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Abstract

Simultaneous Localization and Mapping (SLAM) has become a critical tool for fully au-
tonomous driving. However, current methods suffer from inefficient data utilization and
degraded navigation performance in complex and unknown environments. In this paper,
an accurate and tightly coupled method of LiDAR-inertial odometry is proposed. First, a
self-adaptive voxel grid filter is developed to dynamically downsample the original point
clouds based on environmental feature richness, aiming to balance navigation accuracy
and real-time performance. Second, keyframe factors are selected based on thresholds
of translation distance, rotation angle, and time interval and then introduced into the
factor graph to improve global consistency. Additionally, high-quality Global Navigation
Satellite System (GNSS) factors are selected and incorporated into the factor graph through
linear interpolation, thereby improving the navigation accuracy in complex and unknown
environments. The proposed method is evaluated using KITTI dataset over various scales
and environments. Results show that the proposed method has demonstrated very promis-
ing better results when compared with the other methods, such as ALOAM, LIO-SAM,
and SC-LeGO-LOAM. Especially in urban scenes, the trajectory accuracy of the proposed
method has been improved by 33.13%, 57.56%, and 58.4%, respectively, illustrating excellent
navigation and positioning capabilities.

Keywords: fully autonomous driving; SLAM; LiDAR-inertial odometry; self-adaptive
voxel grid filter; factor graph optimization

1. Introduction

Nowadays, vision-based and LiDAR-based methods are widely used in the field of
Simultaneous Localization and Mapping (SLAM). Although cameras are cost-effective
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and provide rich visual information, their performance is highly susceptible to lighting
variations, such as overexposure, underexposure, and rapid illumination changes, which
are common in real-world driving scenarios [1-3]. In contrast, LIDAR sensors are in-
variant to lighting conditions and directly capture geometric structure through dense
point clouds, enabling more reliable and accurate environmental perception under diverse
illumination [4-7]. This fundamental difference in sensing modalities makes LiDAR a more
robust choice for SLAM in unstructured or dynamically lit environments.

In autonomous driving, SLAM serves as the foundation for accurate path generation
and localization: localization provides the vehicle with precise and continuous pose infor-
mation within the global map, while path generation leverages this spatial information
to plan feasible trajectories for path-tracking controllers [8]. Therefore, an accurate and
stable SLAM system directly determines the reliability and accuracy of autonomous driv-
ing. In fully autonomous driving, LiDAR data is often fused with sensor data from IMU
and GNSS to enhance localization accuracy. To support this, various methods have been
proposed to optimize point cloud processing and multi-sensor fusion architectures [9,10].
Zhang et al. [11] proposed the LiDAR Odometry and Mapping (LOAM) method that
associates the global map with the edge and planar features of the point clouds, and it
established a fundamental framework for large-scale scenario SLAM. Based on LOAM,
Shan et al. [12] proposed the Lightweight and Ground-Optimized LiDAR Odometry and
Mapping (LeGO-LOAM) algorithm, which is designed for embedded systems with real-
time capability. It also incorporates ground separation, point cloud segmentation, and
improved Levenberg-Marquardt (L-M) optimization to enhance ground-awareness. In
order to improve the speed and accuracy of loop closure detection, Kim et al. [13] proposed
the Scan Context global descriptor that generates non-histogram features based on 3D
LiDAR. By combining with LeGO-LOAM, it significantly boosts the efficiency of loop
closure detection and enhances the global consistency of the map. Although it does not
directly improve short-distance relative positioning accuracy, the global feature description
framework it constructs lays the foundation for multi-sensor information fusion. After-
ward, Shan et al. [14] proposed the LiDAR Inertial Odometry via Smoothing and Mapping
(LIO-SAM) algorithm. This approach employs factor graphs as its back-end optimization
scheme, enhancing the system’s robustness during rapid movements and demonstrating
strong performance even under intense motion conditions.

In SLAM systems, original point clouds are typically downsampled to improve compu-
tational efficiency while preserving critical feature information. Zhang et al. [15] proposed
the LILO system, which utilizes a uniform voxel grid filtering strategy and validated its
performance in urban environments. Labbé et al. [16] developed the RTAB-Map library,
which also uses voxel grids for downsampling and has achieved excellent performance
in many outdoor long-term and large-scale datasets. The voxel grid filtering strategy
employed in the above methods divides the original point clouds into fixed-size grids and
represents each region using the centroid of its points. To address the limitations of using a
single filter in complex scenes, Chen et al. [17] proposed the DLO method, which combines
a Box filter with a voxel filter. The method was evaluated on the DAPA dataset and tested
on an actual unmanned aerial vehicle system, demonstrating satisfactory performance.
However, it remains challenging to achieve optimal results in scenes with varying levels of
environmental feature richness. In response to this issue, Rakotosaona et al. [18] proposed
a point cloud denoising network, PointCleanNet, which removes noise from original point
clouds through end-to-end learning. Although this method can effectively downsample
the original point clouds, the processing flow depends on GPUs, has high complexity and
is struggles to satisfy the real-time needs of embedded systems. Therefore, studying an
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adaptive downsampling method that balances efficiency and real-time performance is of
great importance.

In different motion scenes, autonomous vehicles exhibit varying motion characteristics,
with their position and attitude continuously changing. Therefore, developing effective
keyframe selection strategies is essential for extracting high-quality keyframes from diverse
motion patterns across different scenes. When in underground environments, Kim et al. [19]
designed a keyframe selection strategy that can dynamically adjust the keyframe selection
interval. This strategy is primarily used to select sparse or dense keyframes based on
the number of downsampled points in spacious or confined underground environments.
Schops et al. [20] proposed the BAD SLAM algorithm that adopts a keyframe selection
strategy based on the interval of original point cloud frames. But in fast-moving scenes, it
may face the problems of insufficient keyframes due to the single screening condition. To
address this issue, Nguyen et al. [21] put forward the MILIOM algorithm which uses the
position translation and rotation angle as the thresholds to screen keyframes. However, in
scenes where objects are moving slowly or stationary, this strategy may result in inaccurate
keyframe selection. Hu et al. [22] proposed a keyframe selection method based on the
Wasserstein distance, which assesses frame importance by comparing the Gaussian mixture
model (GMM) distributions of point clouds. However, this keyframe selection method
inevitably introduces additional computation time. Shen et al. [23] proposed an adaptive
method based on the semantic difference between frames, and it has a better positioning
accuracy than the algorithms that mainly use geometric features as the criterion. However,
the misclassification of semantic segmentation labels may lead to calculation deviations of
the KL divergence, resulting in the wrong selection of keyframes.

At present, LiIDAR is typically used in conjunction with other sensors, such as Inertial
Measurement Unit (IMU) and Global Navigation Satellite System (GNSS), for state estima-
tion and mapping [24-28]. In complex unknown environments, multi-sensor fusion tech-
nology has been demonstrated to significantly enhance navigation accuracy. Li et al. [29]
proposed the GIL framework, which tightly integrates GNSS Precise Point Positioning
(PPP), Inertial Navigation System (INS), and LiDAR, achieving over 50% reduction in posi-
tioning errors in partially occluded scenes. Chiang et al. [30] demonstrated that integrating
Normal Distribution Transform (NDT) scan matching with Fault Detection and Exclusion
(FDE) mechanisms can effectively constrain pose drift in GNSS-denied environments. With
INS/GNSS initialization, the system achieved lane-level accuracy (0.5 m), further support-
ing the necessity of multi-sensor fusion. Building on this idea, Chen et al. [31] proposed
GIL-CKF, a GNSS/IMU/LiDAR fusion method that combines filtering with graph opti-
mization. It incorporates a scenario optimizer based on GNSS quality metrics, allowing
GNSS and motion state observations to alternate with IMU data in an EKF framework,
thereby improving navigation accuracy. In parallel, Hua et al. [32] incorporated motion
manifold constraints, further enhancing the system’s robustness in degraded motion scenes.
As the measurement from GNSS is unreliable from time to time, the inaccurate GNSS
factor can even have a negative influence on the accuracy of trajectory estimation. For
outliers in the aided velocity information provided by GNSS, Lyu et al. [33,34] proposed a
class of robust moving base alignment method, and the residual is used to reconstruct the
observation vector to detect and isolate these outliers. The above work studied multi-sensor
fusion and GNSS outlier suppression and achieved good results. However, more research
is needed on how to select high-quality GNSS factors and on aligning them with LiDAR
keyframe timestamps.

To overcome the above limitations, this paper puts forward a tightly coupled LiDAR-
inertial odometry method for autonomous driving, based on a self-adaptive filter and factor
graph optimization. The main contributions of this paper are as follows:
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1.  Aiming at the limitations of traditional voxel grid filters, a self-adaptive voxel grid
filter is proposed that dynamically downsamples point clouds based on environmen-
tal feature richness. This filter adaptively adjusts the voxel grid size based on the
density and geometric features of the original point clouds, thus effectively balancing
navigation accuracy and real-time performance of the autonomous vehicles.

2. To make full use of point cloud frames, a multi-parameter joint keyframe selection
strategy is proposed. This strategy uses the cumulative translational displacement,
cumulative rotation angle, and time interval between adjacent frames as screening
thresholds. Through joint screening with multiple thresholds, this strategy can capture
the motion data of the autonomous vehicles in different scenes more accurately.

3.  Toimprove the global optimization based on factor graph, an effective GNSS factor
selection strategy is proposed. High-quality GNSS observations are selected, and
they are aligned with the corresponding keyframes through linear interpolation. This
mechanism makes full use of the absolute position signals of GNSS, thereby improving
the navigation and positioning accuracy in complex environments.

This paper is organized as follows: Section 2 elaborates on sensor methods and error
modeling; Section 3 outlines the odometry framework and related methods; Section 4
presents the experimental results and corresponding analysis; and Section 5 concludes with
the key findings and future work.

2. Sensor Methods and Error Modeling
2.1. TOF LiDAR Ranging Method

The Time of Flight (TOF) principle, with its simple and accurate distance measure-
ment capabilities, has become an important technical foundation for achieving position
estimation and map construction. The point cloud data of the LiDAR used in this paper is
collected based on this principle. The schematic diagram of TOF distance measurement is
shown in Figure 1.

Optical system

Light source Reference light
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U

Object

\
/‘\
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ircui E D :
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Figure 1. TOF ranging schematic.

The TOF is to emit single-pulse or continuous-pulse laser through a laser emitter, and
then the sensor receives the laser reflected by the target. Then, the distance between the
LiDAR and the object can be calculated as follows:

D= (1)
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where D is the distance to the target; c is the speed of light; # is the number of clock pulses;
and f is the clock pulse frequency.

2.2. IMU Error Modeling

In an inertial navigation system, both the commanded angular rate and the gyroscope
drift influence the resulting attitude angle errors. In addition, the drift of the gyroscope
produces an extra angular deviation in the reverse direction. The attitude error model of
the IMU can therefore be expressed within the navigation frame 7 as follows:

gbn =¢" x wj;, +dw], — &" (2)

T
where ¢" = [4)21 PN 4){’1} is the platform attitude error calculated in the navigation

T
frame; " = [sg eN 8?1} is the three-axis gyroscope random constant offset in the
navigation frame; wj, is the angular rates from the inertial frame to the navigation frame;
and dw, is the derivative of wj, . In addition, w};, can be represented as:

winn = wine + wgn 3)

The attitude error model expressed in the ENU coordinate frame is given as follows:

p . UE UE SUN
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where L denotes the latitude; Ry represents the radius of curvature in meridian; and Rg
denotes the radius of curvature in prime vertical.

The inertial navigation system utilizes the measurements provided by the inertial
measurement unit to compute navigation information. The correlation between the ac-
celerometer output and the carrier velocity can be characterized through the velocity error
model, expressed in the navigation frame 7 as follows:

60" =f1 x ¢" — 2wl + W) x §v" — (20wl + dwll,) x V" + V" (7)

T
where Jv" = {(Sv’g ooy, (50’{1} is the rate error in the navigation frame; 0" denotes the
T
derivative of 6v"; ]"7 = { fg fl’\‘] f{ﬂ denotes the specific force vector in the navigation

T
frame; V" = [V’é A%+, V*I‘J} represents the three-axis accelerometer bias in the nav-

igation frame; w}, is the earth’s rotation angular rate; dw, is the derivative of w’;

represents the angular rate from the earth frame to the navigation frame; the corresponding

Wen
relationships are given in Equations (8) and (9), respectively:

n _

T
w;, [O wj,cosL  wj,sinL (8)
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The velocity error equation can be represented as follows:
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The position error equation can be represented as follows:
SL LIy N___5n (13)
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2.3. GNSS Error Modeling

Currently, there are four main global navigation satellite systems: the United States
GPS, Russia’s GLONASS, China’s Beidou, and the European Union’s Galileo. In practical
applications, users use satellite receivers to receive radio signals for real-time positioning
and navigation.

The main error sources that affect GNSS measurement accuracy can be divided into
three categories: (1) GNSS satellite errors, which mainly include satellite orbit errors,
satellite clock errors, and ephemeris errors; (2) Signal propagation errors, which mainly
include ionospheric errors and atmospheric delays caused by tropospheric errors, as well as
multipath effects during signal propagation; (3) Receiver errors, mainly including receiver
clock errors and receiver noise. The position error and velocity error of the GNSS receiver
can be regarded as white noise or a first-order Markov process with a short correlation
time and a small mean square error [28]. Therefore, it can be modeled as a first-order
Markov process.

The GNSS position error model can be represented as follows:

: _ 1

OLGNSs = ~ 7 onss OLGNSs + WL GNss
: 1

OAGNSS = — 5 onas 9AGNSS + Wi _GNss (16)
; _ 1

OhgNss = 0hgNss + wi_gNss

Th_GNSS

where 0LgNss, IAGNss, Ohgnss denote the latitude, longitude, and altitude errors of the
GNSS receiver, respectively; T1_cnss, To_GNSs, Th_GNss are the Markov process correlation
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time, generally taken as T;_gnss = TA_GNSS = Th_GNSS = 1 S; WL_GNSS, WA_GNSS, Wh_GNSS
are Gaussian white noise.

The GNSS velocity error model can be expressed as follows:

1

OVE_GNSS = ~ 177 onss O VELGNSS T WVE_GNSS
' _ 1
O0VN_GNSs = — 3 OVN_GNss + WyN_GNss (17)
VN_GNSS
' _ i
OVU_GNSS = — w7 cues O VU_GNSS + Wvu_GNss

where SVE gnss, VN GNss, 0Viu_gnss denote the east, north, and up velocity errors of
the GNSS receiver, respectively; Tyr GNss, TN GNsS, Tvu _GNss are the Markov process
correlation time, generally taken as Tyr gNss = TVN GNSS = Tvu GNSS = 1 S; WyE GNSS,
WYN_GNSS, Wyl _cNss are Gaussian white noise.

3. Tightly Coupled LiDAR-Inertial Odometry Framework

The proposed method, illustrated in Figure 2, comprises four major modules: the
GNSS module, the Inertial Measurement Unit (IMU) module, the loop-closure detection
module, and the LiDAR odometry module. Firstly, the IMU compensates for the motion
distortion of the point clouds and provides the initial pose estimation for the LiDAR
odometry. Thereafter, the LIDAR odometry matches the feature point clouds of the current
frame with the submap. Then, by utilizing scan-context [13], the feature point clouds
are encoded into point cloud descriptors to achieve efficient closed-loop detection [35].
The IMU pre-integration factor, the LIDAR odometer factor, the GNSS factor, and the
loop closure factor are inserted into the global factor graph, and finally, global graph
optimization is updated by the Bayes tree [36]. Benefiting from the multi-sensor fusion
feature of factor graph optimization, this framework exhibits a certain level of robustness
against transient sensor faults. When one sensor provides abnormal data, it can also
help identify the faulty sensor source, and the continuous and consistent observations
from other sensors can dominate the optimization process, thereby effectively suppressing
the accumulation of errors and ensuring the system’s stability during the fault period.
Compared with other traditional methods, the proposed approach aims to improve the
accuracy of simultaneous localization and mapping for ground vehicles.

o | [,
Pre-integration

:

Motion IMU Pre-integrated Factor
Estimation

A 4 \ 4 m——

. . Pose Factor Graph

Segmention Scan Matchin, . .
‘ & £ Estimation Construction
Feature Point Cloud Loop Closure Detection !
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Figure 2. Overall framework of the proposed approach.
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3.1. Self-Adaptive Voxel Grid Filtering

Since there is a large amount of redundant data in the 3D LiDAR point clouds, an
adaptive voxel grid downsampling strategy can be adopted. While retaining the charac-
teristics of the point clouds, this strategy can significantly reduce the number of original
point clouds, enabling the improvement of the computing speed of the subsequent point
cloud registration program without sacrificing too much accuracy. The traditional voxel
grid downsampling strategy divides the input original point clouds into three-dimensional
voxel grids, taking the centroid of the points within each voxel to represent all the points it
contains. The procedure is as follows:

The side length of the point cloud bounding box is calculated as:

Ly = Xmax — Xpmin
Iy = Ymax — Ymin (18)

I; = Zmax — Zmin

where Iy, Iy and [ are the side lengths of the point cloud bounding box in the directions
of the x, y, and z axes, respectively; Xuax, Ymax, Zmax and Xpin, Ymin, Zmin are denoted as
the maximum values and the minimum values on the three coordinate axes of each point
cloud, respectively.

Then the point clouds are divided into voxel grids, the total number of which is
Dy x Dy x D,. The calculation strategy is as follows:

Dy = |L/r]
Dy = [1,/7] 19)
D, =|I;/r|

where 7 is the side length of each grid voxel; Dy, Dy and D, are the number of grids on the
x, y and z axes, respectively.
Finally, the index of each point in the voxel grid can be calculated as follows:

Indexy = | (X — Xpin) /7]
Indexy = [(Y — Ymin) /7]
(20)
Index; = [ (z — zyin) /7]
Index = Indexy + Index, X Dy + Index; X Dy X Dy

where Indexy, Index, and Index, are the indices of a point in the voxel grid along the x, y
and z axes, respectively; and Index is the overall index of the point in the voxel grid.

The elements are sorted according to their index values, and then the gravity of each
voxel centroid is calculated. Finally, the points within each voxel grid are replaced with the
centroid of that corresponding voxel grid.

It should be noted that the sizes and quantities of 3D point clouds collected by different
scenes and LiDAR devices often vary. Therefore, the traditional voxel downsampling
strategy proposed in [37] has to rely on adjusting the grid size manually [38]. However,
this traditional voxel grid filter has certain deficiencies. In view of this, this paper proposes
a new type of adaptive voxel grid filter to better address these problems. In scenes with
abundant feature information, this filter reduces the side length of the voxel grid to retain
as many feature point clouds as possible, thereby effectively improving the accuracy of
subsequent registration approaches. In scenes with scarce feature information, it increases
the side length of the voxel grid to filter out as many invalid point clouds as possible, thus
accelerating the speed of subsequent point cloud registration. Based on the size and density
of the original point clouds, the strategy can adaptively calculate the length of the voxel
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grid, making the number of point clouds basically remain between p,,;;, and puax after
downsampling.

In the self-adaptive voxel grid filter proposed by this paper, the following conditions
must be met one, of which for the end of one downsampling:

n > Nyax (21)

Pmin < f(SfEPn) < Pmax (22)

where Step;, is the edge length of the voxel grid that grows in each iteration; 7 is the number
of iterations; 71,4y is the maximum number of iterations; f() is the self-adaptive voxel grid
filtering function; pmax, Pmin is the maximum and minimum number of point clouds after
downsampling.

The voxel side length Step,, can be calculated through the following steps. To calculate
its initial value more accurately, the point cloud density is defined as:

p
= 23
p Dmux ( )
where p is point cloud density; p is the number of point clouds before downsampling; and
Djyay is the maximum range of the point cloud.

The length of the voxel grids calculated according to p and D,y are defined as:

Stepp =a+b-p (24)
Stepp = D"me (25)

_ Stepp + Stepp
N 2

where Step, and Stepp are the length of the voxel grids calculated according to p

Step; (26)

and Dy,ay; Step; is the initial length of the finally obtained voxel grid; a, b and c are
adjustment coefficients.

In order to keep the number of points in the filtered point clouds stable within an
appropriate range, construct an automatic feedback mechanism for adjusting the voxel
grid. Denote the feedback error and the update formula for the side length of the voxel
grid as follows:

Pdowpnm—afmax if Pdown > Pmax
0 = —hum P phown < Piin 27)
0 if Piin < Pdown < Pmax
Stepy = Step, 1+ K6 (n=1,2,3...... ) (28)

where ¢ is the feedback gain; pj,,;, is current filtered point count; and K is adjustment
coefficient.

It should be noted that if the value of parameter pj,x is too small, numerous char-
acteristics of the original point clouds will be lost. Conversely, if the value of parameter
Pmin 1s too large, the number of point clouds after filtering will be excessively substantial,
potentially resulting in insufficient computing resources. So suitable p,i;,, Pmax should be
set by comprehensively considering the computing resources and the number of features.

The flow chart of downsampling is shown in Figure 3, D;;x and p should be firstly
calculated. After that, Step; are calculated according to Equations (23)—(26). Then,
these aforementioned parameters are substituted into the self-adaptive voxel grid fil-
ter. After downsampling, f(Step,) can be obtained, if f(Step,) is not within the interval
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[Pmin, Pmax] and n is less than nmay, the length of voxel grid will be adapted according to
Equations (27) and (28) and be substituted into the self-adaptive voxel filter again. Repeat
the previous step until f(Step,) is within the interval [pi,, Pmax] OF 1 is greater than #1,,4x.
Finally, the whole target point clouds will be output. Actually, iteratively calculating the
voxel grid length is rather time-consuming. Given that the LiDAR usually operates at the
same resolution, the adaptive voxel filter proposed in this paper calculates a suitable voxel
grid length in the first frame and then directly applies it to subsequent downsampling
processes. As long as the number of points in the downsampled point cloud remains within
the range of [pin, Pmax| during subsequent processing, the voxel grid size can remain
unchanged, thereby saving computational resources.

Start

Set the initial values

Update the length of grid
n=n+l

Start voxel grid filtering

pmm S f(Stepn) S pma.\’

Output the target point cloud

Figure 3. Flow chart of self-adaptive voxel grid filter.

3.2. Multi-Criteria Keyframe Selection Strategy

In the proposed SLAM system, the data used to estimate the pose in the system
includes IMU pre-integration, LIDAR odometry, GNSS measurements, and results of loop
closure. The error of trajectory estimated by LIDAR odometry and the integral value of IMU
will accumulate as the size of the map increases. Therefore, the backend global optimization
module needs to be introduced to fuse and optimize the pose estimation of IMU and LiDAR.
In this paper, the factor graph strategy is designed to realize global optimization. Flexibility
is one characteristic of the factor graph strategy, which can fuse the state estimation of
multiple sensors to obtain the final optimization result. Therefore, both pose estimation
accuracy and overall map consistency can be improved. Even in scenes with poor GNSS
signals, the high-quality keyframes selected by our strategy can maintain stable pose
estimation by LiDAR feature matching data and IMU pre-integration information.
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The proposed factor graph model is shown in Figure 4. Firstly, the pose transformation
from the previous to the current frame is computed, and the LiDAR odometry factor is
then constructed based on this result. Then, the IMU data is integrated to derive the pose of
the unmanned vehicle [39], so that the IMU pre-integration factor can be constructed based
on this pose and subsequently incorporated into the factor graph. At the same time, the
loop-closure factor and GNSS factor are also incorporated into the factor graph to mitigate
cumulative errors arising from prolonged operation.

. . l IMU measurements /\ IMU preintegration factor GNSS measurments ===~ Lidar odometry factor

\ Loop closure factor @ Robot state node @ Lidar keyframe

Figure 4. The factor graph model of the proposed method.

In the Simultaneous Localization and Mapping (SLAM) system, the input frequency
of the odometer is usually high. If all downsampled point cloud frames are directly added
to the factor graph as keyframes without screening, a large number of variables to be
optimized will impose a huge computational burden on the system, making it difficult for
the system to run in real time. In addition, considering that when the unmanned vehicle
makes a sharp turn, the odometer is prone to introducing nonlinear errors. Or when the
vehicle is stationary but the surrounding environment changes dynamically, it will lead
to a decrease in the repeatability of point cloud observations, both of which may increase
the position error. Therefore, based on the traditional keyframe selection strategy that only
uses the translation distance as the screening threshold, this paper proposes a new strategy:
selecting keyframes through three indicators, namely the Euclidean distance, the change in
the rotation angle, and the time interval. The pose transformation between two adjacent
frames can be represented as

AR At

ATa=1y

(29)

The magnitude of angle change is represented by the sum of rotational components as
IAR|| = Aroll + Ayaw + Apitch (30)

The translational transformation of two adjacent point clouds is represented by Eu-
clidean distance, which can be expressed as follows:

|AF] = \/Ax2 4+ Ay? + A2 (31)

Therefore, the cumulative translational transformation and the cumulative rotation
angle change can be calculated separately as follows:

OR =Y IAR| (32)
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0T = ) _.[IAt] (33)

Foew = F, if 6T > @t VIR > @ V't > Ptime (34)

where j is the sequence number of the previous keyframe in the entire odometry output data;
i is the sequence number of the current odometry output data; Fyy is the new keyframe data;
F; is the current odometry output data; 4T is the cumulative translational transformation; R
is the cumulative rotation angle change; ¢; is the threshold of translational transformation;
t is the time interval; @y, is the threshold of time interval; and ¢, is the threshold of
rotation angle change.

When one of the preset thresholds of the keyframe selection strategy is met, the current
frame is selected as a keyframe. According to the pose transformation of the keyframe, the
odometry factor will be calculated and registered in the factor graph. At the same time,
the current frame is registered to the global map to construct the global point cloud. After
all the keyframes are selected, the odometry is calculated based on each frame of point
cloud, but only the keyframes can participate in the global optimization. This strategy
considerably reduces the amount of global calculation while ensuring that the accuracy of
position estimation does not decline significantly. In addition, this strategy also takes into
account the situation where the Euclidean distance changes little, but the rotation angle is
large or the stationary time in a dynamic environment is too long. In this case, most feature
points will vary, making it essential to designate this frame as a keyframe to fully leverage
the environmental information.

3.3. GNSS Integration in Factor Graph Optimization

As shown in Figure 4, after adding high-quality GNSS factors to the factor graph,
the accuracy of state estimation and mapping can be greatly improved, especially in long-
duration and long-distance navigation tasks. On the other hand, inaccurate GNSS factors
will have a negative impact on the optimization results of the entire factor graph. Therefore,
after receiving GNSS signals, it is necessary to first screen out signals with higher credibility
according to their accuracy flag bits. This high-quality GNSS factor selection mechanism is
essentially an effective sensor fault detection method. By comparing the system-estimated
position information with the received GNSS position information, it can proactively
identify and exclude unreliable GNSS signals. Secondly, to improve the reliability of
GNSS factors, this study draws on the latest achievements in the field of multi-sensor
fusion [40] and proposes the improved GNSS factor strategy. By linearly interpolating to
align the timestamps of GNSS and adjacent keyframes, the positioning error in dynamic
environments is significantly reduced. When the GNSS signal is interrupted in GNSS-
challenged environments such as urban canyons, tunnels, or dense forests, the combined
constraints of IMU and LiDAR ensure system stability; the two sensors complement each
other to compensate for the lack of GNSS absolute position constraints, preventing severe
pose drift even during extended GNSS outages.

This paper proposes a method for selecting high-quality GNSS factors and linearly
interpolating to align the timestamps. First, a GNSS observation is only incorporated as
a factor if the received GNSS position falls within the estimated position range from the
system’s LiDAR and IMU. Next, the LiDAR frame timestamp is compared against the
GNSS signal timestamp. Only when the difference value between them is smaller than the
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preset threshold will linear interpolation be performed on GNSS measurements based on
the timestamp. The interpolation process is as follows:

Ratey = (tkey —t)/(t2 —t1)

Rate, = (tp — tkey)/(tZ —t1)

Posey = RateqPosey, + Ratey Poseyq (35)
Posey, = Ratey Posey, + Rate; Pose,y

Pose, = RateyPose,» + RateyPose,q

where Rateq, Rate; are the weight factors of linear interpolations; trey, 11 and t, are the
timestamp of the keyframe and the timestamps of the two adjacent GNSS factors before
and after it, respectively; Posey, Posey, Pose; represent the interpolated longitude, latitude,
and altitude of GNSS factor, respectively; Posey, Posey1, Pose,1, and Posey, Pose,n, Pose;,
are the former and current longitude, latitude, and altitude of GNSS factor, respectively. In
this way, the GNSS factor can be inserted into the factor graph, as illustrated in Figure 4.

4. Results and Analysis
4.1. Experimental Settings

Accurate ground truth is provided by a Velodyne LiDAR scanner (Velodyne LiDAR
Inc., San Jose, CA, USA) and a GPS localization system (Oxford Technical Solutions Ltd.,
Oxford, UK). The Velodyne LiDAR scanner, with its high-precision scanning capabilities,
can capture detailed three-dimensional information of the surrounding environment. The
GPS localization system, on the other hand, offers precise positioning data, ensuring
accurate determination of the vehicle’s location in real time. KITTI datasets are captured
by driving around the mid-size city of Karlsruhe, in rural areas, and on highways. These
diverse driving scenes allow for the collection of rich and comprehensive data. In the mid-
size city of Karlsruhe, various urban features such as buildings, roads, and intersections are
included. Rural areas provide natural landscapes and different terrains, while highways
contribute to data under high-speed and long-distance driving conditions.

Based on KITTI dataset, a series of experiments were conducted to verify the validity
of the proposed method. The experiments were carefully designed to test different aspects
of the method, including its accuracy and efficiency. Multiple trials were carried out to
ensure reliable and reproducible results. All the experiments were performed on a laptop
equipped with an AMD Ryzen 4800U processor and 16 GB of RAM, running Ubuntu
18.04. The AMD Ryzen 4800U processor provides sufficient computing power to handle
the complex algorithms and data processing required in the experiments. The 16 GB of
RAM ensures smooth operation and the ability to manage large datasets without significant
performance bottlenecks.

4.2. Test Results with Self-Adaptive Voxel Grid Filter

To verify the effectiveness of the strategy, the self-adaptive voxel grid filter is applied
to point cloud dataset KITTL [pin, Pmax] is set to be [9500, 11,000], K is set to be 0.01. Those
point clouds shown in Figure 5 are collected in highway, town, and urban scenes.

The results of the adaptive voxel filter are shown in Figure 5, with the left figures
(@), (), (e) showing the original point clouds and the right figures (b), (d), (f) showing the
point clouds after downsampling. Table 1 shows the quantity changes of the point clouds
after downsampling.
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(c) Original point clouds of town.

(e) Original point clouds of urban. (f) Point clouds after downsampling of urban.
Figure 5. Results of downsampling in highway, town and urban scenes.

Table 1. Results after downsampling.

Dataset Type of Scene Scale(m) Original Downsampling
Highway 159.10 119,760 10,113
KITTI Town 159.27 115,467 10,211
Urban 158.70 108,314 9874

As is shown in Figure 5, using a self-adaptive voxel grid filter, without losing too many
feature points, the data in the point clouds has been greatly decreased. The amount of point
clouds in highway scene, town scene, and urban scene is down by 91.5%, 91.2%, and 90.8%,
respectively. The substantial reduction of point cloud data boosts processing efficiency
and eases computational burdens. Meanwhile, minimal loss of feature points retains key
information for subsequent analysis. This balance between data reduction and feature
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preservation verifies the feasibility of the method, ensuring the efficiency and reliability of
the adaptive filtering strategy proposed in this paper.

4.3. Results in Highway Scene

The proposed method was then verified for the accuracy of trajectory in a highway
scene. Some snapshots of this scene and the real trajectory on the satellite image can
be found in Figure 6. In order to reflect the superiority of the proposed method, it was
compared with the prevalent SLAM methods such as Advanced Implementation of LOAM
(ALOAM), LIO-SAM, and Scan Context-LeGO-LOAM (SC-LeGO-LOAM).

Figure 6. Satellite image and some snapshots of the highway scene. The red line on the satellite image
indicates the experimental trajectory.

Figure 7 shows the difference in trajectories between the proposed method, the meth-
ods for comparison, and the value of ground truth. It is observed that in the highway scene,
the long-distance and long-duration movement increases the error accumulation of inertial
sensors, thereby reducing the overall positioning accuracy of the SC-LeGO-LOAM and
LIO-SAM methods. Moreover, since there is no actual loop closure in this scene and there
are a large number of repetitive structures, loop closure detection strategies such as the
scan context of these two algorithms are prone to being misled by similar structures and
producing false matches. This also leads to a decrease in positioning accuracy and system
stability. Instead, the ALOAM method, lacking a loop closure detection module, performs
better than the previous two algorithms.

In contrast, the adaptive voxel filtering strategy proposed here ensures that the number
of downsampled point clouds obtained per frame remains within a stable range. This range
is carefully designed to balance efficiency and accuracy while retaining necessary feature
points. This reduces the probability of false matches of the loop closure detection strategy.
Additionally, the key-frame selection strategy is improved to ensure that there are enough
keyframes for pose estimation during high-speed movement. In addition, since there is
no occlusion in this scene, the proposed algorithm significantly reduces the position error
after incorporating GNSS factors.
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Figure 7. Comparison among trajectories of highway scene.

To be more specific, as shown in Table 2, compared with ALOAM, LIO-SAM, and
SC-LeGO-LOAM, the proposed method achieves an improvement of 18.43%, 62.84%, and
61.32% in trajectory accuracy, respectively. Compared with the town and urban scenes,
the number of static feature points on highways is the smallest. Moreover, most of them
are repetitive structures that can easily lead to misjudgments in the loop closure detection
strategy, and there are also many dynamic feature points. Therefore, the position error of
each algorithm in this scene is the largest.

Table 2. Relative translation error for all methods in highway scene.

Algorithms Max/m Min/m Mean/m RMSE/m STD/m
ALOAM 4.21 1.03 3.58 3.95 0.68
LIO-SAM 9.73 2.56 7.86 7.93 2.83
SC-LeGO-LOAM 10.33 2.34 7.55 7.64 3.11
The proposed method 3.36 0.72 2.92 3.04 0.55

4.4. Results in Town Scene

Next, the proposed method was tested in a town scene. Some snapshots and the real
trajectory of this experiment can be found in Figure 8.

In Figure 9, Figure (b) corresponds to the blue frame and red frame in Figure (a). In
the town scene, there are a large number of static features. The other three algorithms use a
fixed grid side length for the voxel filtering strategy of the original point clouds. However,
for the rich feature information in this scene, the default grid side length results in too many
feature points being lost in the downsampled point clouds after voxel filtering, leading
to a decrease in the position accuracy. The adaptive voxel filtering method proposed in
this paper can dynamically decrease the size of the voxel grid side length according to the
size and density of the original point clouds. Thus, the number of feature point clouds
input to the next stage is maintained within a reasonable range, taking into account both
the accuracy of position estimation and real-time performance.
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Figure 8. Satellite image and some snapshots of the town scene. The red line on the satellite image
indicates the experimental trajectory.
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(a) Comparison among trajectories. (b) Details of trajectories.

Figure 9. Comparison among trajectories of the town scene.

In addition, this scene is also characterized by low speed, frequent turning, and
the existence of loop closures. Therefore, based on the fact that ALOAM and SC-LEGO-
LOAM only use the translation distance, and LIO-SAM adds the rotation angle as the
key-frame selection strategy. The method proposed in this paper adopts a key-frame
selection strategy that additionally incorporates a time threshold as the screening criterion.
This strategy overcomes the problem of increased position estimation errors that may
occur when stationary for a long time or turning slowly at intersections. Moreover, when
passing through open intersections, the strategy proposed in this paper, which introduces
high-quality GNSS factors into the factor graph optimization, can effectively reduce the
positioning error.

Table 3 shows that compared with ALOAM, LIO-SAM and SC-LeGO-LOAM, the
proposed method improves the positioning accuracy by 27.18%, 25.37%, and 31.19%,
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respectively. Since this scene has more static feature points compared to highway and
urban scenes, and there are no large numbers of structures that may lead to misjudgments
in loop closure detection, the position accuracy of each algorithm in this scene is the best.

Table 3. Relative translation error for all methods in the town scene.

Algorithms Max/m Min/m Mean/m RMSE/m  STD/m
ALOAM 4.63 0.31 2.06 2.20 0.78
LIO-SAM 4.89 0.78 2.01 2.17 0.23
SC-LeGO-LOAM 4.78 0.52 2.18 2.32 0.13
The proposed method 2.20 0.32 1.50 1.55 0.37

4.5. Results in Urban Scene

Finally, the proposed method was tested in an urban scene. Some snapshots and
the real trajectory of this experiment are presented in Figure 10. In Figure 11, Figure (b)
corresponds to the blue frame and red frame in Figure (a). In the urban scene, the static
feature information is rich but unevenly distributed. For example, there are significant
differences in the point cloud quantity between building clusters and open intersections.
When downsampling the original point clouds, the fixed-side-length voxel filtering strategy
adopted by ALOAM, LIO-SAM, and SC-LeGO-LOAM is difficult to achieve good results.
When the feature information is abundant, some key feature point clouds will be lost, which
in turn leads to relatively large errors in subsequent key-frame processing and position
calculation. While when the feature information is scarce, too many feature points are
collected. This not only fails to improve the accuracy but also slows down the speed at
which the program processes the point clouds. However, the adaptive voxel filtering can
effectively overcome the challenge of uneven distribution of static features. It dynamically
adjusts the voxel grid size according to the size and density of the point clouds to ensure
that the collected feature points are maintained within a reasonable range, so that the
subsequent process can achieve accurate position estimation while also taking into account
the processing speed.

| KAMMERER

Hygiene fur Profis

Figure 10. Satellite image and some snapshots of the urban scene. The red line on the satellite image
indicates the experimental trajectory.
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Figure 11. Comparison among trajectories of the urban scene.

In addition, due to the characteristics of many sharp turns and occlusions in this scene,
the improved key-frame selection strategy can collect a sufficient number of keyframes
at turning points to achieve more accurate positioning. Even in environments where
valid GNSS signals are lacking in most areas, the dense keyframes selected by this strat-
egy still provide sufficient interframe motion constraints. These constraints are used to
construct continuous factor graph edges, thereby suppressing cumulative pose errors.
Moreover, high-quality GNSS factors can be screened out in the relatively small number
of unobstructed areas and incorporated into the factor graph; these GNSS factors help
optimize the global pose and reduce position errors caused by issues such as IMU drift or
LiDAR mismatches.

Table 4 shows that compared with ALOAM, LIO-SAM and SC-LeGO-LOAM, the
proposed method enhances the accuracy of the position by 33.13%, 57.56%, and 58.4%,
respectively. Compared with the other two scenes, there are not many repetitive structures
in the urban scene, but there are a considerable number of dynamic feature point clouds.
Therefore, the performance of each algorithm in this scene is at an intermediate level among
the three scenes.

Table 4. Relative translation error for all methods in the urban.

Algorithms Max/m Min/m Mean/m RMSE/m  STD/m
ALOAM 7.00 0.01 3.44 3.95 1.94
LIO-SAM 9.58 0.58 5.42 5.87 2.26
SC-LeGO-LOAM 16.92 0.58 5.53 6.05 2.46
The proposed method 6.84 0.01 2.30 2.64 1.38

In practical applications, real-time performance is another crucial indicator for eval-
uating SLAM systems. The runtime of ALOAM, LIO-SAM, SC-LeGO-LOAM, and the
proposed method is tested on all three datasets, and the results are shown in Table 5.
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Table 5. Runtime of algorithms for processing one scan.
Scenes ALOAM  LIO-SAM  SC-LeGO-LOAM The Proposed
Method
Highway 96 ms 84 ms 69 ms 79 ms
Town 100 ms 85 ms 70 ms 80 ms
Urban 102 ms 87 ms 74 ms 83 ms

It can be seen that the runtime of the proposed method decreases by about 5.47% and
18.79%, respectively, when compared with ALOAM and LIO-SAM. In addition, it should
be noted that SC-LeGO-LOAM adds the Scan Context algorithm to the lightweight LeGO-
LOAM method to detect loop closures. In structured scenes without loop closures, such as
highways, false detections are likely to occur. The proposed method has a slightly longer
running time, but it can reduce the probability that the estimation accuracy is reduced due
to false loop-closure detections.

5. Conclusions

SLAM systems suffer from the challenges of instability and inaccuracy. In this paper,
a new method is designed to perform real-time and accurate state estimation for fully
autonomous driving. The proposed method adopts an adaptive voxel grid filter, which
dynamically adjusts the voxel grid size in scenes with different feature information richness
levels to ensure both accuracy and real-time performance. The strategy to select keyframes
can help the system to be more accurate in various scenes. At the same time, the GNSS factor
can correct the trajectory and effectively reduce the position error over time. Experimental
results indicate that the proposed approach operates efficiently across various scenes while
yielding smaller position errors. The proposed method has demonstrated very promising
results when compared with the other methods, such as ALOAM, LIO-SAM, and SC-LeGO-
LOAM. Especially in urban scenes, the trajectory accuracy of the proposed method achieves
improvements of 33.13%, 57.56%, and 58.4%, respectively.

In the future, the deep-learning method can be applied to the proposed method to
remove the dynamic objects. In addition, the visibility-based range image method and the
LiDAR method can be fused to get better accuracy.
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