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Abstract 

The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite 
System (GNSS) is widely used in autonomous vehicles for positioning and navigation. 
Initial alignment is a critical stage for SINS operations, and the alignment time and 
accuracy directly affect the SINS navigation performance. To address the issue that low-
cost SINS/GNSS cannot effectively achieve rapid and high-accuracy alignment in complex 
environments that contain noise and external interference, an adaptive multiple 
backtracking robust alignment method is proposed. The sliding window that constructs 
observation and reference vectors is established, which effectively avoids the 
accumulation of sensor errors during the full integration process. A new observation 
vector based on the magnitude matching is then constructed to effectively reduce the 
effect of outliers on the alignment process. An adaptive multiple backtracking method is 
designed in which the window size can be dynamically adjusted based on the innovation 
gradient; thus, the alignment time can be significantly shortened. Furthermore, the 
modified variational Bayesian Kalman filter (VBKF) that accurately adjusts the 
measurement noise covariance matrix is proposed, and the Expectation–Maximization 
(EM) algorithm is employed to refine the prior parameter of the predicted error 
covariance matrix. Simulation and experimental results demonstrate that the proposed 
method significantly reduces alignment time and improves alignment accuracy. Taking 
heading error as the critical evaluation indicator, the proposed method achieves rapid 
alignment within 120 s and maintains a stable error below 1.2° after 80 s, yielding an 
improvement of over 63% compared to the backtracking-based Kalman filter (BKF) 
method and over 57% compared to the fuzzy adaptive KF (FAKF) method. 
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1. Introduction 
The Strapdown Inertial Navigation System (SINS), with its all-weather autonomy 

and ability to provide attitude, velocity, and position information, offers key advantages 
for independent navigation [1–4]. Owing to these features, it has been widely applied in 
autonomous driving, autonomous underwater vehicles (AUVs), unmanned aerial 
vehicles, Internet of Things (IoT), and smart cities [5]. SINS calculates the vehicle’s 
attitude, velocity, and position by processing raw inertial sensor measurements [6]. Initial 
alignment is critical for subsequent navigation performance as it determines the carrier’s 
initial attitude accuracy [7–11]. Initial alignment can be divided into two basic types based 
on the carrier’s motion state: static alignment and in-motion alignment [12]. However, 
because static alignment becomes ineffective in dynamic environments, in-motion 
alignment methods have been proposed to enable real-time alignment during continuous 
maneuvers [13–16]. 

To address the requirements of in-motion alignment, Wu et al. [17] proposed an 
Optimization-Based Alignment (OBA) method that transforms the attitude determination 
problem into a Wahba problem to make full use of observation vectors. Based on this 
work, Wu et al. [18] proposed a GPS-aided coarse alignment method based on velocity 
vector integration, which suppresses random noise in the alignment process to a certain 
extent. However, when the GPS-aided information contains a large number of outliers, 
such as in complex urban environments where tall buildings are densely distributed, 
forests are obscured, and there are tunnels or elevated bridges, the performance of the 
above-mentioned methods is severely limited. In [5], a Doppler velocity log (DVL)-aided 
in-motion alignment method based on Huber’s robust theory was designed to reduce the 
effect of outliers. Xu et al. [19] proposed a robust attitude determination method to 
accomplish the in-motion alignment process when GPS output contains outliers. 
However, these methods are only applicable to high-accuracy SINS, and the outlier 
isolation method for low-cost SINS remains to be studied. 

To shorten the time of in-motion alignment, researchers have proposed backtracking 
alignment methods that artificially extend navigation data, achieving rapid convergence 
of alignment results [20–23]. Chang et al. [24] proposed a fast initial alignment method 
based on a backtracking integration procedure, which can reuse the inertial measurement 
unit (IMU) and GPS information. Fu et al. [25] proposed a backtracking-based alignment 
method that reuses stored sensor data for navigation updates and Kalman filtering in the 
geographic frame, which simplifies the algorithm and improves alignment accuracy. 
However, the standard backtracking method may not be able to fully utilize the 
information in the navigation data in complex environments. To improve the utilization 
of navigation data, Lin et al. [26] proposed a high-accuracy backtracking alignment 
method that estimates and compensates for transient acceleration errors. Wei et al. [27] 
proposed an improved alignment method based on backtracking navigation, which fully 
considered the low-cost inertial sensor biases and corrected the correlated errors to make 
full use of the limited observation information. However, the aforementioned methods do 
not consider that the outdated historical data may no longer reflect current noise 
characteristics, thereby degrading the subsequent estimation performance [28–30]. 

Furthermore, to accomplish in-motion alignment, it is essential to develop novel 
filtering methods to accurately estimate the sensor biases and correlated errors. Existing 
alignment methods usually estimate unknown parameters by using the Kalman filter 
(KF), which assumes that the sensor noise follows a Gaussian distribution [31–36]. 
However, affected by outlier interference, the noise distribution of measured values 
provided by the sensors is often non-Gaussian noise. In order to improve the performance 
of the filter, Meng et al. [37] proposed a dual-input interval type-2 fuzzy inference system 
that allows for real-time adjustments of the measurement noise covariance matrix using 
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fuzzy adjustment strategies. Shi et al. [38] proposed an adaptive Kalman filter to suppress 
the adverse effects of outliers and approximate the unknown measurement noise 
covariance matrix using the variational Bayesian (VB) method. Huang et al. [39] proposed 
a novel VB Kalman filter to address deviations from Gaussian noise distributions, which 
estimates the varying measurement noise covariance matrix by manually selecting prior 
parameters. However, the manual selection of prior parameters may be inaccurate in 
some cases, and the severe maneuvers of vehicles can cause the sensor noise to exhibit 
heavy-tailed characteristics in complex environments, which leads to a significant decline 
in the performance of the filters. 

To address the above problems, this paper proposes a novel adaptive multiple back-
tracking robust in-motion alignment method. The calculation flow of the proposed 
method is illustrated in Figure 1. Specifically, a linear state-space model is established, 
incorporating GNSS-aided information to estimate gyroscope constant biases and the 
equivalent rotation vector between the true and calculated body frames. By reconstructing 
the observation vector using residual information, outlier detection and isolation within 
the GNSS-aided data are performed. To shorten the alignment time, a multiple backtrack-
ing strategy combined with an adaptive window adjustment approach is developed to 
make full use of the navigation data and mitigate the effect of noise with varying statistical 
characteristics. An Expectation–Maximization-based robust Kalman filter is employed to 
address situations where system noise deviates from the Gaussian distribution, thereby 
improving the estimation accuracy of the measurement noise covariance matrix. The main 
contributions of this paper are as follows: 
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Figure 1. Diagram of the proposed multiple backtracking in-motion alignment method. 

1. Observation and reference vectors are constructed using the sliding window method 
to mitigate the accumulation of sensor errors. A weighting function is designed using 
a magnitude matching method to reconstruct the observation vector, enabling the 
detection and isolation of outliers. 

2. An adaptive window adjustment multiple backtracking approach is proposed to ef-
fectively utilize navigation data and significantly shorten alignment time in complex 
environments. This approach intelligently determines the size of the backtracking 
window based on an innovation gradient, which effectively improves alignment ac-
curacy. 
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3. An EM-based robust variational Bayesian Kalman filter is designed to accurately es-
timate the alignment errors in complex interference environments. Within the pro-
posed technique, the EM and VB methods are employed to estimate the inaccurate 
predicted error and measurement noise covariance matrices, respectively. 
The remainder of this paper is organized as follows. Section 2 describes an in-motion 

alignment model for the SINS that suppresses the interference of outliers. Section 3 illus-
trates the adaptive multiple backtracking EM-based robust variational Bayesian Kalman 
filter scheme in detail. Section 4 compares the alignment performance of the proposed 
method with those of the existing typical methods through simulations and field tests. 
Finally, conclusions are drawn in Section 5. The important symbols used throughout the 
study are summarized in Table 1. 

Table 1. Nomenclature. 

Notations Definitions 
i  Inertial frame 
n  Navigation frame 
b  True body frame 

b%  Calculated body frame 
ng  Gravity vector 
bf  Specific force 
bε  Gyroscope constant biases 
a
bC  Attitude matrix from b  frame to a  frame 
a
bcω  Angular rate of b  frame related to c  frame projected in a  
nV  Ground velocity of the SINS in n  frame 

3I  3 3×  identity matrix 
( )×a  Skew symmetric matrix of vector a  
( )T⋅  Transpose operation 

( )tr ⋅  Trace operation 

2. In-Motion Alignment Model 
2.1. Traditional In-Motion Alignment Method 

According to the chain rule for attitude matrices, the time-varying attitude matrix 
( )n
b tC  can be decomposed into the product of three attitude matrices, and it can be written 

as follows: 

( )(0) (0) (0)
( ) (0) ( )( )

Tn n n b
b n t b b tt =C C C C

 
(1) 

where (0)
( )
n
n tC  represents the attitude matrix of the navigation frame from the current time 

to the initial time. (0)
( )
b
b tC  represents the attitude matrix of the body frame from the current 

time to the initial time. (0)
(0)
n
bC  is the constant attitude matrix that transforms from the ini-

tial body frame to the initial navigation frame. 
The two time-varying attitude matrices (0)

( )
n
n tC  and (0)

( )
b
b tC  in (1) can be obtained by 

integrating the following differential equations: 

( )(0) (0)
( ) ( ) ( )n n n
n t n t in t= ×&C C ω

 
(2) 
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( )(0) (0)
( ) ( ) ( )b b b
b t b t ib t= ×&C C ω

 
(3) 

where ( )n
in tω  is determined based on the carrier’s current geographic location, ( )b

ib tω  is 

obtained from the gyroscope output, and ()⋅ ×  represents the corresponding vector’s 
skew-symmetric matrix form. 

The constant attitude matrix (0)
(0)
n
bC  is obtained by appropriately manipulating the 

specific-force equation, thereby transforming the attitude determination problem into a 
Wahba problem. Solving the Wahba problem subsequently yields the optimal estimation 
of this matrix. The specific-force equation is expressed as 

( )( ) (0) (0)
(0) (0) ( ) 2n n t n b b n n n n
n b b t ie en= − + × +&V C C C f ω ω V g

 
(4) 

By integrating both sides of (4) and performing the necessary rearrangements, the 
relationship can be expressed in terms of the reference vector να  and the observation 

vector νβ  as follows: 

(0)
(0)
n
bν ν=Cβ α  (5) 

where 

(0)
( )0

(0) (0) (0)
( ) ( ) ( )0 0 0

(2 )

t b b
b t

t t tn n n n n n n n
n t n t ie en n t

dt

dt dt dt

ν

ν

=

= + + × −


  &

C f

C V C ω ω V C gβ

α

 

(6) 

At this stage, the determination of (0)
(0)
n
bC  is reformulated as a Wahba problem. The 

corresponding performance metric *W  is defined as follows: 

2(0)
(0)

1

1*
2

k
n
b

i

W β
=

= − C α
 

(7) 

In (7), the optimal constant attitude matrix (0)
(0)
n
bC  is obtained by solving this problem 

via the Singular Value Decomposition (SVD) method. 
However, the traditional alignment methods described above employ full-integra-

tion formulations, causing sensor errors to accumulate continuously from the initial epoch 
and thereby reducing alignment accuracy. Outliers in the GNSS measurements further 
reduce the accuracy of νβ   and may even cause the failure of the alignment process. 
Given the limitations of traditional methods, exploring new outlier isolation approaches 
is essential. 

2.2. Outliers’ Isolation Based on Vector Reconstruction 

Sliding-window-based vectors are designed to reduce the sensor error accumulation 
present in traditional full integration. The corresponding formulations are given as fol-
lows: 

, ,

(0) ( ) (0) ( )
( ) ( )

(0) ( )

00

( )

v t v s

t b b b b
b b

t b b

s

b

w

s

s

d d

d

τ τ
τ τ

τ
τ

τ τ

τ

=

−

−

=

=

 


C f C f

C f

α α α

 

(8) 
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, ,

(0) ( ) (0) ( )
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&C V C g

C ω ω V

β β β

 

(9) 

where new vectors are formed by subtracting the vectors at epoch s  from that at epoch 
t , where t s> . 

By substituting (8) and (9) into (5), it can be seen that the newly formed vector still 
satisfies (0)

(0)
n

sw b sw= Cβ α . Consequently, the integration interval for swα  and swβ  is re-

duced from [0, ]t  to [ ],s t , successfully isolating sensor error accumulation over the in-

terval [0, ]s  and improving alignment performance. 

For practical implementation in SINS, swα  and swβ  are discretized, and the result-
ing discretized vectors are expressed as follows: 

(0)
( )

1(Δ Δ Δ )
2

b
sw b

t

s
τ

τ =
= + ×C v θ vα

 
(10) 

( ) ( ) ( )

( ) ( ) ( )

( )

(0) (0)
( ) ( )

1
(0) 2
( ) 3

1
(0) 2
( ) 3

1
(0) 2
( ) 3

( ) ( )

1
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1
2 6

1 1 1
2

1
2

n n n n
sw n t n s
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n n n n
n in ie

s

t
n n n n
n in ie

s
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n n n
n in

s

t s

T T

T T

T T
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τ
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τ

τ
τ

τ τ τ

τ τ τ

τ
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=

−

=

−

=

        
        
 
 

= −

+ + × ×

+ + × × +

  − + ×    







C V C V

C I ω ω V

C I ω ω V

C I ω g

β

 

(11) 

where Δv andΔθ are gyro output and T denotes the IMU sampling interval. Due to the 
outliers and noise in GNSS output, the velocity information is reformulated as follows: 

n n nδ= +%V V v  (12) 

where n%V  is the velocity obtained by the GNSS outputs, nδ v  denotes the error in the 

GNSS velocity output, n
Gδ = +v Γ υ , Gυ denotes the measurement noise, and Γ  repre-

sents the outlier component. 
By substituting (12) into (11), swβ  is reconstructed as follows: 

( ) ( ) ( )

( ) ( ) ( )

( )

(0) (0)
( ) ( )

1
(0) 2
( ) 3

1
(0) 2
( ) 3

1
(0) 2
( ) 3

( ) ( )

1 1
2 6

1 1 1
2 3

1
2

n n n n
n t n s

t
n n n n
n in ie

s

t
n n n n
n in ie

s

t
n

n

s

n n
n i

s

w t s

T T

T T

T T

τ
τ

τ
τ

τ
τ

τ τ τ

τ τ τ

τ

−

=

−

=

−

=

        
        


= −

+ + × ×

+ + × × +

  − + ×   







% % %

%

%

C V C V

C I ω ω V

C I ω ω V

C I ω g

β

sw β


 
 

= + eβ  

(13)

where βe  denotes the actual observation vector error. Because outliers are typically sev-

eral times larger than the current velocity, the resulting βe  cannot be neglected, which 

significantly degrades the accuracy of the constructed observation vector. If this contami-
nated vector is directly utilized to solve (0)

(0)
n
bC , the solution’s accuracy is significantly com-

promised, and convergence may even fail. 
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To effectively suppress the outliers, a residual-based outlier suppression strategy is 
proposed. According to (5), the two sides of the equation should be strictly equal. Outliers 
in GNSS-aided measurements degrade the accuracy of swβ . However, swα  relies solely 
on accelerometer-derived specific force and remains unaffected by such outliers. Conse-

quently, the equality is violated. The Euclidean norm of both sides yields 
(0)
(0)sw sw
n
b= Cβ α . 

The orthogonality of the attitude matrix (0)
(0)
n
bC  yields 

(0)
(0) 1n
b =C . 

Rewriting the above equation yields 

sw sw=β α  (14)

By substituting (13) into (14), the residual is defined as follows: 

2 2
w sw swς = −Π%Π Π Παβ  (15) 

When the velocity output by GNSS contains only measurement noise and no outliers, 
i.e., 0=Γ , the residual remains small, sw sw≈ %β β . In contrast, when the velocity data are 
contaminated by outliers, the residual increases significantly. On this basis, a weighting 
function ( )wΛς  is constructed from the residual to determine whether sw

%β  has been af-
fected by outliers, and it can be written as follows: 

( )
1

w
ww

w

ς Δ
ςΛ

Δ

Δ
ς

ς

 ≥= 
 <  

(16) 

where Δ  is a threshold and its value is set to 25 in this study based on experimental 
analysis. Using the weighting function defined above, the observation vector is recon-
structed as follows: 

( ) (0)
(0)( ) 1 ( )sw w sw w
n
bw sΛς Λς= + −% Cβ β α

 
(17)

When the residual wς  is below the preset threshold Δ , the data are considered 
free from outlier interference, and the observation vector does not require modification. If 

wς  exceeds Δ , the weighting function reduces the reliability of sw
%β , and swα  is used 

to compensate for sw
%β , yielding a corrected observation vector swβ . This procedure mit-

igates the effect of outliers on the observation vector, thereby enhancing the accuracy of 
its reconstruction. 

2.3. Construction of State-Space Model 
To accomplish the in-motion alignment, it is essential to develop an accurate model 

for the subsequent filtering process. Due to the inevitable presence of gyroscope errors 

during actual alignment, discrepancies emerge between the b%  frame and the b  frame. 
A relationship between the two frames can be established through an equivalent rotation 
vector, which can be represented as follows: 

( )
3( )

b t
bb t = ×+%C I ϕ

 
(18) 

where bϕ  represents the equivalent rotation vector. 
Taking the gyroscope errors into account, (3) is reformulated to derive the rotation 

matrix from the initial (0)b  frame to the current ( )b t%  frame, which can be written as 
follows: 
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[ ]

(0) (0) (0) ( )
( )( ) ( ) ( )

(0)
( ) 3

(0)
( )

( ) ( ) ( )

) ( ) ( )(

( ) ( ) ( )( ) ( )( )

b b b b b t b b
ib b t ib ibb t b t b t

b b b
b t ib ib

b b b b b
b t ib b

b

b bi ib ib

δ

δ

δ δ

+

  

 = × = × + × 
 = × × + × 

= × + × + × × + × ×

% % %
& %C C C C

C I

C

ω ω ω

ω

ϕ

ϕ

ω

ϕ

ω

ω ω ω
 

(19)

where b
ibδω  denotes gyroscope errors. By applying the chain rule for attitude matrices, 

(0)
( )
b
b tC  in (1) can be rewritten as follows: 

(0) (0) ( )
( ) ( )( )
b b b t
b t b tb t= %

%C C C
 

(20)

By substituting (18) into (20), the expression is obtained as follows: 

( )(0) (0) ( ) (0)
( ) ( ) 3( ) ( ) ( )b b b t b
b t b tb t b t b= = + ×% %C C C C I ϕ

 
(21)

Differentiating both sides of (21) with respect to time yields 

( )(0) (0) (0)
( ) 3 ( )( )

(0) (0) (0)
( ) ( ) ( )

(0)
( )

( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

b b

b b

b b b
b t b tb t

b b

b

b b b
b t ib b t ib b t

b b b
b t ib b bi  

= + × + ×

= × + × × + ×

= × + × × + ×

%
&

&

& &

&

C C I C

C C C

C

ϕ

ω ω ϕ

ω ω ϕ ϕ

ϕ

ϕ

 

(22)

By comparing (19) and (22), it can be observed that their right-hand sides are equiv-
alent. Extracting these expressions yields 

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( )

b b b

b

b b

b

b
ib ib ib ib

b
b

b
i ib

δ δ  
  

× + × + × × + × ×

= × + × × + ×&

ω ω ω ω

ϕω

ϕ ϕ

ϕω
 

(23)

By further simplifying (23), the formula for calculating the equivalent rotation vector 
is obtained as follows: 

b b
bib b ibδ= − × +%& ω ωϕϕ  (24)

In low-cost SINS, the gyroscope’s constant bias is typically a non-negligible constant, 
which is defined as follows: 

3 1
b

×=0&ε  (25)

By defining the system state vector [ ]b Tb=X ϕ ε , the state-space equations are es-
tablished by (24) and (25). 

Utilizing the reconstructed observation vector swβ   and the reference vector swα  , 
the measurement equation is formulated as follows: 

(0) (0) (0) ( )
(0) (0) ( )

(0) (0) ( ) ( ) ( )
(0) ( ) ( )( )

tn n b b
sw b sw b bs

tn b b s b s b
b b s bb s s

d

d

τ
τ

τ
τ

τ

τ=

= = 


%

%

C C C f

C C C C f

β α

 

(26) 

Substituting (18) into (26) yields 

[ ](0) (0) ( ) ( )
(0) 3 ( )( )

(0) (0) ( ) ( ) (0) (0) ( ) ( )
(0) ( ) (0) ( )( ) ( )

(0) (0) (0) (0) (0)
(0) (0) (0)( ) ( ) (

( )

( )

( )

tn b b s b
sw b bb s s

t tn b b s b n b b s b
b b b bb s b ss s
n b n b n
b sw b sw bb s

b

b

s b bb

d

d d

β ϕ

ϕ

ϕ

= ×

= − ×

= − ×

−

=


 

τ
τ

τ τ
τ τ

τ

τ τ

%

% %

% % %% %

C C I C f

C C C f C C C f

C C α C C α C C (0) (0) (0)
(0)) ( ) ( )( )b n b

sw b sws b s bϕα α+ ×%% %C C
 

(27) 

where ( ) ( )
( )

t b s b
sw bs

dττ τ= % C fα . Rearranging (27), the measurement equation can be expressed 

as follows: 
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k k k k= +Z H X v  (28) 

where kv  denotes the measurement noise. The expressions for the measurement vector 

kZ  and the measurement matrix kH  are given by 

(0) (0)
(0) ( )
n b

sw b swbk s= − % %Z C Cβ α
 

(29) 

(0) (0)
(0) ( 3) 3( )n b
b swsk b ×

 = × 0% %H C C α
 

(30) 

The established system forms the basis for estimating the gyroscope constant biases 

and the equivalent rotation vector between the b  frame and the b%  frame. Moreover, 
in complex environments, the short available data record is insufficient for conventional 
methods to achieve high accuracy and may result in non-convergence. In view of these 
limitations, it is essential to develop new fast alignment methods. 

3. The Proposed Robust Filtering Method 
3.1. Adaptive Window Adjustment Multiple Backtracking Approach 

The presence of uncertain model parameters, noise with unknown statistical charac-
teristics, and outliers limits the effectiveness of conventional multiple backtracking ap-
proaches for in-motion alignment. As a result, these methods fail to fully exploit naviga-
tion data and cannot satisfy the carrier’s rapid response requirements in complex envi-
ronments. Sensor noise in complex environments exhibits significant time-varying char-
acteristics, while outdated data cannot reflect the noise characteristics at the current time. 
Continuing to use the outdated data will lead to the degradation of the estimation perfor-
mance of the filter. Existing approaches generally ignore the effect of the relationship be-
tween the size of the backtracking window and the filtering performance. 

To address this problem, this paper proposes an adaptive window adjustment mul-
tiple backtracking approach based on innovation gradient detection. The innovation in 
filtering reflects the mismatch between observations and predictions. In complex environ-
ments, this leads to a notable discrepancy between the theoretical and actual error covar-
iance matrices, which reflects the variability in noise characteristics. In the initial stage of 
the alignment process, the backtracking window size is set manually. Subsequently, the 
trend in noise characteristics can be assessed by comparing the innovation gradients cal-
culated over the earlier and later segments within the window. If fluctuations in noise 
characteristics are detected, the subsequent window size is reduced to enhance tracking 
capability. Conversely, if noise characteristics are stable, the window size is appropriately 
increased to improve the unbiasedness of estimation. 

The innovation and actual value of the error covariance matrix is given as follows: 

| 1k k k k k−= −Z H Xγ  (31)

1

1,
k

k k k
ij

T
i iL =

= = C γ γ γ γ
 

(32)

where kγ  is the innovation, kC is the estimated error covariance matrix, and jL  repre-

sents the size of the thj  backtracking window. The theoretical error covariance matrix is 
given by 

T
| 1k k k k k k−= +H P H RΜ  (33)
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To reflect the difference between kC  and kΜ , the matching degree is defined as 
the ratio of their traces and expressed as follows: 

( )
( )

k
k

k

tr
tr

ζ =
C
Μ  

(34)

To effectively determine whether the statistical characteristics of noise have changed 
within the previous window, this study proposes a metric based on the innovation gradi-
ent value. The innovation gradient value is defined as follows: 

( ), 1 ,

,

j k j k
j

j k

ζ ζ
∇

ζ
+ −

=
 

(35)

where , 1j kζ +  and ,j kζ  denote the matching degree for the first and second halves of the 
thj  backtracking window, respectively. By detecting the fluctuation of noise characteris-

tics within the thj  backtracking window based on (35), the size of the ( 1)thj+  window 
can be adaptively adjusted as follows: 

1 (1 )j j jL L ∇+ = +  (36)

According to (36), when the noise characteristics dramatically fluctuate within the 
previous backtracking window, resulting in a negative innovation gradient value, the cur-
rent window size should be appropriately reduced to achieve higher tracking sensitivity. 
Conversely, when the noise characteristics remain stable in the previous window, result-
ing in a positive innovation gradient value, the current window size should be increased 
to enhance estimation unbiasedness. The diagram of the proposed adaptive multiple 
backtracking approach is illustrated in Figure 2. 

thj Backtracking window

1st Forward alignment process

1st Backward alignment process

SINS attitude update

  Feedback    bϕ bε

jL

jT j jT L+From time to time

Revers navigation data and filter parameters

j jT L+jT

  Feedback    bϕ bε

Innovation 
gradient 

Multiple Forward and Backward alignment process

Last Forward alignment process

Next Backtracking Window Size

1 (1 )j j jL L ∇+ = +

Next Stage

Backtracking Window from          to

 from            to

Result

jT j jT L+

EM-based robust KF

SINS attitude updateEM-based robust KF

Start

IMU

GNSS

Filter Parameters

Store Navigation Data
Forward alignment

Backward alignment

1 1 1     j j jT T L+ + ++

end 1 end 1 end 1     T T L− − −+
( )1 thj +

( )n
b tC

Λ

 

Figure 2. Diagram of the proposed adaptive multiple backtracking approach. 
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3.2. EM-Based Robust Variational Bayesian Kalman Filter 

In this section, an EM-based robust variational Bayesian Kalman filter is proposed. 
Modeling the likelihood function with Student’s t distribution significantly improves the 
robustness of the approach. By employing the variational Bayesian method, the joint pos-
terior distributions of system states and unknown parameters are estimated, which facil-
itates effective estimation of the uncertain measurement noise covariance matrix. Moreo-
ver, the EM method is designed to estimate the prior scale matrix of the prediction error 
covariance matrix. Therefore, the proposed approach demonstrates robust filtering per-
formance in complex interference environments and notably improves the accuracy of 
estimation. 

The discrete-time state-space equations for the SINS/GNSS integrated navigation sys-
tem are defined as follows: 

1 1 1k k k k

k k k k

− − −= +
= +

X
Z

F X w
H vX  

(37) 

where kX  is the state vector, 1k −F  is the state-transition matrix, kZ  is the measure-

ment vector, and kH  is the measurement matrix. 1k−w  and kv  represent the process 
and measurement noise, respectively. The process noise is assumed to be a zero-mean 
Gaussian distribution, i.e., ( , )k kN∼ 0 Qw  , where kQ   is the process noise covariance 
matrix. Due to the presence of outliers in complex environments, the measurement noise 
is better modeled by a heavy-tailed distribution. Hence, the measurement noise is mod-
eled as a zero-mean Student’s t distribution, i.e., ( ; , , )k k k kSt ξ∼ 0v v R , where kR  is the 

measurement noise covariance matrix and kξ  is the degree of freedom. A smaller value 

of kξ  corresponds to a heavier-tailed distribution. 
The state’s prior probability density function (PDF) and the likelihood function are 

modeled by a Gaussian distribution and a Student’s t distribution, respectively, and can 
be expressed as follows: 

1: 1 | 1 | 1( | ) ( ; , )k k k k k k kp N− − −=Z X PX X  (38) 

( | ) ( ; , , )k k k k k k kp St ξ=X RXZ Z H  (39) 

where | 1k k−P  is the predicted error covariance matrix (PECM) and | 1k k −X  is the predicted 

state vector. 
To simplify the subsequent computations, the likelihood function is formulated as an 

infinite Gaussian mixture, which can be represented as follows: 

0

( | ) ( ; , , )

( ; ., ( 0 5 0.) ; , )5

k k k k k k k

k
k k k k k k k

k

p St

N G d
∞

ξ

ϑ ξ ξ ϑ
ϑ

+

=

= 

Z X Z H X R
RZ H X

 

(40)

where ( )G γ  denotes a Gamma distribution and kϑ  is an auxiliary random variable. By 
factorizing (40), the likelihood function can be further rewritten as follows: 

( | , ) ( ; , )

( ) ( ; , )0.5 0.5

k
k k k k k k

k

k k k k

p N

p G

ξ
ϑ

ϑ ϑ ξ ξ

 =

 =

RZ X XZ H

 

(41)

To ensure that the posterior distributions of | 1k k−P  and kR  have the same functional 

form as the prior distributions, the inverse Wishart distribution is adopted for the covari-
ance matrices. Consequently, the prior distributions of | 1k k−P  and kR  are given by 
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| 1 1: 1 | 1( | ) ( ; , )k kk k k k kp IW λ− − −=P Z P ϒ  (42)

1: 1 | 1 | 1( | ) ( ; , )k k k k k k kp IW μ− − −=R Z R ψ  (43)

where ( )IW γ denotes the inverse Wishart distribution and kλ  and kϒ  are the prior de-
grees of freedom and the prior scale matrix for | 1k k−P , respectively. Similarly, | 1k kμ −  and 

| 1k k −ψ  are the prior degrees of freedom and the prior scale matrix for kR . Updates to 

these prior parameters are as follows: 

| 1k k kkλ −= Pϒ  (44) 

| 1 1| 1k k k kμ φμ− − −=  (45) 

| 1 1| 1k k k kφ− − −=ψ ψ  (46) 

where φ  is the forgetting factor satisfying (01]φ∈ . At time step 1k − , the symbols 

1| 1k kμ − −  and 1| 1k kψ − −  denote the posterior degrees of freedom and the posterior scale ma-

trix of kR , respectively. In this study, 0.968φ = , 0 10λ = , and 0|0 5=μ . 

Based on the previously derived prior PDFs, the joint posterior PDF
| 1 1: ), , |,( k k k k k kp ϑ−X P R Z  needs to be evaluated. Because the joint posterior does not admit 

a closed-form solution, a VB method is employed to iteratively approximate it. The update 
for the ( 1)thi +  VB iteration is given by 

( 1) ( 1) ( 1) ( 1)
1: | 1( | ) ( ) ( ) ( ) ( )i i i i
k k k k k kp q q q q ϑ+ + + +

−Ξ =Z X P R  (47)

where | 1{ , , , }k k k k k−Ξ = ϑX P R  and ( 1) ( )iq + γ denotes the approximate posterior PDF obtained 
in the ( 1)thi +  iteration. The VB iteration is terminated when further iterations result in 
negligible improvement in estimation accuracy, and the number of iterations is set to 10. 
The posterior PDF of | 1k k −P , along with updates to its posterior parameters, are given by 

( 1) ( 1) ( 1)
| 1 | 1 | |( ) ( ; , )i i i
k k k k k k k kq IW λ+ + +

− −=P P ϒ  (48)

( 1) ( 1) ( ) ( )
| |1i i i i
k k k k k k kλ λ+ += + = +， Aϒ ϒ  (49)

( )( )( ) ( ) ( ) ( )
| | | 1 | | 1

Ti i i i
k k k k k k k k k k k− −= + − −A P X X X X

 
(50)

According to (48), the PECM ( 1)
| 1

ˆ i
k k
+
−P  is obtained as follows: 

( 1) ( 1) ( 1) 1
| 1 | |

ˆ ( )i i i
k k k k k kλ+ + + −

− =P ϒ  (51)

The posterior PDF of kR , together with its updated posterior parameters, are given 
by 

( 1) ( 1) ( 1)
| |( ) ( ; , )i i i

k k k k k kq IW μ+ + +=R R ψ  (52) 

( 1) ( 1) ( 1) ( )
| | 1 | | 11 ( )i i i i
k k k k k k k k k kμ μ ϑ+ + +

− −= + = +， E Bψ ψ  (53) 

( )( )( ) ( ) ( ) ( )
| | |

Ti i i i T
k k k k k k k k k k k k k= − − +HB Z H X Z X H P H

 
(54) 

The posterior PDF of kϑ  , along with the updates of its posterior parameters, are 

given as follows: 
( 1) ( 1) ( 1)

| |( ) ( , );i i i
k k k k k kq Gϑ ϑ δ χ+ + +=  (55) 



Remote Sens. 2025, 17, 2680 13 of 24 
 

 

( 1) ( 1) ( ) ( ) 1
| |0.5( ) 0.5( ( [ ]))i i i i
k k k z k k k k kd trδ ξ χ ξ+ + −= + = +， B E R  (56) 

where ( ) 1( ) 1 ( ) ( )
| |[ ]i i i

k k k k kμ
−− =E R ψ  and zd   is the dimension of kZ  . By jointly applying (41) 

and (52), the refined measurement noise covariance matrix ( 1)ˆ i
k
+R  is derived as follows: 

( 1) ( 1) ( 1) 1 ( 1) 1
| |

ˆ ( ) ( )i i i i
k k k k k kμ ϑ+ + + − + −=R Eψ  (57) 

where ( 1) ( 1) ( 1) 1
| |( ) ( )i i i

k k k k kϑ δ χ+ + + −=E . Meanwhile, the posterior PDF of kX is given by 

( 1) ( 1) ( 1)
| |( ) ( , , )ˆi i i

k k k k k kq N+ + +=X X X P  (58) 

On the basis of (51) and (57), the PECM | 1k̂ k−P  and the refined ( 1)ˆ i
k
+R  are obtained. 

The optimal state estimation ( 1)
|
i
k k
+X  and its covariance matrix ( 1)

|
i

k k
+P  are calculated as fol-

lows: 

( ) 1( 1) ( 1) ( 1) ( 1)
| 1 | 1

ˆ ˆ ˆi i T i T i
k k k k k k k k k

−+ + + +
− −= +K P H H P H R

 
(59) 

( 1) ( 1)
| | 1 | 1( )i i
k k k k k k k k k
+ +

− −= + −X X K Z H X  (60)

( 1) ( 1) ( 1) ( 1)
| | 1 | 1

ˆ ˆi i i i
k k k k k k k k
+ + + +

− −= −P P K H P  (61)

As shown in (59), the accuracy of ( 1)
| 1

ˆ i
k k
+
−P  directly affects the filter gain and thus the 

accuracy of state estimation. Therefore, improving the accuracy of ( 1)
| 1

ˆ i
k k
+
−P  is critical for en-

hancing the performance of state estimation. Moreover, an EM method is employed to 
refine ( 1)

| 1
ˆ i
k k
+
−P . 

The EM method consists of two alternating phases: an expectation step (E-step) and 
a maximization step (M-step). For the current parameter estimation ( )iθ , the E-step com-
putes the conditional expectation ( )( , )iθ θQ  of the latent variables, where i  denotes the 
iteration index. The M-step then maximizes this conditional expectation to update the pa-
rameter estimation ( 1)iθ + . These two steps are repeated until convergence or until a pre-
defined maximum number of iterations is reached. 

By selecting the latent variables as | 1{ , , , }k k k k k−=Ω ϑX P R , the maximum likelihood 

estimation of the prior scale matrix kϒ  is given as follows: 

( )
1:arg max  log ( , ) argmax ( , )[ ]

k
k k

i
k k k kpϒϒ ϒ

ϒ ϒ ϒ≈ ≈Ω Z Q
 

(62)

where 1:( , )
k kpϒ Ω Z  denotes the likelihood function of the joint PDF, which is determined 

by kϒ . 
First, the E-step is performed. Given the current estimation of the prior scale matrix, 

the conditional expectation of the latent variables is calculated as follows: 

( )

Δ
( ) ( )

1: 1:

1: 1:

( , ) log ( , ) | ,

log ( , ) ( | )
k

ik k

i i
k k k k k

k k

p

p p d

ϒ

ϒ ϒ

ϒ ϒ ϒ= 

= Ω





Ω

Ω Ω

Q E Z Z

Z Z

Ξ

 

(63)

By applying the probability chain rule and Bayes’ theorem, the joint PDF 1:( , )
k kpϒ Ω Z  

is rewritten as follows: 
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1: | 1 1:

1: 1 | 1

1: 1 | 1 1: 1 1: 1

( , ) ( , , , , )

( | , ) ( ) ( | , )

( | ) ( | ) ( )

k k

k

k k k k k k k

k
k k k k k k k

k

k k k k k k

p p

p p p

p p p

ϒ ϒ

ϒ

−

− −

− − − −

=

=

×

ϑ

ϑ

Ω

ϑ

Z X P R Z

RZ X X Z P

R Z P Z Z
 

(64)

Because only | 1k k−P  depends on kϒ , the expression can be simplified to obtain the 

conditional expectation of the latent variables, which is given as follows: 

( )
( )

| 1 1: 1 | 1 1: | 1( , ) log ( | ) ( | )ik k

i
k k k k k k k k k kp p d ϖ− − − −= × +Q P Z P Z Pϒ ϒϒ

ϒ ϒ
 

(65) 

where ϖϒ  is a constant independent of kϒ . 
Second, the M-step is performed. Based on the conditional expectation obtained in 

the E-step, kϒ  is estimated using the maximum likelihood method, and (65) can be re-
written as follows: 

( )
( )

( 1) ( ) ( 1) ( 1)
| 1 | | | 1 1: 1 | 1

( 1) ( 1) 1
| 1 | | | 1 | 1 | 1

( 1) 1
| 1

( , ) ( ; , ) log ( | )

( ; , ) 0.5 log 0.5

0.5 0.5 log | |[ ]

i

k

i i i
k k k k k k k k k k k k k

i i
k k k k k k k k k k k k k k

i
k k k k k

IW p d

IW tr d

tr

λ ϖ

λ λ ϖ

λ ϖ

+ + +
− − − −

+ + −
− − − −

+ −
−

= × +

 × − − = +

= − + +




Q P P Z P

P P P P

E P

ϒ ϒ

ϒ

ϒ

ϒ ϒ ϒ

ϒ ϒ

ϒ ϒ  

(66) 

Based on (51), the expectation of the inverse of | 1k k −P  is calculated as follows: 

( )

( 1) 1 1 ( 1) ( 1)
| 1 | 1 | 1 | | | 1

1( 1) ( 1)
| |

[ ] ( ; , )i i i
k k k k k k k k k k k k

i i
k k k k

E IW dλ

λ

+ − − + +
− − − −

−+ +

=

=

P P P Pϒ

ϒ
 

(67)

Substituting (67) into (66) yields 

( )( 1) ( ) ( 1) ( 1) 1
| |( , ) 0.5 0.5 log | |[ ]

i i i i
k k k k k k k k ktr λ λ ϖ

+ + + −= − + +Q ϒϒ ϒ ϒ ϒ ϒ
 

(68)

By maximizing (68) in the M-step, the refined prior scale matrix ( 1)i
k
+ϒ  is obtained. 

Differentiating (68) with respect to kϒ  yields 

( )
( 1) ( ) 11 ( 1) ( 1)

| |
( , ) 0.5 0.5

i i
i ik k

k k k k k k
k

λ λ
+

−− + +∂
−=

∂
Q ϒ ϒ ϒ ϒ

ϒ  
(69)

Setting (69) to zero yields the refined prior scale matrix as follows: 
( 1)
|( 1)

( 1)
|

i
k ki

k k i
k k

λ
λ

+
+

+=
ϒ

ϒ
 

(70)

To solve the joint posterior PDF | 1 1: ), , |,( k k k k k kp ϑ−X P R Z , the VB method is employed 

to sequentially approximate the posterior PDFs of the parameters, yielding the updated 

| 1k̂ k−P  and refined ˆ
kR . In the VB method, the prior scale matrix kϒ  remains fixed. Using 

the EM method, the conditional expectation of the latent variable is computed. This ex-
pectation is then used to perform maximum likelihood estimation, yielding the refined 
prior scale matrix ( 1)i

k
+ϒ , which is applied in the next iteration to improve the estimation 

of | 1k̂ k−P . 

3.3. Algorithm Summarization 

The procedure of the adaptive multiple backtracking robust in-motion alignment 
method is summarized in Algorithm 1. 

  



Remote Sens. 2025, 17, 2680 15 of 24 
 

 

Algorithm 1: Adaptive multiple backtracking robust in-motion alignment method. 
Initialization: 15jL = , 3 1b ×= 0ϕ , 3 1

b
×= 0ε , 0.968φ = , 0 10λ = , 0|0 5μ = . 

Inputs: b
ibω , bf , nV  

While(backtracking window size jL < IMU data length) 

Forward alignment 
for 1 :1:j jk L L−=  

(1) Update (0 )
( )
n
n tC and (0)

( )
b
b t%C using (2) and (21) 

(2) Construct reference vector swα and observation vector swβ  
(3) Calculate weighting function ( )wΛ ς  
(4) Reconstruct observation vector swβ  
(5) Calculate (0 )

(0)
n
bC by (7) 

Forward time update 
(6) | 1 1 1 1k k k k k− − − −= +x F wx , | 1 1 1 1

T
k k k k k k− − − −= +P F P F Q  

Forward measurement update 
(7) Initialize prior parameters by (44)–(46) 
(8) VB iteration 

for 0:9 
(a) Update | 1k̂ k−P by (48)–(51) 
(b) Calculate refined prior scale matrix ( 1)i

k
+ϒ  

(c) Update ˆ
kR  by (52)–(57) 

(d) Calculate ( 1)
|
i
k k
+X and ( 1)

|
i

k k
+P by (59)–(61) 

end for 
(9) Feedback the estimated parameters 

end for 
Backward alignment 

(10) Reverse navigation data and filter parameters 
for k = 1jL − :1: jL  

(11) Calculate reverse SINS parameters 
(12) Reverse time update by step 6) 
(13) Reverse measurement update by step 7)-9) 

end for 
(14) Calculate next backtracking window size 1jL + by (36) 
(15) Update backtracking stage: 1j j= +  

end while  
return real-time attitude matrix ( )n

b tC  

4. Results and Discussion 
To verify the effectiveness of the proposed method, this section presents both simu-

lation and field tests. In this paper, the Optimization-Based Alignment method (OBA) [18], 
the filter alignment method based on variational Bayesian Kalman filter (VBKF), the back-
tracking-based Kalman filter alignment method (BKF), the fuzzy adaptive Kalman filter-
based method (FAKF) [37], and the proposed method are tested and compared. 

4.1. Simulation Test 

In this section, simulation analyses are carried out to evaluate the five methods de-
scribed previously. The complete alignment process takes place over 100 s, starting with 
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the vehicle positioned at 32.11°N and 119.37°E. Figures 3 and 4 illustrate the vehicle’s tra-
jectory and reference attitude, respectively. Additionally, Figure 5 illustrates the GNSS 
velocity output affected by outliers. 

 

Figure 3. Vehicle’s trajectory in the simulation test. 

 

Figure 4. Reference attitude in the simulation test. 

 

Figure 5. Velocity from the GNSS output in the simulation test. 

The sampling frequency of the three-axis gyroscopes and three-axis accelerometers 
in the SINS was set at 100 Hz. The constant biases of the gyroscopes were 0.1 s° , and the 
gyroscopes’ random biases were 0.05 s°  . The constant biases of the accelerometers 
were 500 gμ , and the acceleration random biases were 100 gμ . The GNSS sampling fre-

quency was set at 1 Hz. Due to signal reflections from tunnel/high-rise scenes and occlu-
sions by obstacles in complex urban environments, the noise in real-world GNSS meas-
urements exhibits significant heavy-tailed behavior. Therefore, a Gaussian mixture noise 
model was adopted to simulate the noise in GNSS velocity output, which is represented 
as follows: 

2

2

(0, 0.1 ) . .0.97

(0, 50 ) . .0.03

( )
( )

n N w p

N w p





=
I

v
I

δ
 

(71)

Figures 6 and 7 show the pitch and roll errors for the five methods under comparison. 
As shown in Figures 6 and 7, the conventional OBA and VBKF methods exhibit divergence 
in pitch and roll, while the other three methods achieve convergence. This result mainly 
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occurs because the OBA method neglects errors in the inertial sensors and does not con-
sider the outliers in GNSS. Significant fluctuations are observed in the initial estimation 
results of both the VBKF and FAKF methods, mainly because sensor parameters have not 
been accurately estimated at this stage. In contrast, the proposed method achieves im-
proved accuracy and stability from the early stage of alignment, owing to the adaptive 
multiple backtracking approach. The presence of outliers leads to varying degrees of per-
formance degradation in the VBKF, BKF, and FAKF methods. Taking the pitch error as an 
example, at 75 s, the VBKF method exhibits a 2.5° fluctuation lasting for 3 s. The BKF 
method shows a 1.8° fluctuation over the same duration, and the FAKF method also ex-
periences disturbances. While the convergence accuracy of the above methods is de-
graded by outliers, the proposed method exhibits strong robustness and maintains stable 
convergence throughout the alignment process. 

 

Figure 6. Pitch errors of five methods in the simulation test. 

 

Figure 7. Roll errors of five methods in the simulation test. 

As illustrated by the heading errors in Figure 8, the OBA and VBKF methods fail to 
achieve convergence during the alignment process. During the initial stage, the FAKF 
method exhibits significant estimation fluctuations lasting approximately 30 s. In contrast, 
the BKF method and the proposed method exhibit stable convergence characteristics in 
the initial stage. Experimental data show that the heading error of the BKF method is ap-
proximately 5°, and the proposed method is approximately 1°. During the later stage, the 
heading error of the proposed method stabilizes within 0.8°, whereas the FAKF and BKF 
methods stabilize within 5° and 4°, respectively. Although the FAKF method employs 
magnitude matching to mitigate the effect of outliers, the limited amount of IMU and 
GNSS data acquired during short-term in-motion alignment restricts its ability to achieve 
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higher accuracy. The BKF method extends the navigation data to obtain a smoother align-
ment result by utilizing a standard backtracking approach. However, its performance re-
mains susceptible to outliers and noise with varying statistical characteristics. In contrast, 
the proposed method maintains both stability and high accuracy throughout the align-
ment process. Even when the GNSS-aided velocity measurements contain outliers, the 
heading errors remain stable, without any abrupt jumps. This conclusion is further cor-
roborated by the roll and pitch error curves shown in Figures 6 and 7. 

 

Figure 8. Heading errors of five methods in the simulation test. 

To demonstrate the performance of the aforementioned alignment methods more 
clearly, Table 2 summarizes the mean and standard deviation (STD) of the attitude errors 
over the interval from 60 s to 100 s. The proposed method achieves an STD of less than 
0.05° across all three attitude angles, where the FAKF method is around 1° and the BKF 
method is around 0.7°. Based on the profile toolbox of MATLAB 2022a, the running time 
of the proposed method in the simulation test is 3.79 s. From these statistical results, it is 
obvious that the proposed method offers superior stability and higher alignment accuracy 
compared to the other methods. Enhanced stability benefits from the residual-based re-
construction of the observation vector, which enables effective outlier isolation and detec-
tion. 

Table 2. The 60~100 s attitude error statistical characteristics. 

Evaluating Indicator Attitude Error (°) OBA VBKF BKF FAKF Proposed 

Mean Pitch 5.534 −2.956 0.530 0.636 −0.122 
Roll 4.653 1.561 0.405 0.669 0.257 

 Heading −27.446 −21.265 3.951 −1.890 0.337 

STD 
Pitch 0.274 1.081 0.566 0.765 0.049 
Roll 1.414 0.917 0.735 0.638 0.026 

 Heading 18.719 3.898 0.468 1.074 0.037 

Additionally, the designed adaptive multiple backtracking approach not only ex-
tends the length of available IMU and GNSS data but also maintains the filter’s tracking 
sensitivity and unbiasedness, thereby fully exploiting the available information and short-
ening the alignment time. Furthermore, the EM-based robust Kalman filter enables real-
time adjustment of the measurement noise covariance matrix and the predicted error co-
variance matrix, effectively addressing the issue of inaccurate noise modeling and enhanc-
ing the estimation accuracy. 
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4.2. Field Test 

To further demonstrate the effectiveness and advantages of the proposed method, 
this section provides experimental validation using field test data. The test vehicle starts 
from an initial position at 39.7°N latitude and 116.5°E longitude, and the alignment pro-
cess lasts for 120 s. The trajectory of the vehicle is shown in Figure 9. The experimental 
setup is illustrated in Figure 10, which comprises a Micro-Electromechanical Systems 
(MEMS) IMU, a fiber-optic SINS, and a GNSS receiver. The MEMS IMU employed is the 
MTI-G-710, with sensor specifications provided in Table 3. Figure 11 presents the GNSS 
velocity output affected by outliers. Figure 12 shows the attitude output by the high-accu-
racy fiber-optic SINS/GNSS navigation system, which serves as the reference. 

Table 3. MTI-G-710 sensor specifications. 

Index Gyroscope Accelerometer 
Update rate 100 Hz 100 Hz 

Standard full range ±450°/s ±20 g 
Initial bias error 0.2°/s 5 mg 

In-run bias stability 10°/h 15 μg 
Noise density 0.01°/s/√Hz 60 μg/√Hz 

 

Figure 9. Vehicle’s trajectory in the field test. 

 

Figure 10. Experimental vehicle and related equipment. 

 

Figure 11. Velocity from the GNSS output in the field test. 

Ve
lo

ci
ty

( m
/s 

)



Remote Sens. 2025, 17, 2680 20 of 24 
 

 

 

Figure 12. Reference attitude in the field test. 

Figures 13–15 present the attitude error curves for the five methods. The OBA method 
exhibits divergence in all three attitude angles. The pitch error of the VBKF method shows 
high variability, and the estimation accuracy is significantly lower compared to other 
methods. Furthermore, the roll and heading errors show divergent trends during the field 
test. In contrast, the remaining three methods achieve convergence in all three attitude 
angles. However, both the BKF and FAKF methods exhibit varying degrees of abrupt 
jumps as a result of outlier interference. The proposed method demonstrates a clear ad-
vantage in stability and accuracy. Taking the heading error as the critical evaluation indi-
cator, it can be observed that after 80 s, the maximum heading error of the BKF method 
reached 7.3°, and that of the FAKF method reached 8°. In contrast, the proposed method 
stabilized the heading error within 1.2°. 

 

Figure 13. Pitch errors of five methods in the field test. 

 

Figure 14. Roll errors of five methods in the field test. 
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Figure 15. Heading errors of five methods in the field test. 

Table 4 summarizes the statistical characteristics of the alignment results for the five 
methods over the interval from 80 s to 120 s. The proposed method achieves STD of less 
than 0.8° for roll and pitch errors, representing improvements of 63% and 57% over the 
BKF and FAKF methods, respectively. The heading error STD of the proposed method is 
0.31°, which represents an improvement of over 2° compared to the other methods. In the 
later stages of the alignment process, around 95 and 115 s, the BKF and FAKF methods 
exhibited abrupt jumps due to outliers in the measurement data. In contrast, the proposed 
method maintains a more stable heading error around 0.8°. Based on the profile toolbox 
of MATLAB 2022a, the running time of the proposed method in the field test is 4.11 s. 
Overall, the proposed in-motion alignment algorithm demonstrates superior accuracy 
and enhanced robustness against disturbances. 

Table 4. The 80~120 s attitude error statistical characteristics. 

Evaluating  
Indicator 

Attitude Error 
(°) OBA VBKF BKF FAKF Proposed 

Mean 
Pitch −1.068 0.668 −0.119 0.227 0.120 
Roll 24.393 1.902 0.058 −0.284 −0.088 

 Heading 102.960 −39.164 −3.869 4.423 0.870 

STD 
Pitch 2.448 0.255 0.078 0.181 0.079 
Roll 5.158 0.391 0.214 0.187 0.079 

Heading 11.172 14.398 2.671 5.034 0.314 

The statistical results indicate that the proposed method significantly reduces the 
alignment time while achieving high alignment accuracy. This result can be attributed to 
two aspects. On the one hand, an adaptive window adjustment approach is applied to 
process the navigation data, in which an innovation gradient is used to distinguish win-
dows with different noise statistical characteristics. By incorporating the multiple back-
tracking mechanism, this approach improves the utilization of navigation data, thereby 
effectively shortening the alignment time. On the other hand, the sliding window method 
mitigates the accumulation of sensor errors. By reconstructing the observation vector us-
ing the residual, the proposed method effectively isolates outliers from the GNSS velocity 
output. Meanwhile, the incorporation of the VB and EM methods mitigates the inaccura-
cies in the predicted error covariance matrix and the measurement noise covariance ma-
trix, thereby enhancing the robustness of the filtering process in complex environments. 
The combination of these two aspects enables a reduction in in-motion alignment time 
and enhances alignment accuracy. 
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5. Conclusions 
This paper proposes an adaptive multiple backtracking robust in-motion alignment 

method of low-cost SINS/GNSS for autonomous vehicles. An outlier suppression strategy 
based on the magnitude matching method is designed to mitigate the effect of outliers. 
An adaptive window adjustment multiple backtracking approach is proposed to effec-
tively utilize navigation data and significantly shorten the alignment time in complex en-
vironments. By intelligently determining the size of the backtracking window, the pro-
posed method effectively improves alignment accuracy. Finally, an EM-based robust var-
iational Bayesian Kalman filter is proposed to improve attitude estimation accuracy. Sim-
ulation and experimental results demonstrate that the proposed method offers significant 
advantages in stability and alignment time. The proposed method completes alignment 
within 120 s and achieves higher alignment accuracy compared to other methods within 
the same alignment time. After 80 s, the heading error of the BKF method remains within 
4°, while that of the FAKF method remains within 7°. In contrast, the proposed method 
converges with a heading error within 2.3°. Compared with existing methods, the pro-
posed method can rapidly achieve the alignment accuracy required for navigation within 
a short duration. Hence, the proposed method is applicable to autonomous vehicles 
equipped with low-cost SINS. Reliable alignment under transient GNSS signal interrup-
tions in complex environments will be addressed in future research. 
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