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Abstract: Harmful algal blooms (hereafter HABs) pose significant threats to aquatic health and en-

vironmental safety. Although satellite remote sensing can monitor HABs at a large-scale, it is always 

a challenge to achieve both high spatial and high temporal resolution simultaneously with a single 

earth observation system (EOS) sensor, which is much needed for aquatic environment monitoring 

of inland lakes. This study proposes a multi-source remote sensing-based approach for HAB moni-

toring in Chaohu Lake, China, which integrates Terra/Aqua MODIS, Landsat 8 OLI, and Sentinel-

2A/B MSI to attain high temporal and spatial resolution observations. According to the absorption 

characteristics and fluorescence peaks of HABs on remote sensing reflectance, the normalized dif-

ference vegetation index (NDVI) algorithm for MODIS, the floating algae index (FAI) and NDVI 

combined algorithm for Landsat 8, and the NDVI and chlorophyll reflection peak intensity index 

(ρchl) algorithm for Sentinel-2A/B MSI are used to extract HAB. The accuracies of the normalized 

difference vegetation index (NDVI), floating algae index (FAI), and chlorophyll reflection peak in-

tensity index (ρchl) are 96.1%, 95.6%, and 93.8% with the RMSE values of 4.52, 2.43, 2.58 km2, respec-

tively. The combination of NDVI and ρchl can effectively avoid misidentification of water and algae 

mixed pixels. Results revealed that the HAB in Chaohu Lake breaks out from May to November; 

peaks in June, July, and August; and more frequently occurs in the western region. Analysis of the 

HAB’s potential driving forces, including environmental and meteorological factors of temperature, 

rainfall, sunshine hours, and wind, indicated that higher temperatures and light rain favored this 

HAB. Wind is the primary factor in boosting the HAB’s growth, and the variation of a HAB’s surface 

in two days can reach up to 24.61%. Multi-source remote sensing provides higher observation fre-

quency and more detailed spatial information on a HAB, particularly the HAB’s long-short term 

changes in their area. 
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1. Introduction 

As a vital freshwater resource, lakes provide essential and diverse habitats and eco-

system functions, and play vital roles in climate regulation, global carbon, nutrient cycles, 

thereby contributing to the industrial, agricultural, and food industries around the lakes 

[1]. However, the aquatic environment has been put at risk by both climate change and 

anthropogenic factors [2,3]. Wastewater discharge, farmland drainage, soil erosion, and 

agricultural fertilization are also primary nutrient sources leading to lake eutrophication. 

Besides, nitrogen and phosphorus pollution from inefficient sewage treatment systems 

and agricultural practices threaten to increase pollution and cause inland lakes’ eutroph-

ication [4]. Lake eutrophication may cause a harmful algal bloom (HAB), which is widely 
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distributed, adaptable, and destructive [5]. A HAB increases oxygen consumption in the 

water, releases toxins, degrades the water quality, and critically affects drinking water 

safety [4]. Comprehensive monitoring of HAB is vital in governing and repairing the lake 

environment [6], which has recently attracted more attention from both governments and 

the academic community. 

Since both the environmental and meteorological factors may influence the breakout 

and spread of a HAB, it is important to study how these driving factors affect the HAB for 

effective management. Environmental factors, including the nutrients in water from ferti-

lizer, agricultural nitrogen fixation, grain nitrogen, and feed nitrogen, are the primary 

sources of lake eutrophication [7–12], which have certain effects on HAB growth. Iron is 

an important component of the nitrate and nitrite reductase system, and its effect on en-

hancing the reduction efficiency and transfer rate of nitrate substances by algae is very 

observable [13]. Meteorological factors, including temperature, wind speed, precipitation, 

sunshine hours, etc., are also vital in HAB breakout. Previous research proved that the 

growth of cyanobacteria was directly proportional to the water temperature when greater 

than 18 °C, and that the activity of microcystis decreased when the temperature was 

greater than 30 °C [2], and HABs mostly occur in summer with proper temperature and 

sunshine hours. Variations in rainfall lead to a significant increase in nitrogen, which may 

lead to a HAB [14]. However, the influences of these factors on HAB are varied in different 

lakes, which requires further research in the region of interest. 

It is challenging to capture the HAB dynamics using a conventional field sampling 

method due to the significant spatial-temporal variations of HAB [15]. Satellite remote 

sensing has been extensively used for monitoring the spatial coverage and temporal 

trends of HAB [16]. Many HAB detecting methods, including visual interpretation, super-

vised classification [17], single-band threshold [18], the spectral index method [19], and 

the water quality inversion method [16] have been developed. The visual interpretation 

delineates the HAB distribution using false-color composite satellite images [20], which is 

high-precision but low efficiency and is prone to personal misjudgment. The single thresh-

old or spectral index methods, such as the normalized cyanobacteria index (NDI_CB) for 

Landsat-7 ETM+ [21] and FAI for Terra/Aqua MODIS, apply a single threshold for single 

or multiple bands data for HAB detection, which is simple and easy to implement [20,22]. 

Moreover, some research uses algal or chlorophyll concentration derived from remote 

sensing images to monitor HAB [23]. For example, the HABs were identified using chlo-

rophyll inversion models on SeaWiFS from 1988 to 2002, on the Korean coast [24]. How-

ever, the uncertainties of these methods depend on regional water properties, sensor se-

lection, and a threshold determination, which thus requires comprehensive assessments 

for method selection and implementation. 

Among existing satellite images, Terra/Aqua MODIS imagery has been preferred for 

HAB monitoring due to its high temporal and spectral resolution [25]. However, the ca-

pabilities of Terra/Aqua MODIS are still limited by the low spatial resolution 

(250/500/1000 m), making it different to identify HABs in small and medium inland lakes 

[26]. For example, the optimal spatial resolution to monitor HAB in the Great Lakes is at 

most 50 m [27]. The Landsat TM/ETM+/OLI provides a higher spatial resolution (30 m), 

but its low revisit period (16 days) cannot track HAB’s variations over time [22]. Sentinel-

2A/B satellites launched on 23 June 2015 by the European Space Agency have wider spa-

tial coverage and higher temporal resolution for monitoring of HABs [28]. Therefore, there 

is a pressing need for an effective and practical approach to capturing spatio-temporal 

variability of inland lake HAB integrating multi-source remote sensing techniques, which 

involves determining the appropriate algorithm and threshold for varied satellite sensors, 

and integration of HAB results. 

Given this background, in this paper, multi-satellite images, including Sentinel-2A, 

Landsat 8 OLI, and Terra/Aqua MODIS, are used to monitor the spatial and temporal 

variations of HAB in Chaohu Lake, mostly its short-term variations. The proper algorithm 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spatial-resolution
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was evaluated and adopted for different satellite sensors, and the accuracy and uncer-

tainty were analyzed. Based on HAB results from multi-source data, the variations and 

driving forces of HAB in Chaohu Lake for environmental management are discussed. 

2. Study Area and Data 

2.1. Study Area 

Chaohu Lake, located in Hefei City, Anhui Province, is the fifth largest freshwater 

lake in China (Figure 1, projection: Gauss—Kruger projection, geographic coordinate sys-

tem: World Geodetic System 1984). The tributaries of Chaohu Lake mainly include the 

Nanfei River, Shiwuli River, Pai River, Hangbu River, Baishitian River, Zhao River, Yuxi 

River, and Shuangqiao River. Chaohu Lake has an inflow of 344.2 million m3 and an out-

flow of 23 million m3. The center of Chaohu Lake is located at 29°47′–31°16′ north and 

115°45′–117°44′ east, with an average water depth of 2.89 m and an average annual lake 

temperature of about 20 °C [29]. The terrain around the lake is mostly mountains and hills, 

and the Chaohu Lake basin is cultivated mainly by rice, wheat, rape, cotton, and corn. The 

agricultural land around the lake makes it easily accumulate nutritive salt in the water, 

causing severe non-point source pollution, which caused the lake’s external pollution 

load, mainly originating from the northwestern part of the basin [30,31]. Nutrients in 

farmland are mainly composed of phosphorus and nitrogen, and the inflow of total phos-

phorus and total nitrogen is one of the main reasons for the eutrophication of Chaohu 

Lake. Chaohu Lake has become one of the most eutrophic lakes in China [32]. The total 

phosphorus concentration was one of the main driving factors affecting Anabaena and 

microcystins’ spatial and temporal distribution [33,34]. The farming period is from June 

to November. The average annual rainfall in Chaohu Lake is 224 mm, which drives the 

farmland nutrients to the lake during the farming period [35]. Moreover, the rain stirs up 

the mud at the bottom of Chaohu Lake, and large amounts of nutrient salts in the mud 

turn up, increasing the concentration of nutrient salts in Chaohu Lake. The total phospho-

rus content in Chaohu Lake is 0.131mg/L, and the total nitrogen content is 2.04 mg/L. The 

nitrogen and phosphorus ratio of optimum reproduction of the dominant species of HAB 

in Chaohu Lake was about 11.8:1 [36]. According to the monitoring data over the years, 

the ratio of nitrogen to phosphorus in Chaohu Lake is between 10:1 and 15:1, resulting in 

an outbreak situation of non-point source HAB [37]. When algae proliferate and die, they 

accelerate the consumption of dissolved oxygen in water, resulting in the death of many 

aquatic animals and plants, weakening the purification capacity of water, and causing 

severe harm to human health [5]. Therefore, it is essential to monitor the water environ-

ment with joint multi-source remote sensors. 

 

Figure 1. Location of Chaohu Lake. 
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2.2. Remote Sensing Data 

A total of 420 images of Terra/Aqua MODIS L-1B data (MOD02) in 2019 were selected 

and downloaded from Earthdata’s website (https://search.earthdata.nasa.gov/). Two im-

ages of Landsat 8 OLI (Level 1) were downloaded from the USGS official website of shared 

data (https://earthexplorer.usgs.gov/). A total of 16 images of Sentinel-2 MSI satellite data 

(L1C) were downloaded from the official website of ESA (https://scihub.copernicus.eu/). 

Clear and cloudless images were picked out (see Table 1) and preprocessed, including re-

projection and geometric correction. Figure 2 shows the different cloudless products dis-

tributed in the space in 2019 so one can picture the time lag between the different satellite 

acquisitions. 

Table 1. Multi-sensor data of the cloudless images of Chaohu Lake in 2019. 

2019 Resolution Revisit Period  May June July August September October November 

Terra/MODIS 250 m 1 day 4 13 10 16 12 12 12 

Aqua/MODIS 250 m 1 day 2 3 3 2 3 5 5 

Landsat8 OLI 30 m 16 days 0 0 0 2 0 0 0 

Sentinel-2A MSI 20 m 10 days 2 1 2 0 2 3 1 

Sentinel-2B MSI 20 m 10 days 0 1 0 0 0 2 2 

Total - - 8 17 13 20 17 19 18 

 

Figure 2. Annual distribution of cloudless images from multi-sensor data. 

2.3. Environmental and Meteorological Data 

The meteorological analysis data were obtained from the Meteorological Center of 

the National Meteorological Administration (http://www.cma.gov.cn/) (Figure 3). In 2019, 

Chaohu Meteorological Station’s maximum sunshine hours, maximum temperature, and 

maximum wind speed occurred in May, July, and August, respectively. The variation 

range of wind speed was 0.5–6.4 m/s, the maximum number of sunshine hours was 12.9 

h, and the time of direct sunlight was half a day. The average rainfall was 224 mm. The 

average maximum temperature was 33.9 °C. 
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Figure 3. The variation diagram of rainfall, sunshine hours, average temperature, and precipitation in Chaohu Station in 

2019. 

3. Methods 

Figure 4 is the technical flow chart of this paper, using which the original satellite 

data were obtained and preprocessed. The most appropriate algorithms were selected re-

spectively for Sentinel-2 MSI, Terra/Aqua MODIS, and Landsat 8 OLI to obtain the distri-

bution map of HAB in Chaohu Lake, and we checked the accuracy of the algorithms with 

visual interpretation results. Finally, the formation and distribution of HAB were ana-

lyzed by combining various meteorological factors. 

3.1. Data Preprocessing 

The preprocessing steps mainly included geometric correction, radiometric calibra-

tion, and atmospheric correction. Landsat-8 OLI and Terra/Aqua MODIS data were pre-

processed using ENVI software (ENVI 5.3) to convert DN (digital number) values into 

TOA (top of atmosphere reflectance) radiance or reflectance after radiometric calibration, 

and then different atmospheric correction models were selected according to different 

data sources. The FLAASH atmospheric correction module (Fast Line-of-sight Atmos-

pheric Analysis of Spectral Hypercubes) was adopted for Landsat 8 OLI, which was based 

on the MODTRAN-4 (Moderate Spectral Resolution Atmospheric Transmittance Algo-

rithm and Computer Model) radiation transmission model, with high accuracy. It can 

maximally eliminate the influences of water vapor and aerosol scattering over case II wa-

ters, and has been successfully used in previous studies from Landsat 8 OLI [38,39]. 

MODIS images were atmospherically corrected using the dark-objects method [40–42]. 

The procedure was to select the relatively clean area as a region of interest in the eastern 
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part of Chaohu Lake, and statistically analyze the pixel brightness value of each band, 

while using a non-zero pixel with a suddenly increased brightness value as the dark pixel 

value. The selected dark pixel was used as the distance luminance value for atmospheric 

correction. Sentinel-2A/B original L-1C images were mainly processed using SEN2COR 

(version: Sen2Cor-02.08.00-win64) for radiometric calibration and atmospheric correction. 

SEN2COR is a plug-in released by the European Space Agency (ESA) specifically for Sen-

tinel-2 atmospheric calibration. The spectral curve of the image by SEN2COR with atmos-

pheric correction of Sentinel-2 images is consistent with the trend of the actual spectral 

curve on the ground [43]. The reflectance after atmospheric correction was compared with 

the field spectra of 39 ground objects; R2 was 0.82 and the root mean square error was 0.04 

[44], indicating high accuracy. All the images selected in the experiment were mostly 

cloudless. Before determining the HAB, cloud-covered regions of the remote sensing im-

ages were made into a cloud mask product by the single-band threshold method to elim-

inate the influence of clouds [45]. 
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Figure 4. Technical route flow chart. 
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3.2. Extraction Algorithm of HAB 

Algae in water would cause an absorption peak near the wavelength of 620–630 nm 

and a reflection peak at 650 nm, with a sharp increase in reflectance at around 700 nm [46]. 

High absorption in the red band by vegetation pigments and high reflection in the near-

infrared band have been used for a long time to detect vegetation coverage, and eliminate 

some radiation errors. NDVI can reflect the background influence of the vegetation can-

opy. Therefore, the NDVI algorithm of MODIS was used for monitoring HAB in Chaohu 

Lake [47]. RGB band synthesis of Landsat/OLI B8 (0.85–0.88 μm), B4 (0.64–0.67 μm), and 

B3 (0.53–0.59 μm) renders HABs in a reddish color, in strong contrast with the bloom-free 

dark water, making it easy do distinguish bloom and non-bloom areas. Due to the influ-

ences of lake currents and wind, HAB areas generally present as elongated strips [48,49]. 

The FAI algorithm can eliminate the impact of the atmosphere by using the combination 

of these three bands. Compared with NDVI algorithm easily influenced by the observa-

tion environment, FAI would be suitable for the Landsat images. Unlike MODIS and 

Landsat 8, Sentinel-2 MSI was equipped with multiple spectral bands and 20 m ground 

resolution. Three special bands, B5 (693–713 nm), B6 (733–748 nm), and B7 (773–793 nm), 

are set for vegetation monitoring, which is also sensitive for HABs [50,51]. Therefore, the 

ρchl-NDVI algorithm is used for improving the accuracy of acquiring HAB in Chaohu Lake 

by fusing these 5 characteristic bands. Detailed descriptions of these algorithms are in-

cluded in Figure 5. 

3.2.1. Normalized Vegetation Index (NDVI) 

Rouse [52] first used Landsat-1 MSS data to propose a NDVI based on the character-

istic that the reflectivity of all vegetation increases dramatically near 700 nm. NDVI can 

reflect surface vegetation coverage [53]. Therefore, as the most common method, NDVI 

has been widely used in the study of algal extraction [54–56], which can eliminate the 

influences of terrain, shadow, and solar elevation angle [57]: 

NIR RED

NIR RED

NDVI
 

 

−
=

+
 (1) 

where ρRED and ρNIR represent the reflectances of the red band and near-infrared band. 

3.2.2. Floating Algae Index (FAI) 

The floating algae index was first proposed by Hu [58]. FAI is defined as a linear 

spread of reflectivity in the near-infrared, red, and short-wave infrared regions, and can 

be applied to monitor proliferating algae, such as Ulva or Sargassum spp [59]. The obser-

vation results of this algorithm provide strong robustness. FAI is less affected by atmos-

pheric environment, observation conditions, and water reflectivity absorption in the near-

infrared band [60]. FAI is often used to identify dense HABs in marine and inland waters 

[61]. Therefore, the spectral information of the red band, near-infrared band, and short-

wave infrared band can be used to correct the atmospheric effects [35]. The algorithm is 

as follows: 

'NIR NIRFAI R R= −  (2) 

' ( )
NIR RED

NIR RED SWIR RED

SWIR RED

R R R R
 

 −

−
= + −   (3) 

where RRED, RNIR, and RSWIR represent the reflectances of red, near-infrared, and short-wave 

infrared bands respectively; λRED, λNIR, and λSWIR represent the central wavelengths; and 

R′NIR is the interpolating reflectance—namely, the reflectivity information of the infrared 

band can be obtained by linear interpolation of the red band and the short-wave infrared 

band. 
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The gradient contrast method was used for FAI algorithm to determine the threshold 

of HAB. The experimental results showed that FAI < −0.01 and FAI > 0.02 were non-bloom 

regions [19]. According to the average threshold value of the gradient diagram, FAI > 

−0.002 was finally determined to be the region of HAB. 

 

Figure 5. The interpretation of the algorithm and the results of each algorithm’s reflectivity diagram (a,c,e) are the reflec-

tances of a harmful algal bloom (HAB) and a nearby non-HAB lake, and (b,d,f) are means and standard deviations of HAB 

and non-HAB water lake reflectance. For the two regions of MODIS, Landsat8, and Sentinel-2 150 × 150 image pixels with 

9359 × 9459, 7651 × 7791, and 0980 × 10,980 HAB classification pixels respectively. 

3.2.3. Chlorophyll Reflection Peak Intensity Algorithm 

Algae also contain chlorophyll, like land plants, so when the algae aggregates, the 

spectrum shows a vegetation-like characteristic [62,63]. Chlorophyll shows troughs at 

420–500 nm (blue and violet light band) and 625 nm, and a small peak value is found at 
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the central wavelength of the green band [36]. Based on the correlation between algae and 

chlorophyll concentration, the following model was constructed to identify the concentra-

tion of HAB [37,64]: 

chl
(490) (665)

= (560)
2

 
 

+
−  (4) 

where ρ(490), ρ(560), and ρ(665) correspond to the reflectivity of the blue, green, and veg-

etation red edge bands of the Sentinel-2A satellite. 

3.3. Accuracy Assessment 

To obtain the reference data or “truth data” for accuracy assessment of HAB detec-

tion from different satellite data, the visual interpretation method was used on false-color 

images. The verification data of the spatial distribution and area statistics of HAB were 

also obtained from the Department of the Ecological Environment of Anhui Province 

(http://sthjt.ah.gov.cn/), which have been checked through ground monitoring points, 

field investigations, and validation. The root mean square error (RMSE) and relative error 

(RE) were used to evaluate the accuracy of the HAB extractions using the NDVI algorithm. 

Additionally, the accuracies of different HAB detection methods were assessed using fol-

lowing indexes [17]: 

Correct extraction rate (R) is the percentage of the extracted HAB area over the true 

data: 

r

truth

100%
A

R
A

=   (5) 

Over-extraction rate (W) is the percentage of mixed extracted HAB area over the true 

data: 

w

truth

= 100%
A

W
A

  (6) 

Omitted extraction rate (M) is the percentage of the unextracted HAB area over the 

truth data: 

m

truth

= 100%
A

M
A

  (7) 

The reference data of HAB were denoted as Atruth. The area statistic of HAB extracted 

by various extraction methods was designated as A. The overlapping part of A and Atruth 

was regarded as the correct extracted part, which was denoted as Ar. The disjoint part of 

A is considered to be the extracted by mistake, which was denoted as Aw. In Atruth, the 

disjoint part was regarded as the missing part, which was denoted as Am. 

4. Results 

Visual interpretation was analyzed based on 86 MODIS images and 2 Landsat im-

ages; 16 Sentinel-2 images were used to be the verification data to compare the accuracy 

of each extraction algorithm (Figure 6). 
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Figure 6. Spatial distribution of HAB in Chaohu Lake from visual interpretation.: (a) HAB distribution at 10:38 on May 2, 

(b) HAB distribution at 10:26 on May 4, (c) HAB distribution at 10:35 on May 8, (d) HAB distribution at 10:45 on May 9, 

(e) HAB distribution at 13:33 on June 13, (f) HAB distribution at 10:38 on August 6, (g) HAB distribution at 10:41 on Sep-

tember 30, (h) HAB distribution at 10:32 on November 3. 

4.1. Accuracy of HAB Algorithms 

Depending on the algorithm selection and analysis in Section 3.2, NDVI was used for 

MODIS to extract HAB. The comparison of NDVI and ρchl values showed that for a low 

concentration of HAB, the threshold for ρchl was 0.05, and the NDVI threshold was 0.24. 

For a moderate or high algae concentration, the threshold for ρchl was 0.09, and NDVI was 

larger than 0.68. Therefore, a pixel with an NDVI > 0 was first classified as a vegetation 

pixel, and then combined with ρchl > 0.05 was judged as belonging to a HAB. NDVI < 0 

and ρchl > 0.03 was an “algal-water” suspension region and also judged as HAB. 

The RMSE was 4.27 km2 and RE was 15.9% when compared to HAB products reached 

by visual interpretation (Figure 7). For the significance test, p < 0.05, the results showed 

that the HAB region observed by satellite was consistent with the visual interpretation. 
Residual normal distribution of HAB areas extracted by MODIS and Sentinel-2 was showed on Fig-

ure 8, R2 was 0.98 and 0.99 between MODIS, Sentinel-2 and visual interpretation, respectively. The 

Sentinel-2 MSI, MODIS, and Landsat 8 OLI randomly selected the day of the HAB out-

break, and a confusion matrix was used to evaluate the classification accuracy between 

the monitoring results and the visual interpretation (Table 2). 
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Table 2. The confusion matrix between the extraction results and visual interpretation. 

 Class HAB Water Cloud Total Accuracy 

Sentinel-2 MSI 

22 May 2019 

HAB 78.47 0.02 0.00 0.92 
Overall Accuracy =  

(17105160/17189550) 99.5091% 

Kappa Coefficient = 0.9002  

Water 20.57 99.76 0.26 97.49 

Cloud 0.96 0.23 99.73 1.58 

Total 100.00 100.00 100.00 100.00 

Landsat 8 OLI 

19 August 2019 

HAB 95.93 0.01 0.53 1.62 

Overall Accuracy = (1907160/1909950) = 99.8539% 

Kappa Coefficient = 0.9972 

Water 4.07 99.99 8.07 97.51 

Cloud 0.00 0.00 91.40 0.77  

Total 100.00 100.00 100.00 100.00 

Terra/MODIS 

1 August 2019 

HAB 93.86 0.00 18.29 2.71 

Overall Accuracy = (6124/6237) 98.1882% 

Kappa Coefficient = 0.8605 

Water 6.14 100.00 12.98 93.55 

Cloud 0.00 0.00 68.73 3.74 

Total 100.00 100.00 100.00 100.00 

 

Figure 7. Comparison of HAB extracted by MODIS and visual interpretation. 
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Figure 8. Residual normal distribution of HAB areas extracted by MODIS and Sentinel-2: (a) the coefficient of determina-

tion (R2) was 0.98 between MODIS and visual interpretation, and (b) R2 was 0.99 between Sentinel-2 and visual interpre-

tation. 

NDVI and FAI were combined to detect HAB using Landsat 8 OLI images; NDVI and 

ρchl were combined for Sentinel-2 MSI data. Table 3 shows the accuracy evaluation results 

when compared to visual interpretation products, which demonstrated that HAB ex-

tracted by NDVI and FAI has a relatively correct extraction rate of about 95%. The RMSE 

of HAB from FAI algorithm was 0.56 km2 and RE was 3.9%. However, the NDVI extraction 

method was affected by thin cloud or fog, and the cloud shadow was misidentified as a 

HAB. Moreover, NDVI method may miss pixels with lower algae concentrations, when 

compared with FAI. By comparing the extraction results on 3 August 2019 and 19 August 

2019, the over-extraction areas of the NDVI method due to the mixed pixels and clouds 

were found to be 1.46 and 0.18 km2, respectively. A comprehensive comparison shows 

that the extraction of HAB by the two methods was consistent, but the FAI method was 

better than NDVI at the details. Better results were obtained by combining NDVI with the 

chlorophyll reflection peak ρchl, especially for regions with lower concentrations of HAB. 

According to this method, the correct extraction rate of the Sentinel-2 data reached 96.01%, 

while RMSE and RE were 2.4 km2 and 6.2%, respectively. 

Table 3. Accuracy for HAB extraction of Landsat 8 OLI, Sentnel-2 MSI, and Terra/Aqua MODIS data. 

 
Extraction 

Method 

Extracted 

Area 

(km2) 

Omission 

Area 

(km2) 

Overestimated 

Area (km2) 

Correct Area 

(km2) 

Missing 

Rate  

(%) 

Over-Extraction 

Rate (%) 

Correct 

Rate (%) 

3 August 2019 

FAI 16.30 0.02 3.31 12.98 0.12% 25.49% 99.88% 

NDVI 16.98 0.52 4.49 12.48 3.97% 34.57% 96.03% 

Visual 

interpretation 
13.00       

4 October 2019 

Sentinel  0.55 3.75 13.27 3.99% 27.12% 96.01% 

Visual 

interpretation 
13.82       

3 November 

2019 

MODIS  1.84 18.88 10.21 3.92% 40.16% 96.08% 

Visual 

interpretation 
47.02       
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4.2. Monthly Variations of HAB 

MODIS images were mainly used to track monthly HAB changes in Chaohu Lake in 

2019 with the advantage of its high temporal resolution. The HAB in Chaohu Lake occurs 

between May and November (Figure 9). The northwestern part of Chaohu Lake is more 

seriously polluted by algae than the eastern, and the area of HAB reaches its maximum in 

July. The monthly frequency map is the ratio of the number of outbreaks in each region 

and month to the total numbers of the whole lake. The distribution frequency map indi-

cates the probability of a HAB outbreak in each region of Chaohu Lake. Although HAB 

breaks out sometimes in a small region, they often occur in the west of the lake. According 

to the frequency distribution of inter-month HAB, it is increased in June and remains high 

from June to November. The highest outbreak frequency occurs in the northwestern part 

of the lake in October, and the peak of distribution frequency of Chaohu Lake in the east-

ern lake appears in June. 

The monthly coverage rates for the maximum, minimum, and average HAB area are 

shown in Figure 10. Adding up the maximum and the minimum area accounts for up to 

50% of the total monthly HAB area in May, but the maximum HAB area was only 53.69 

km2. The average monthly coverage area was less than 20 km2, which was the lowest in 

2019. This indicates that the level of HAB in May was not serious. In contrast, from June 

to November, the maximum HAB area accounted for less than 25% to the total HAB area, 

and a HAB area exceeding 100 km2 was always found in the mid-month. In July, the max-

imum area of HAB reached 217 km2, accounting for 28.6% of the Chaohu Lake area, cov-

ering the northwestern and central parts of the lake. In 2019, the minimum HAB area was 

1.625 km2, which occurred on November 7, accounting for 0.2% of the total lake area. The 

average monthly coverage was lower than that in the period of HAB in Chaohu Lake (June 

to October). It indicated that the activity of HAB in Chaohu Lake began to decrease in 

November. 
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Figure 9. Spatial distribution of the minimum area, the maximum area, and the frequency of the monthly HAB in Chaohu 

Lake: (a,d,g,j,m,p,s) The minimum HAB area of each month from May to November, (b,e,h,k,n,q,t) The maximum HAB 
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area of each month from May to November, (c,f,i,l,o,r,u) The HAB distribution frequency of each month from May to 

November. 

 

Figure 10. The ratios of the monthly maximum, minimum, and average HAB area to the total HAB 

area per month (total HAB area: monthly statistics of the area where HAB occurs each time). 

4.3. Diurnal Variation of HAB 

The spatial-temporal patterns of HABs can be easily affected by hydrology and me-

teorological factors, and thus induce dramatic variation in a short time, which requires 

high-frequency monitoring by the integration of a multi-satellite sensor. To reveal the di-

urnal variations of HAB in Chaohu Lake, multi-source satellite, including Sentinel-2 MSI, 

Landsat 8 OLI, and Terra/Aqua MODIS are integrated, as shown in Figure 11. While HAB 

is concentrated and stable, such as on 4 October 2019, the difference of extraction regions 

between Sentinel-2 MSI and Terra/MODIS is the smallest. Significant differences were ob-

served due to the scattered distribution of HAB on June 26. In the surrounding areas with 

low algal density, MODIS had a lower spatial resolution; the result may be biased due to 

the mixed pixels. Since Terra/MODIS is the morning satellite, it passes through the equa-

tor from north to south at about 10:30 local time, and Aqua/MODIS is the afternoon satel-

lite and passes through the equator from south to north at about 13:30 local time. Accord-

ing to the common influence of all factors, the monitored HAB area and distribution were 

different at different times of passing the territory. Besides, there will also be weather ef-

fects, such as the possibility of cloud cover in the afternoon compared with the morning 

in the study area, which will also have impacts on the extraction and identification of 

HAB. 
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Figure 11. Variations of HAB from multi-satellite data: (a,d,g,j,m) results from Terra/MODIS, (b,e,h,k,n) results from Sen-

tinel-2 MSI, (c,f,i,l,o) results from Aqua/MODIS. 

The HAB diurnal changes from Landsat 8 and MODIS images on 19 August 2019 

have no significant differences in the area and distribution. The morphology of HAB mon-

itored by Terra (Figure 12a) was different from that of Landsat8 (Figure 12b), which may 

be due to the low quality (cloud coverage) of Terra/MODIS images on 3 August 2019. HAB 
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region was disturbed by thin clouds, which could not represent the real distribution pat-

tern at that time. The reliability of this result was also verified by the distribution diagram 

of bloom morphology in an Aqua image (Figure 12a). Compared with the result of Land-

sat 8 image (Figure 12d), the Aqua image (Figure 12e) result on August 3 showed a de-

crease in the distribution of HAB and a concentration increase in the coverage center. As 

the Terra image on August 3 was covered by clouds and fog, Figure 12 does not show the 

HAB distribution in the morning. 

 

Figure 12. Harmful algal blooms from Terra/MODIS (a), Landsat 8 OLI (b,d), and Aqua/MODIS (c,e). 

5. Discussion 

5.1. Driving Forces of HAB 

The driving forces for the breakout of HAB are of great concern for HAB control and 

management. Among many factors, the temperature, rainfall, sunshine hours, wind, ra-

diation, etc., have drawn great attention [1]. Some previous research demonstrated that 

the degree of HAB is positively correlated with temperature, sunshine hours, and global 

radiation changes, and negatively correlated with precipitation and wind speed [65]. Our 

results showed similar results on the correlation between the HAB areas and both tem-

perature and sunshine hours, but the R2 was quite low (<0.05). However, increased tem-

perature promotes the growth of HABs, and colder months may delay the occurrence of 

HAB [66]. It can be seen that the maximum and minimum areas of Chaohu Lake HAB in 

July were higher than in other months (Figure 13). The maximum, average, and minimum 

values of the HAB area in August and September were close. However, the number of 

hours of sunshine in September was 77.5 h lower than that in August. The low sunshine 

hours made it difficult for algae to reproduce and grow through photosynthesis, which 

inhibited the accumulation and explosion of large areas of HAB. However, too much sun-

shine will make algae inactive and also inhibit HAB growth. This is consistent with the 

conclusions from Zhang’s research demonstrating that under high temperatures and with 

many sunshine hours, there will be no large-scale HAB [67,68]. Therefore, appropriate 

sunshine hours and temperature can promote the photosynthesis of algae. 
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Figure 13. Chart of the minimum area, average monthly area, maximum area, average monthly temperature, sunshine 

hours, and precipitation of Chaohu Lake HABs. 

The effect of precipitation showed a weak negative correlation with the HAB. The 

HAB on rainy days of August 3 and 7 was decreased by 79.3% and 61.3%, respectively, 

when compared with the previous days. This may indicate that the rainfall may dilute or 

inhibit the occurrence of HABs. HAB was often found on days after scattered rain, such 

as on 27 May, 26 August, and 17 October. In contrast, the total precipitation in September 

was half of that of August, and the scattered rain provided favorable conditions for the 

growth and reproduction of algae. Therefore, the rainfall was the main driving force of 

the monthly variations of the HAB from July to September. However, May–June rainfall 

is the highest and most frequent, which reduces the temperature of the water surface, and 

also reduces the density of algae and the concentrations of nutrients, making the proba-

bility of the occurrence of HABs only slightly increased in June compared with May. Rain-

fall decreased in July, the temperature increased, and the occurrence of HAB increased 

sharply. Therefore, the low occurrence of HABs in June was caused by precipitation. 

Based on the analysis of previous data, it was found that the period of highest temperature 

is inconsistent with the month with the highest probability of HAB, and atmospheric tem-

perature is the main meteorological factor affecting HAB [69,70]. From mid-July to mid-

August, Chaohu Lake’s temperature in 2019 reached its annual maximum and the average 

daily sunshine hours were all over 8 h. However, due to the hysteresis effect [71] of tem-

perature on the response of HAB in Chaohu Lake, the precipitation mainly occurred from 

June to mid-July. Much rain in June transports the nutrients from the catchment area as 

the non-point source. The algae in July with the highest maximum area is due to the inflow 

during June. The effect of nutrient supply appears with a time lag because the controlling 

factor is temperature. Even with a high concentration of nutrients, insufficient tempera-

ture regulates blooming. 

The impact of wind speed on HAB showed a highly significant, positive correlation 

(R2 = 0.383, p < 0.01). The wind direction map of Chaohu Lake in 2019 can be seen in Figure 

14. A previous study revealed that when the average wind speed was larger than 3.8 m/s, 

the wind waves stirred the algal particles, causing them to sink, and reduced HAB con-

centration [72,73]. During the study period, only two days of HAB occurred with average 

wind speed greater than or equal to 3.8 m/s. The HAB area on August 12 was 4.8 km2 
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(average wind speed of 4 m/s, average temperature of 28 °C), and the next day it was 

113.94 km2 (average wind speed of 1.5 m/s, average temperature of 29 °C). The solar radi-

ation was similar, with sufficient sunshine hours (>9 h), but the HAB area was quite dif-

ferent. This indicated that the wind stirred up the algae particles so that the algae could 

not accumulate and sink, leading to a decrease in the HAB area. Moreover, appropriate 

wind speed and wind direction caused the HAB on the surface of Chaohu Lake to move 

toward the direction of the wind and accumulate. The results show that wind speed is an 

essential factor for the HAB outbreak and spread in Chaohu Lake. Prevailing winds in 

summer cause the shore water to converge on the northwest corner. The movement of 

water is not conducive to the material exchange on the surface of the flow field, which 

makes significant differences in the eutrophication pollution of algae of the whole lake 

[28]. Therefore, the frequency of HAB is the highest in the northwest of Chaohu Lake. 

There is counter-clockwise circulation in the vicinity of Zhefu River in the eastern Chaohu 

Lake and clockwise circulation in the vicinity of Zhao River [28], which brings N, P, and 

other nutrients to the northeast of Chaohu Lake and near the middle of the lake, and the 

nutrients concentrate, resulting in many of HABs. Chaohu sluice, connecting the south-

eastern part of Chaohu Lake with Yuxi River, has a certain influence on the flow field near 

the eastern part of Chaohu Lake and plays a favorable role in the exchange of HAB with 

the outside. 

 

Figure 14. The wind direction map in Chaohu Lake 2019 (10, 20, 30, etc., indicate the number of days). 

The average wind speed on 24 October 2019 was 1.5 m/s, which was less than the 

critical value (3.8 m/s) for algae aggregation and movement [74]. Additionally, the maxi-

mum wind speed was 3.8 m/s. As can be seen in the HAB distribution in Chaohu Lake 

detected by Terra and Aqua on October 24 (Figure 15a,c), the HAB in the central part of 

Chaohu Lake is gradually moving in the east–southeast direction, in line with the maxi-

mum wind speed direction 14 (that is, the west-northwest direction). On 8 November 

2019, the maximum wind speed was 2.9 m/s, and the maximum wind speed direction was 

3 (that is, a northeasterly). HAB areas in Chaohu Lake were 31.75 and 43.6 km2, respec-

tively, detected by Terra and Aqua. There was a low average wind speed (2 m/s) on 
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Chaohu Lake on that day, which caused the algal particles to turn up and accumulate on 

the surface. The changes of HAB were also affected by wind waves, leading to the distri-

bution location moving to the southwest (Figure 15b,d). Therefore, the multi-source re-

mote sensing data can effectively monitor and reveal the diurnal change and development 

process of HAB. 

 

Figure 15. The intraday variations of HAB distribution: (a) Terra/MODIS image of the HAB distribution on October 24, 

(b) Terra/MODIS image of the HAB distribution on Novermber 8, (c) Aqua/MODIS image of the HAB distribution on 

October 24, (d) Aqua/MODIS image of the HAB distribution on Novermber 8. 

5.2. Advantages of Multi-Source Satellite Remote Sensing 

MODIS satellites with moderate spatial resolution have been widely used in moni-

toring HABs in large water bodies. However, the identification of HABs by moderate spa-

tial resolution is limited in small inland water bodies or reservoirs and even has a large 

accuracy error. Due to the moderate spatial resolution, the boundary of a HAB identified 

by MODIS data is fuzzy, and the recognition ability of low-concentration HAB is low, 

leading to large uncertainties for monitoring HABs of a small inland lake. Sentinel-2 im-

ages, with a spatial resolution of 20 m, could significantly improve the identification ac-

curacy and spatial details of HAB. For a concentrated outbreak area (Figure 16h), MODIS 

satellite has a relatively good performance in extracting HABs, but its ability to define the 

boundary of a HAB’s area is weak. The error extraction rate is 40%, which is relatively 

high. Therefore, in the same timeframe, the extraction of HABs by combining multi-source 

data can verify and correct the extraction results of moderate-resolution images. 
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Figure 16. Comparison of the extraction results among Sentinel-2, Terra/MODIS, and visual interpretation: (a,d,g) Re-

sults of HAB extraction from Visual interpretation, Sentinel-2, Terra/MODIS on October 4, (b,e,h) Results of HAB extrac-

tion from Visual interpretation, Sentinel-2, Terra/MODIS on November 3, (c,f,i) Results of HAB extraction from Visual 

interpretation, Sentinel-2, Terra/MODIS on November 23. 

In addition, remote sensing technology still makes it difficult to meet the require-

ments of high spatial-temporal resolution using a single satellite, especially for HABs with 

dramatic variations both spatially and temporally. To achieve both high spatial and high 

temporal resolution, multi-source satellite integration is an effective method to monitor 

the HABs in Chaohu Lake. Combined use of Terra/Aqua MODIS, Sentinel 2 MSI, and 

Landsat 8 OLI could provide more than three times per day monitoring of HAB, which is 

more efficient and accurate. For instance, parts of HAB information would be missed if 

only one satellite dataset was used; e.g., on 23 November 2019, some areas of HAB on the 

eastern part of Chaohu Lake would have been ignored by Terra image. By making full use 

of the advantages of multi-source images and monitoring the diurnal or long time scale 

changes of HAB in Chaohu Lake, they can learn from each other and make up for their 

shortcomings. Compared with single remote sensing data, more objective and accurate 

results were obtained. 

6. Conclusions 

Satellite remote sensing provides great potential to contribute significantly to the 

need for monitoring the HABs at a large scale; however, a multi-source remote sensing-

based approach is preferred to achieve high temporal and spatial resolution observations 
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of the HABs, such as the integration of Terra/Aqua MODIS, Landsat 8 OLI, and Sentinel-

2A/B MSI. With the advantage of the high temporal resolution, MODIS data are efficient 

in tracking the inter-monthly variations and distributions of HABs. In contrast, the inte-

grated multi-satellite data provide the possibility to grasp the breakout and spread, espe-

cially the diurnal change of a given HAB, which is more objective and accurate than re-

sults from one single satellite’s monitoring, as shown in the case of the Chaohu Lake. To 

obtain reliable HAB monitoring results, it is crucial to determine an appropriate HAB de-

tection method considering the spectral characteristics of HABs and the band settings of 

different satellite sensors, and our study proved that NDVI is suitable for MODIS; NDVI 

and FAI combined for Landsat 8 OLI; and the NDVI and ρchl combined for Sentinel-2 MSI 

data. Besides, analysis of driving forces of HAB, including environmental and meteoro-

logical factors of temperature, rainfall, sunshine hours, and wind, indicated that higher 

temperatures and light rain favored HAB. The wind is the main factor in boosting a HAB’s 

growth. Multi-source remote sensing provides higher measurement frequency and more 

detailed spatial information on the HAB, particularly the HAB’s long-short term varia-

tions. The results can be used as baseline data to evaluate the lake’s HAB and water qual-

ity management in the future. 
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