CT=
∑n

i=1
Samplesi ×Time[Res] (36) 

In equation (19), ‘CT’ represents the classification time, while ‘Time [Res]’ refers to the time required to identify the building within 
the image.

Fig. 14 illustrates the simulation results for CT across various sample sizes. During the simulation, the classification time perfor
mance of the proposed SDBN-HCWO method is compared with that of other existing methods. The data indicates a significant 
reduction in classification time when using the SDBN-HCWO method, highlighting its efficiency in building detection. Compared to 
existing methods, the SDBN-HCWO approach demonstrates a more time-efficient process, thereby minimizing the overall computa
tional time needed for accurate building detection. This reduction in classification time underscores the practical advantages of the 
proposed method in real-world applications.

In Fig. 14, the classification time results for the SDBN-HCWO method, Mask R-CNN, and Dilated-ResUnet deep learning approach 
are presented. The graph displays classification time on the y-axis and the number of sample images on the x-axis. As the number of 
images increases, the building detection performance improves, leading to a corresponding rise in classification time. However, 
simulations conducted with 13 sample images reveal that the SDBN-HCWO method achieves a classification time of 4.94 ms, which is 
faster than the 6.89 ms for Mask R-CNN and 7.63 ms for the Dilated-ResUnet deep learning method. This analysis demonstrates that the 
proposed SDBN-HCWO method is more time-efficient in building detection than existing methods, offering faster classification times 
while maintaining performance.

The reduction in classification time can be attributed to the implementation of the SDBN-HCWO algorithm. In the first hidden layer, 
the Hyperbolic Cosine Prey Encircling function is applied to detect edges. In the second hidden layer, the edges are linked by fine- 
tuning the initialized coefficient vectors using the shrinking encircle and spiral update functions. Finally, building detection is per
formed through the Secant Object Detection function, which utilizes the linked edges. This approach effectively minimizes classifi
cation time in the proposed SDBN-HCWO method, achieving a 31 % reduction compared to the Mask R-CNN and a 39 % reduction 
compared to the Dilated-ResUnet deep learning methods.

3.7. Validation of SDBN-HCWO with different scenario

To assess the robust effectiveness of the proposed SDBN-HCWO building detection model, widely used metrics in object detection 
were selected for evaluation. These include Average Precision (AP), precision, recall, and F1-score. The corresponding calculation 
formulas for these metrics are presented as follows: 

Precision Rate=
TP

TP + FP
(37) 

Recall Rate=
TP

TP + FN
(38) 

F1 − Score =
2TP

2TP + FP + FN
(39) 

Fig. 14. Results classification time using SDBN-HCWO, Mask R-CNN and Dilated ResUnet deep learning.
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AP=

∫1

0

P(R)dR (40) 

True Positives (TP) denote the correctly identified objects. False Positives (FP) refer to objects that are incorrectly classified. False 
Negatives (FN) represent objects that remain undetected.

As shown in Table 4, the SDBN-HCWO model demonstrates strong performance in detecting building damage across various 
categories. The model excels at identifying destroyed buildings, achieving the highest Recall rate of 92.24 %, which ensures that 
severely damaged structures are accurately detected. However, a slightly lower Precision of 87.33 % indicates some instances of 
misclassification. When it comes to detecting lightly damaged buildings, the model maintains balanced performance, with an AP of 
88.13 %, Precision of 88.53 %, and Recall of 88.51 %, resulting in a reliable F1-score of 88.71 %. The detection of medium damage 
presents notable challenges, as reflected by the category’s lowest Average Precision (AP) of 78.51 % among all damage classes. AP is a 
comprehensive performance metric that combines both Precision and Recall across various confidence thresholds, and a lower AP 
indicates difficulty in achieving a consistent balance between correctly identifying true positives and avoiding false positives. Inter
estingly, despite the low AP, the medium damage category achieves the highest Precision value of 96.31 %, meaning that when the 
model predicts a building to be medium-damaged, it is correct in the vast majority of cases. This high Precision implies that the model 
is conservative in its predictions, only labelling buildings as medium-damaged when it is highly confident. However, this conservative 
approach results in a trade-off, as evidenced by a relatively lower Recall of 79.00 %. This means that the model fails to detect 
approximately 21 % of actual medium-damaged buildings, indicating that some true cases are missed. The combination of high 
Precision and lower Recall suggests that while the model is accurate when it does predict medium damage, it may overlook less obvious 
or borderline cases, highlighting the need for further refinement in recognizing the more subtle features associated with medium 
structural damage. Conversely, non-damaged buildings are identified with high accuracy, evidenced by an AP of 92.67 % and 
consistent Precision, Recall, and F1-score of 90.67 %. Overall, the model achieves an average AP of 87.43 %, with strong Precision at 
90.71 % and an F1-score of 88.96 %, indicating effective detection capabilities. While the model performs well in recognizing both 
severely damaged and non-damaged buildings, there is room for improvement in the detection of medium-damaged structures to 
enhance overall classification accuracy.

Table 5 presents an analysis of the SDBN-HCWO model’s performance in detecting building damage across various disaster-affected 
locations. The model demonstrates high accuracy, especially in scenarios involving hurricanes and floods. Among the evaluated lo
cations, the Nepal flooding incident achieved the highest Average Precision (AP) of 90.24 %, with strong scores in precision (89.17 %) 
and recall (88.16 %), resulting in a solid F1-score of 87.69 %. Similarly, Hurricane Florence exhibited commendable performance, 
maintaining a well-balanced precision-recall trade-off with an AP of 90.22 %. Overall, locations affected by hurricanes (including 
Harvey, Florence, and Matthew) along with the Palu tsunami and Nepal flooding consistently achieved AP scores above 88 %, indi
cating the model’s robustness in detecting damage. Notably, Hurricane Harvey recorded the highest precision at 90.53 %, suggesting a 
minimal rate of false positives. However, some locations, like Joplin (tornado) and Hurricane Matthew, exhibited lower recall values 
(81.84 % and 81.91 % respectively), indicating a higher likelihood of missed detections. The Guatemala volcano event recorded the 
lowest F1-score at 83.64 %, reflecting an imbalance between precision and recall. These findings indicate that while SDBN-HCWO is 
highly effective in damage detection, variations in recall highlight the challenges different disaster environments pose, with complex 
structural damage patterns affecting detection accuracy. Nevertheless, the model maintains strong overall performance, particularly in 
regions affected by hurricanes and floods.

The comparative analysis presented in Table 6 shows that the SDBN-HCWO model outperforms its competitors across several key 
evaluation metrics. With an AP of 87 %, the SDBN-HCWO model surpasses all others, significantly outperforming YOLOv3 and SSD, 
both of which achieved an AP of 80 %. In terms of precision, SDBN-HCWO achieves the highest score at 91 %, again exceeding YOLOv3 
(84 %) and SSD (83 %). For recall, SDBN-HCWO leads with a score of 88 %, followed by YOLOv4 (81 %) and YOLOv3 (80 %). 
Additionally, it boasts the best F1-score at 89 %, greatly surpassing both YOLOv3 and YOLOv4, which each scored 81 %. Although the 
SDBN-HCWO model is not the smallest in terms of parameter size, weighing in at 17.2 MB, it strikes an optimal balance between 
efficiency and accuracy. It remains significantly smaller than Faster R-CNN (137.30 MB), YOLOv3 (61.69 MB), and YOLOv4 (64.10 
MB), while still delivering superior performance. Overall, these findings establish the SDBN-HCWO model as a highly efficient and 
accurate detector, outperforming existing models in both detection capability and computational efficiency.

The performance of the SDBN-HCWO model was evaluated under different configurations, as shown in Table 7. This evaluation 
involved integrating DenseNet121, Depth-wise Separable Convolution (DSC), and the H-Swish activation function. The assessment 
metrics illustrate the effects of these enhancements on detection accuracy. The baseline SDBN-HCWO model, which did not include 

Table 4 
Performance analysis of SDBN-HCWO for detecting damage in buildings.

Category AP (%) Precision (%) Recall (%) F1-score (%)

Destroyed buildings 90.40 87.33 92.24 89.71
Light damaged buildings 88.13 88.53 88.51 88.71
Medium damaged buildings 78.51 96.31 79.00 86.76
Non damaged buildings 92.67 90.67 90.67 90.67
Total Building Damage 87.19 91.44 87.30 89.05
Average 87.4275 90.71 87.605 88.9625
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any additional components, achieved an average precision of 83.72 %, with a Precision of 83.13 %, Recall of 80.86 %, and an F1-score 
of 81.46 %. When DenseNet121 was added by itself, there was a significant improvement in performance, with the AP increasing to 
86.40 % and the F1-score rising to 83.97 %. Adding either DSC or H-Swish individually also led to modest gains, resulting in AP values 
of 84.36 % and 85.19 %, respectively. The most substantial improvements were observed when both DenseNet121 and DSC were 
combined, which achieved an AP of 86.83 %, and when DenseNet121 and H-Swish were integrated, resulting in an AP of 87.02 %. 
However, the best performance overall was achieved by incorporating all three components simultaneously, yielding an AP of 87.43 %, 
a Precision of 90.71 %, a Recall of 87.61 %, and an F1-score of 88.96 %. These results indicate that the synergistic integration of 
DenseNet121, DSC, and H-Swish significantly enhances damage detection accuracy, making the model more effective at identifying 
structural damage.

4. Discussion and future implication

This research utilized satellite imagery to improve the accuracy and representation of the building detection process. In urban 
environments, precise building representation is essential for facilitating rural development. The integration of machine learning 

Table 5 
Analysis of the performance of SDBN-HCWO in detecting damage in buildings across various locations.

Place Name AP (%) Precision (%) Recall (%) F1-score (%)

Guatemala-volcano 86.27 86.31 83.68 83.64
Woolsey-fire 89.04 88.26 85.04 86.79
Joplin-tornado 87.53 87.35 81.84 83.25
Hurricane-Matthew 88.81 88.23 81.91 83.86
Hurricane-Harvey 89.48 90.53 87.62 88.94
Hurricane-Florence 90.22 88.48 87.92 87.29
Palu-Tsunami 88.48 88.59 86.15 87.95
Nepal-Flooding 90.24 89.17 88.16 87.69

Table 6 
Comparing the performance of the proposed SDBN-HCWO model with existing model.

Detector AP (%) Precision (%) Recall (%) F1-score (%) Size of parameters (MB)

SSD (Li et al., 2019) 80 83 78 79 27.62
RetinaNet (Walter et al., 2023) 79 74 79 76 36.95
Faster R-CNN (Ding et al., 2022) 73 53 84 64 137.30
YOLOv5-L (Yang et al., 2023) 72 75 60 63 46.79
YOLOv5-M (Yang et al., 2023) 71 74 60 62 21.18
YOLOv5-S (Shi et al., 2024) 67 69 64 62 7.14
YOLOv5-X (Yang et al., 2023) 75 81 57 62 87.45
YOLOX-L (Xu et al., 2023) 78 79 69 71 54.17
YOLOX-M (Liu et al., 2024) 78 80 73 75 25.30
YOLOX-S (Zheng et al., 2023) 77 76 78 77 8.95
YOLOX-X (Guijin et al., 2024) 62 76 78 77 99.02
EfficientDet-D0 (Chen et al., 2024) 73 78 69 70 3.85
EfficientDet-D1 (Yan et al., 2025) 71 72 69 68 6.58
EfficientDet-D2 (Afif et al., 2022) 74 70 74 69 8.08
EfficientDet-D3 (Sajid et al., 2021) 71 64 73 67 11.98
YOLOv3 (Ma et al., 2020) 80 84 80 81 61.69
YOLOv4 (Shi et al., 2021) 80 81 81 81 64.10
YOLOv7 (Wei et al., 2023) 76 78 77 77 71.02
SDBN-HCWO (Proposed) 87 91 88 89 17.2

Table 7 
The performance comparison of SDBN-HCWO with integrating DenseNet121, DSC (Depth-wise Separable Convolution), and H-Swish activation 
function.

Detector DenseNet121 DSC H-Swish AP (%) Precision (%) Recall (%) F1-score (%)

SDBN-HCWO × × × 83.72 83.13 80.86 81.46
✓ × × 86.40 85.62 82.40 83.97
× ✓ × 84.36 84.53 78.48 80.52
× × ✓ 85.19 85.22 78.19 80.68
✓ ✓ × 86.83 87.33 84.26 85.49
✓ × ✓ 87.02 85.84 84.29 84.92
× ✓ ✓ 85.45 85.95 83.51 84.59
✓ ✓ ✓ 87.43 90.71 87.61 88.96
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techniques significantly enhances the efficiency of building detection from satellite images. Furthermore, deep learning approaches are 
particularly effective in increasing detection accuracy while reducing training time. The development of methodologies based on 
machine learning and deep learning for building detection aims to optimize performance and minimize the false positive rate.

To achieve robust building detection, this research introduced the SDBN-HCWO method. By integrating Discrete Latent Deep 
Reinforcement Learning with a discrete latent function, the method enhances detection accuracy. Additionally, the bubble-net 
mechanism decreases the false positive rate by generating distinct, helix-shaped bubbles that connect detected objects. The Secant 
Object Detection model is then applied to identify buildings based on the outputs of the bubble-net mechanism. Simulation results 
demonstrate that the SDBN-HCWO method classifies buildings with higher accuracy and efficiency, requiring less time and producing 
fewer false positives compared to existing approaches.

This research presents a comprehensive comparative analysis to evaluate the performance of the proposed building detection 
method relative to conventional approaches. A diverse set of sample images is used in the experimental analysis to assess the effec
tiveness of the method. The proposed SDBN-HCWO method is benchmarked against multiple performance metrics, including Peak 
Signal-to-Noise Ratio (PSNR), CA, CT, and FPR. The results indicate that SDBN-HCWO outperforms conventional methods, achieving 
an 18 % improvement in PSNR, a 34 % increase in CA, a 19 % reduction in training time, and a 58 % decrease in the false positive rate.

The performance evaluation of the SDBN-HCWO model highlights its robustness and effectiveness in detecting building damage 
across various disaster scenarios. The model achieves high detection accuracy, particularly for completely destroyed and non-damaged 
buildings, with average precision (AP) scores of 90.40 % and 92.67 %, respectively, ensuring reliable identification of these extreme 
cases. Detection for lightly damaged buildings is consistent, with an AP of 88.13 %. However, identifying medium-damaged structures 
poses challenges, as indicated by a lower AP of 78.51 %. This lower score suggests that while the model achieves the highest precision 
of 96.31 %, it tends to miss some cases, reflected in a lower recall rate of 79.00 %. In geographic terms, SDBN-HCWO performs 
exceptionally well in hurricane and flood-affected areas, with impressive AP scores of 90.24 % for the Nepal flooding and 90.22 % for 
Hurricane Florence. However, the model shows limitations in detecting damage from tornadoes and volcanic disasters, such as in the 
Joplin tornado (Recall: 81.84 %) and Guatemala volcano (F1-score: 83.64 %), likely due to the complex patterns of structural damage. 
When compared to existing models, SDBN-HCWO stands out by achieving the highest AP (87 %), precision (91 %), recall (88 %), and 
F1-score (89 %). It surpasses YOLOv3, YOLOv4, and Faster R-CNN, all while maintaining a manageable parameter size of 17.2 MB. 
These findings indicate that SDBN-HCWO marks a significant advancement in damage detection accuracy and efficiency, although 
further refinements in medium-damage detection and recall optimization could further enhance its overall performance.

While the dataset utilized in this study is relatively small, it is highly relevant to the problem at hand and yields strong detection 
results. However, the performance of the method diminishes when applied to larger, more complex images, indicating limitations in its 
generalization ability. Future work should focus on integrating advanced algorithms to address this issue. Specifically, incorporating 
lightweight models into the backbone or detection module could reduce CT without compromising detection accuracy. Additionally, 
considering multiple objective functions could help identify optimal boundaries for building detection. Future research could also 
explore the efficiency of the proposed model by testing it with different deep learning architectures. Furthermore, expanding the study 
to include larger and more diverse datasets would provide a clearer evaluation of the scalability of the approach. Lastly, the 
computational overhead associated with building detection could be mitigated in future studies through more efficient preprocessing 
techniques.

5. Conclusions

The results of the proposed SDBN-HCWO method demonstrate significant advancements in building detection by effectively 
integrating a bio-inspired optimization technique with deep learning. The method leverages the Secant Deep Belief Network’s hidden 
layers to capture complex features, while the Hyperbolic Cosine Whale Optimization (HCWO) refines the detection process through 
specialized mechanisms such as the Hyperbolic Cosine Prey Encircling function and the Shrinking Encircle method. These novel 
components collectively enhance edge detection and linking precision, leading to more accurate and reliable identification of building 
structures.

Experimental evaluations on the Massachusetts Building dataset show that SDBN-HCWO achieves superior performance compared 
to traditional methods, evidenced by improved metrics including higher Correct Accuracy (CA) and Peak Signal-to-Noise Ratio (PSNR), 
alongside reduced Computation Time (CT) and False Positive Rate (FPR). This highlights the method’s capability to balance accuracy 
with computational efficiency, an essential requirement for practical remote sensing applications. Despite these promising outcomes, 
some limitations remain, such as potential sensitivity to varying image resolutions or complex urban landscapes, which may affect 
edge detection robustness. Future research could explore adaptive mechanisms to address these challenges, as well as extend the 
framework to other domains like disaster assessment or urban planning. Additionally, incorporating real-time processing capabilities 
and investigating the integration with other sensor data (e.g., LiDAR) may further enhance the applicability of SDBN-HCWO. Overall, 
this research contributes a novel, efficient, and accurate solution for automated building detection, with strong potential for diverse 
remote sensing applications.

Despite the promising results achieved by the proposed SDBN-HCWO method, several limitations were observed during experi
mentation. One of the primary constraints lies in the relatively small size of the dataset used in this study. While the dataset is highly 
relevant and contributes to strong detection outcomes, the model’s performance noticeably declines when applied to larger and more 
complex images. This suggests a limitation in the generalization capability of the current approach. Moreover, the computational time 
(CT) remains a challenge, particularly in scenarios involving high-resolution images or large-scale datasets. To address these limita
tions, future research should focus on integrating advanced algorithms that can enhance both scalability and efficiency. One potential 
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direction involves incorporating lightweight neural network models into the backbone or detection module, which could help reduce 
computational overhead without sacrificing detection accuracy. Additionally, exploring multi-objective optimization strategies may 
lead to more effective boundary identification, thereby improving the overall precision of building detection. Further evaluation of the 
model’s efficiency could also be conducted by testing it with a range of alternative deep learning architectures to determine the most 
robust and scalable configuration. Expanding the dataset to include a broader range of urban environments and architectural styles 
would enhance the model’s ability to generalize across different contexts. Lastly, optimizing preprocessing techniques could help 
minimize computational burden, making the approach more suitable for real-time or large-scale remote sensing applications.
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