Fast 3D joint inversion of gravity and magnetic data based on cross gradient constraint

Sheng Liua, Xiangyun Wana, Shuanggen Jinb,c,*, Bin Jiaa, Songbai Xuanc, Quan Loua, Binbin Qina, Rongfu Penga, Dali Sund

a Henan University of Urban Construction, Pingdingshan 467041, China
b School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
c Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
d The First Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China

* Corresponding author. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
E-mail addresses: 15002404100@qju.com (S. Liu), sywan51@126.com (X. Wan), sgjin@shao.ac.cn (S. Jin), jia_yang101@163.com (B. Jia), sxuan@sao.ac.cn (S. Xuan), 201910090@hncj.edu.cn (Q. Lou), qinbinjl@126.com (B. Qin), 20172056@hncj.edu.cn (R. Peng), 574110777@qq.com (D. Sun).

Keywords: Gravity and magnetic data Joint inversion Triple Cross-gradient constraint

1. Introduction

Geophysical inversion is a basic method for studying the crustal or lithospheric structure and evolution of the Earth. However, it is difficult for geophysical inversion to accurately determine the deep structures due to its inherent multiple solutions. Joint inversion of multiple geophysical data effectively reduces the problem of multiple solutions [1–4]. Currently, joint inversion methods can be divided into 2 categories. Firstly, the joint inversion is realized based on the coupling relationship between different physical property parameters [5–12]. However, the geological conditions originating from different regions are different, and the corresponding empirical function relationship could be more consistent. Therefore, the joint inversions based on the empirical relationship of the physical property parameters contain certain limitations.

In general, the joint inversion methods for structural coupling constraints are based on different physical property models with the same structure. Gallardo and Meju [13,14] proposed a cross-gradient function to identify the boundaries of the same structures through the cross-product of the gradients of the different physical models, and conducted a two-dimensional cross-gradient joint inversion of seismic traveltime and DC resistivity data. Subsequently, Gallardo et al. [15] showed a joint inversion of the multiphysical parameters of the P-wave and S-wave, DC sounding and magnetic data in a region of Mexico. Gallardo et al. [16] once again conducted a multi-physical cross-gradient joint inversion of marine...
seismic reflection, marine magnetotelluric, gravity and magnetic data on a long profile in a region of Brazil. Currently, the cross-gradient joint inversion method has been widely adopted in the joint inversion of geophysical data [17–21].

However, computational efficiency consistently restricts the development of the application of field data inversion. From the perspective of joint inversion of gravity and magnetic data, this paper intends to develop an efficient method for deep structure detection to meet the needs of efficient computing. Generally, the cross-gradient joint inversion requires the cross-product calculation of the gradients of the physical property models, and the models’ gradients are typical sparse matrices. Therefore, computation directly on large sparse matrices will consume a lot of computing resources and calculation time. Consequently, optimizing the estimation of sparse matrices with suitable strategies for reducing computing cost is momentous. In this paper, based on the sparse matrices’ storage and operation strategy of triplet, a fast cross-gradient joint inversion method is adopted to calculate the gradients of the density model and magnetization model. Fig. 1 represent a schematic diagram of joint inversion of geophysical data [17].

2. Methodology

2.1. Cross gradient constraint

Generally, the magnitude of the cross-gradient vector obtained by the cross product of the gradient vectors of the density model and magnetization model can reflect the structural similarity of the two physical property models. Generally, the cross-gradient vector can be expressed as the following formula.

\[
t = (t_x, t_y, t_z) = \nabla m_1 \times \nabla m_2 = \begin{vmatrix} i & j & k \\
\nabla m_1^x & \nabla m_1^y & \nabla m_1^z \\
\nabla m_2^x & \nabla m_2^y & \nabla m_2^z \\
\end{vmatrix}
\]

For a single meshing cell, \(t = (t_x, t_y, t_z) \) represents the cross-gradient vector of the 2 physical property models in the \(x, y \) and \(z \) direction. For the all underground grid cells, \(t \) represents a matrix of order \(N \times 3 \), and \(N \) is the number of the volume pixels. Its \(i_{th} \) rows represent the cross-gradient vectors of the two models at \(i_{th} \) unit. \(i, j \) and \(k \) represent unit vectors in the \(x, y \) and \(z \) directions, respectively. \(m_1 \) and \(m_2 \) represent the density model and the magnetization model, respectively. \(\nabla m_1 = \nabla m_1^x, \nabla m_1^y, \nabla m_1^z \) represent the gradient vectors of the density model and the magnetization model, respectively. In Eq. (1), \(\nabla m_1^x, \nabla m_2^x, \nabla m_1^y, \nabla m_2^y, \nabla m_1^z, \nabla m_2^z \) represent the gradient matrix of the density model \(m_1 \) in the \(x, y \) and \(z \) directions, respectively, and \(\nabla m_1^x, \nabla m_2^x, \nabla m_1^y, \nabla m_2^y, \nabla m_1^z, \nabla m_2^z \) represent the gradient matrix of the magnetization model in the \(x, y \) and \(z \) direction, respectively. In this paper, the forward difference method is adopted to calculate the gradients of the density model and magnetization model. Fig. 1 represent a schematic diagram of joint inversion of geophysical data [17].

Then, the 3 components of the cross-gradient operator of the density model and magnetization model can be transformed as the following formulas.

\[
\begin{align*}
t_x &= \nabla m_1^x \nabla m_2^x - \nabla m_1^y \nabla m_2^y + \nabla m_1^z \nabla m_2^z = D_1 m_2 D_1 m_1 - D_2 m_2 D_2 m_1 \\
t_y &= \nabla m_1^y \nabla m_2^x - \nabla m_1^x \nabla m_2^y = (D_2 m_2 D_1 - D_1 m_2 D_2) m_1 = B x m_1 \\
t_z &= \nabla m_1^z \nabla m_2^x - \nabla m_1^x \nabla m_2^z = (D_3 m_2 D_1 - D_1 m_2 D_3) m_1 = B y m_1 \\
\end{align*}
\]

(2)

Generally, the structure similarity of different physical property models defined by the cross-gradient vector \(t \) contains two different cases. The first case represent that the 2 physical property models change simultaneously in the same or the opposite direction at the same position. The second case represent that the parameter in a physical property model remains constant, while the parameter of the other physical property model arbitrarily changes at the same position. Therefore, when the value of the cross-gradient vector \(t \) is equal to 0, it means that the structures of the density model and the magnetization model at the corresponding positions are similar.

2.2. Cross-gradient joint inversion method

Generally, the objective function of the cross-gradient joint inversion of geophysical data includes data constraint, model constraint and cross-gradient constraint [13,14], which can be expressed as the following formula.

\[
\begin{align*}
\Phi(m_1, m_2) &= \mu_1 \Phi_{d_1} (m_1) + \mu_2 \Phi_{d_2} (m_2) + \mu_3 \Phi_{m_1} (m_1) + \mu_4 \Phi_{m_2} (m_2) \\
&+ \beta_1 \Phi_{cross} (m_1, m_2) \\
&+ \beta_2 \Phi_{cross} (m_1, m_2) \\
&+ \lambda \Phi_{cross} (m_1, m_2) \\
&= \mu_1 \| G_1 m_1 - d_1 \|_2^2 + \beta_1 \| w_1 (m_1 - m_1^{ref}) \|_2^2 \\
&+ \mu_2 \| G_2 m_2 - d_2 \|_2^2 + \beta_2 \| w_2 (m_2 - m_2^{ref}) \|_2^2 \\
&+ \lambda \| G_3 m_3 - d_3 \|_2^2 + \beta_3 \| w_3 (m_3 - m_3^{ref}) \|_2^2 \\
\end{align*}
\]

(4)
where \(\Phi \) represents the objective function of the cross-gradient joint inversion; \(\Phi_1 \) and \(\Phi_2 \) represent data constraints of gravity and magnetic data, respectively; \(\Phi_m \) and \(\Phi_n \) represent model constraints of gravity and magnetic data, respectively; \(G_1 \) and \(G_2 \) represent the forward response of the density model and magnetization model, respectively; \(m^\text{d} \) and \(m^\text{w} \) represent the observed gravity data and magnetic data, respectively; \(\beta_1 \) and \(\beta_2 \) represent the weighting parameters of the gravity and magnetic data constraints, respectively; \(\beta_1 \) and \(\beta_2 \) represent the regularization parameters of gravity and magnetic data, respectively, and \(\lambda \) represents the weighting parameter of the cross-gradient constraint. \(w_1 \) represents the result of \(w_m \) multiplied the depth weighted matrix \([22,23], w_m = (1 - \tau_1) (m^T + \epsilon^2)^{-1/2} + \tau_1 f^{1/2} [24] \). \(I \) represents the identity matrix, \(\epsilon \) represents a small non negative value, \(\tau_1 \) ranges from 0 to 1.0 and \(w_2 \) contain the similar form of \(w_1 \).

The strategy of alternating iterations [18] can be adopted to avoid the choice of parameters \(\mu_1 \) and \(\mu_2 \), and then the objective function of the cross-gradient joint inversion can be transformed as the following formulas.

\[
\Phi_1(m_1, m_2) = \Phi_d(m_1) + \beta_1 \Phi_m(m_1) + \lambda_1 \Phi_{\text{cross}}(m_1, m_2)
\]

\[
\Phi_2(m_1, m_2) = \Phi_d(m_2) + \beta_2 \Phi_m(m_2) + \lambda_2 \Phi_{\text{cross}}(m_1, m_2)
\]

\[
\begin{align*}
\frac{\partial \Phi_1}{\partial m_1} &= G_1^T G_1 m_1 + \beta_1 \Phi_m(m_1) + \gamma_1 \Phi_{\text{cross}}(m_1, m_2) \\
\frac{\partial \Phi_2}{\partial m_2} &= G_2^T G_2 m_2 + \beta_2 \Phi_m(m_2) + \gamma_2 \Phi_{\text{cross}}(m_1, m_2)
\end{align*}
\]

(5)

where \(\lambda_1 \) and \(\lambda_2 \) represent the weighting parameters of the cross-gradient constraint for gravity and magnetic data, respectively. The conjugate gradient algorithm is adopted to solve the objective function of the cross-gradient joint inversion, and the gradients of the objective function needs to be calculated. After taking the derivatives of Eq. (5) for density model \(m_1 \) and magnetization model \(m_2 \), respectively, the following equation can be obtained.

\[
\begin{align*}
\frac{\partial \Phi_1}{\partial m_1} &= G_1^T G_1 m_1 + \beta_1 \Phi_m(m_1) + \gamma_1 \Phi_{\text{cross}}(m_1, m_2) \\
\frac{\partial \Phi_2}{\partial m_2} &= G_2^T G_2 m_2 + \beta_2 \Phi_m(m_2) + \gamma_2 \Phi_{\text{cross}}(m_1, m_2)
\end{align*}
\]

(6)

In the inversion of field data, the model weighting and re-weighting strategies can improve the resolution of the recovered models and speed up the convergence efficiency. Let \(m_1 = w_1, m_2 = w_2, m_1^\text{d} = m_1 \), \(m_2 = w_2, m_1^\text{w} = m_1, m_1^\text{dref} = m_1, m_1^\text{wref} = m_1, G_1 = G_1 w_1^-1, G_1^\text{d} = G_1 w_1^-1, G_1^\text{w} = G_1 w_1^-1, G_1^\text{dref} = G_1 w_1^-1, G_1^\text{wref} = G_1 w_1^-1, B_1^\text{d} = B_1 w_1^-1, B_1^\text{w} = B_1 w_1^-1, B_1^\text{dref} = B_1 w_1^-1, B_1^\text{wref} = B_1 w_1^-1, \). Eq. (5) can be transformed as the following formulas.

\[
\begin{align*}
\Phi_1(m_1^\text{d}, m_2^\text{w}) &= \Phi_d(m_1^\text{d}) + \beta_1 \Phi_m(m_1^\text{d}) + \gamma_1 \Phi_{\text{cross}}(m_1^\text{d}, m_2^\text{w}) \\
\Phi_2(m_1^\text{w}, m_2^\text{w}) &= \Phi_d(m_2^\text{w}) + \beta_2 \Phi_m(m_2^\text{w}) + \gamma_2 \Phi_{\text{cross}}(m_1^\text{d}, m_2^\text{w})
\end{align*}
\]

(7)

From Eq. (7), the following Eq. (8) can be acquired.

\[
\begin{align*}
\frac{\partial \Phi_1}{\partial m_1^\text{d}} &= G_1^\text{d} G_1 m_1^\text{d} + \beta_1 \Phi_m(m_1^\text{d}) + \gamma_1 \Phi_{\text{cross}}(m_1^\text{d}, m_2^\text{w}) \\
\frac{\partial \Phi_2}{\partial m_2^\text{w}} &= G_2^\text{w} G_2 m_2^\text{w} + \beta_2 \Phi_m(m_2^\text{w}) + \gamma_2 \Phi_{\text{cross}}(m_1^\text{d}, m_2^\text{w})
\end{align*}
\]

(8)

In this paper, the elastic-net regularization constraint is adopted to the model constraint [24,25] and the reference models are all zero values.

2.3. Fast cross-gradient joint inversion method

The forward difference method is adopted for calculating the gradients of the physical property models, and each row of the matrices of the gradients has only 2 non-zero elements. \(D_x, D_y \) and \(D_z \) are the finite difference matrices in the \(x, y \) and \(z \) directions, respectively, and those matrices are sparse matrices of dimension \(N \times N \). The dimensions of the finite difference matrices will be increased with the increasing number of volume pixels. The calculation of the cross-gradient constraint and its gradient involves finite difference matrices. When computing them directly, it will consume a lot of memory and time. The triple method is adopted to store and operate the sparse matrices, which only need to store the number of rows, columns and element values of the non-zero elements of the sparse matrices. Therefore, the triple method is adopted to compute and store sparse matrices to implement a fast cross-gradient joint inversion process in this paper.

Firstly, the storage and computation of \(D_x, D_y \) and \(D_z \) will be optimized. The forward difference matrix \(D_x \) can be expressed as a \(2N \times 3 \) based on the triple method. The 3 elements of each row in the \(D_x \) are the row number, column number, element value of the non-zero element, and then the data in the third column is divided by the step size \(dx \), which is the subdivision unit in the \(x \) direction. A triple matrix stores all non-zero elements sequentially in row-major order. In a similar way, \(D_y \) and \(D_z \) can be transformed to a \(2N \times 3 \) and \(N \times N \), respectively. \(D_x \) can be transformed to a \(2N \times 3 \) and \(N \times N \) can be transformed to a \(2N \times 3 \), where \(N \) is the number of rows.
and \(N_{row}\) represent the numbers of meshing units in the x and y direction, and then the data in the third column of \(D_y\) and \(D_z\) are divided by the step size \(dy\) in the y direction and \(dz\) in the z direction, respectively. It can be found that the storage capacity of the \(D_x, D_y\) and \(D_z\) are reduced from \(N \times N\) to \(2 \times N \times 3\), which presents that the magnitude of the calculation amount is reduced to the \(1/N\) of that of the original method.

Secondly, the storage and calculation of the cross-gradient matrices \(Bx_1, By_1\) and \(Bz_1\) are optimized.

\[
\begin{align*}
Bx_1 &= D_y(D_zm_2) - D_z(D_ym_2) \\
By_1 &= D_z(D_ym_2) - D_y(D_zm_2) \\
Bz_1 &= D_z(D_ym_2) - D_y(D_zm_2) \quad (9)
\end{align*}
\]

In Eq. (9), the calculation of \(Bx_1\) is divided into 2 parts \(Bx_1^1\) and \(Bx_1^2\) (\(Bx_1^1 = D_y(D_zm_2), Bx_1^2 = D_z(D_ym_2)\)). Then, the calculation of \(Bx_1^1\) is also divided into 2 steps, the first step has the following form.

\[
D_y m_2 = \begin{bmatrix}
1 & 1 & -1/dz \\
1 & 1 + N_{row} \times N_{col} & 1/dz \\
2 & 2 & -1/dz \\
2 & 2 + N_{row} \times N_{col} & 1/dz \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
m_1^1 \\
m_2^1 \\
m_1^2 \\
m_2^2 \\
\vdots \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
-1/dz \times m_1^1 + 1/dz \times m_2^1 \times N_{row} \times N_{col} \\
-1/dz \times m_2^1 + 1/dz \times m_1^2 \times N_{row} \times N_{col} \\
\vdots \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
Z_1^1 \\
Z_2^1 \\
\vdots \\
\end{bmatrix}
\]

The second step can be expressed as the following form.

\[
Bx_1^1 = D_y \begin{bmatrix}
Z_1^1 \\
Z_2^1 \\
\vdots \\
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & -1/dy \\
1 & 1 + N_{col} & 1/dy \\
2 & 2 & -1/dy \\
2 & 2 + N_{col} & 1/dy \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
Z_1^1 \\
Z_2^1 \\
\vdots \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 1 -1/dy \times Z_1^1 \\
1 & 1 + N_{col} \times Z_1^1 \\
2 & 2 - 1/dy \times Z_1^2 \\
2 & 2 + N_{col} \times Z_1^2 \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\]

Additionally, the calculations of \(By_1\) and \(Bz_1\) are similar as that of \(Bx_1\). From the above matrices calculations, it can be found that the dimensions of the matrices \(Bx_1, By_1\) and \(Bz_1\) are all reduced from \(2 \times (N \times N) \times (N \times N) \times (N \times 1)\) to \(2 \times (2 \times N \times 3) \times (N \times 1) \times (2 \times N \times 3)\) and the magnitude of the calculation amount is reduced to the \(1/N^2\) of that of the traditional method. Additionally, this strategy can be also applied to the operations on \(Bx_2, By_2\) and \(Bz_2\).

Then, considering the computations of \(Bx_1m_1, By_1m_1\), and \(Bz_1m_1\) in the cross-gradient constraint.

\[
D_y m_2 = \begin{bmatrix}
1 & 1 & -1/dy \\
1 & 1 + N_{col} & 1/dy \\
2 & 2 & -1/dy \\
2 & 2 + N_{col} & 1/dy \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
m_1^1 \\
m_2^1 \\
m_1^2 \\
m_2^2 \\
\vdots \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
-1/dy \times m_1^1 + 1/dy \times m_2^1 \times N_{col} \\
-1/dy \times m_2^1 + 1/dy \times m_1^2 \times N_{col} \\
\vdots \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
Y_1^1 \\
Y_2^1 \\
\vdots \\
\end{bmatrix}
\]

\[
Bx_1^2 = D_y \begin{bmatrix}
Y_1^1 \\
Y_2^1 \\
\vdots \\
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & -1/dz \\
1 & 1 + N_{row} \times N_{col} & 1/dz \\
2 & 2 & -1/dz \\
2 & 2 + N_{row} \times N_{col} & 1/dz \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
Y_1^1 \\
Y_2^1 \\
\vdots \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 1 & -1/dz \times Y_1^1 \\
1 & 1 + N_{row} \times N_{col} & 1/dz \times Y_1^1 \\
2 & 2 & -1/dz \times Y_1^2 \\
2 & 2 + N_{row} \times N_{col} & 1/dz \times Y_1^2 \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\]

Then, the calculation of \(Bx_1^2\) is also divided into 2 steps.
Furthermore, the calculations of $\mathbf{Bx}_1 \mathbf{m}_1$ and $\mathbf{Bz}_1 \mathbf{m}_1$ are similar as $\mathbf{Bx}_1 \mathbf{m}_1$. The dimensions of $\mathbf{Bx}_1 \mathbf{m}_1$, $\mathbf{By}_1 \mathbf{m}_1$ and $\mathbf{Bz}_1 \mathbf{m}_1$ are reduced from $(N \times N) \times (N \times 1)$ to $2 \times 2 \times (N \times 3) \times (N \times 1).$ Obviously, the magnitude of the quantity is reduced to the $1/N$ of that of the original method. Additionally, this strategy also can be applied to the operations on $\mathbf{Bx}_2 \mathbf{m}_2$, $\mathbf{By}_2 \mathbf{m}_2$, and $\mathbf{Bz}_2 \mathbf{m}_2$.

Finally, the $\mathbf{Bx}_1^T \mathbf{Bx}_1$, $\mathbf{By}_1^T \mathbf{By}_1$, and $\mathbf{Bz}_1^T \mathbf{Bz}_1$ are computed using the triple method.

\[
\mathbf{Bx}_1^T \mathbf{Bx}_1 \mathbf{m}_1 = (\mathbf{Bx}_1^T - \mathbf{Bx}_1^{TT}) \mathbf{Bx}_1 \mathbf{m}_1
\]

\[
\mathbf{By}_1^T \mathbf{By}_1 \mathbf{m}_1 = (\mathbf{By}_1^T - \mathbf{By}_1^{TT}) \mathbf{By}_1 \mathbf{m}_1
\]

\[
\mathbf{Bz}_1^T \mathbf{Bz}_1 \mathbf{m}_1 = (\mathbf{Bz}_1^T - \mathbf{Bz}_1^{TT}) \mathbf{Bz}_1 \mathbf{m}_1
\]

In Eq. (10), $\mathbf{Bx}_1^T \mathbf{Bx}_1 \mathbf{m}_1$ is calculated by the triple method and the corresponding equations can be expressed as follows.

\[
(\mathbf{Bx}_1^T - \mathbf{Bx}_1^{TT}) \mathbf{Bx}_1 \mathbf{m}_1 = \begin{bmatrix}
1 & 1 & -1/dy \times Z_1^1 \\
1 & 1 + N_{\text{col}} & -1/dy \times Z_1^1 \\
2 & 2 & -1/dy \times Z_1^2 \\
2 & 2 + N_{\text{col}} & -1/dy \times Z_1^2 \\
\vdots & & \vdots
\end{bmatrix}_{2N \times 3} \begin{bmatrix}
m_1^1 \\
m_1^2 \\
m_1^3 \\
m_1^4 \\
\vdots \\
N_{\times 1}
\end{bmatrix}

\]

\[
= \begin{bmatrix}
-1/dy \times Z_1^1 \times m_1^1 + 1/dy \times Z_1^1 \times m_1^{1+N_{\text{col}}} \\
-1/dy \times Z_1^2 \times m_1^1 + 1/dy \times Z_1^2 \times m_1^{1+N_{\text{col}}} \\
\vdots \\
N_{\times 1}
\end{bmatrix}

\]

The dimensions of the $\mathbf{Bx}_1^T \mathbf{Bx}_1$, $\mathbf{By}_1^T \mathbf{By}_1$ and $\mathbf{Bz}_1^T \mathbf{Bz}_1$ during the calculations are reduced from $(N \times N) \times (N \times N) \times (N \times N)$ to $2 \times 2 \times (N \times 3) \times (N \times 3) \times (N \times 1)$, suggesting that the magnitude of the calculation amount is reduced to the $1/N^2$ of that of the original method. In addition, this strategy also applies to compute $\mathbf{Bx}_2 \mathbf{m}_2$, $\mathbf{By}_2 \mathbf{m}_2$ and $\mathbf{Bz}_2 \mathbf{m}_2$. In this paper, the model weighting and re-weighting strategies are also adopted to improve the accuracy and speed up the convergence efficiency of the fast cross-gradient joint inversion.
3. Results and validation

Synthetic data and field data are adopted to verify the validity and applicability of the developed method in this paper. All inversion calculations are performed on an Intel(R)-Xeon(R)-CPU-E5-2600-V4 2.10-GHz machine with 123 G8 RAM.

3.1. Synthetic model test

The synthetic model data is adopted to certificate the original cross-gradient constraint versus the fast cross-gradient constraint. Fig. 2a and b presents a 3-D view of the synthetic model. The density model includes 2 hexahedrons with uniform density, while the magnetization model contains a uniform layered model.

The cross-gradient values of the above synthetic models are calculated by the original cross-gradient method and the fast cross-gradient method, respectively. Fig. 3a and b illustrate the slices of cross-gradient values calculated by the original method. Fig. 3c and d represent the slices of the cross-gradient values calculated by the fast method. It can be found that the cross-gradient values calculated by the 2 methods are consistent with each other, suggesting the correctness of the fast cross-gradient constraint. Obviously, both calculation methods can obtain the boundaries of the same structure of the 2 physical property models, suggesting that the 2 cross-gradient constraints have the same structural coupling capability.

The maximum memory consumptions among different computational methods are listed in Table 1 for different meshes to certificate the efficiency of the proposed method. In the inversion process, the Jacobian matrix is calculated during each iteration, rather than storing the Jacobian matrix at the beginning of the inversion. From Table 1, the memory requirements can be effectively reduced by using the fast cross-gradient joint inversion method. The more grid cells are divided, the higher the reduction rate of the computing memory required.

A synthetic model data is adopted to certificate the applicability of the developed method in this paper. Fig. 4a and b presents a 3-D view of the synthetic model. The data on the surface are generated on a grid with 21 × 21 = 441 points and a grid spacing of 100 m. The gravity and magnetic data computed from the synthetic model are presented in Fig. 4c and d, respectively. To perform the inversion, the subsurface volume is discretized into 20 × 20 × 10 prisms of sizes 100 m in each dimension. The bound constraints 0 ≤ \(m_1 \leq m_1 \leq 1.0 \) g/cc, and 0 ≤ \(m_2 \leq m_2 \leq 1.0 \) A/m, are imposed on all inversions.

The number of iterations is set to 100, the initial density model and the reference density model are set to 0.01 g/cc and 0 g/cc,
respectively, and the initial magnetization model and the reference magnetization model are set to 0.01 A/m and 0 A/m, respectively. The parameters of the regularization method are $t_1 = 0.01$ and $\varepsilon = 0.001$.

Then, separate inversions of the gravity and magnetic data are performed. Fig. 5a and b represent the slices of the recovered density model at $x = 1000$ m and $z = 400$ m, respectively. Fig. 5c and d illustrate the slices of the recovered magnetization model at $x = 1000$ m and $z = 400$ m, respectively. From Figs. 4 and 5, the recovered density and magnetization models can delineate the distribution of geology anomalous bodies.

Then, the weighting parameters of the cross-gradient constraints are set to 1.01^2, the rest parameters are the same as those for separate inversions, and the original cross-gradient joint inversion of gravity and magnetic data are performed. Fig. 6a and b illustrate the slices of the recovered density model at $x = 1000$ m and $z = 400$ m. Fig. 6c and d represent the slices of the recovered magnetization model at $x = 1000$ m and $z = 400$ m. From Figs. 5 and 6, the recovered density and magnetization models of the joint inversion are closer to the values of the actual model and the structural consistency of joint inversion results is also higher.

Additionally, the time for original cross-gradient joint inversion is 28 min.

Then, the parameters are consistent with those of the original joint inversion, and the fast inversion is conducted. Fig. 7a and b represent the slices of the recovered density model at $x = 1000$ m and $z = 400$ m. Fig. 7c and d represent the slices recovered magnetization model at $x = 1000$ m and $z = 400$ m. From Figs. 6 and 7, it can be found that the recovered models obtained from the 2 methods are very close, which can be considered that both methods can play the role of structural coupling constraints. The computation time of the fast cross-gradient joint inversion is 7 min, which is $1/4$ of the computation time of the original cross-gradient joint inversion and indicates that the computing efficiency is greatly improved. Furthermore, the reconstructed accuracy of the fast cross-gradient joint inversion compared to the recovered accuracy of the separate inversions is also significantly modified.

Fig. 8 represent the cross-gradient values calculated from the recovered models. Fig. 8a–c illustrate the vertical slices of the cross-gradient values at $x = 1000$ m calculated from the recovered results of the separate inversions, the original cross-gradient joint inversion and the fast cross-gradient joint inversion, respectively. Additionally, Fig. 8d–f illustrate the horizontal slices of the cross-gradient values at $z = 400$ m calculated from the recovered results of separate inversion, the cross-gradient joint inversion and the fast cross-gradient joint inversion, respectively.

Furthermore, the subsurface volume is discretized into $30 \times 30 \times 15$ prisms to verify the efficiency of the developed method in this paper. The number of iterations is adjusted to 40, the weighting parameters of the cross-gradient constraint for gravity and magnetic data are both set to 1.0^2, and the remaining parameters are consistent with those parameters of the previous joint.

<table>
<thead>
<tr>
<th>Meshing Memory Cost</th>
<th>20 \times 20 \times 10</th>
<th>30 \times 30 \times 15</th>
<th>40 \times 40 \times 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-gradient joint Inversion</td>
<td>0.871 GB</td>
<td>5.207 GB</td>
<td>102.323 GB</td>
</tr>
<tr>
<td>Fast cross-gradient joint inversion</td>
<td>0.454 GB</td>
<td>0.457 GB</td>
<td>0.468 GB</td>
</tr>
</tbody>
</table>

Fig. 4. Spatial location of the synthetic models for density model (a) and magnetization model (b). (c) The contour map of forward gravity anomaly of the density model. (d) The contour map of the forward magnetic anomaly of the magnetization model.

Table 1
Maximum memory cost in the joint inversion of synthetic data.
Then, the original cross-gradient joint inversion is conducted. Fig. 9a–d illustrate the slices of the reconstructed models, respectively. Additionally, the computation time of the original joint inversion is 137 min.

Then, the weighting parameters of the fast cross-gradient constraint are set to 5.0, the remaining parameters are consistent with those of the previous original joint inversion, and the fast cross-gradient joint inversion based on the refinement meshing is

Fig. 5. The separate inversions of synthetic data. (a) and (b) are the slices of the recovered density model at $x = 1000$ m and $z = 400$ m, respectively. (c) and (d) are the slices of the recovered magnetization model at $x = 1000$ m and $z = 400$ m, respectively. The black boxes in Fig. 5 are the locations of the actual models.

Fig. 6. The original cross-gradient joint inversion of synthetic data. (a) and (b) represent the slices of the recovered density model at $x = 1000$ m and $z = 400$ m, respectively. (c) and (d) represent the slices of the recovered magnetization model at $x = 1000$ m and $z = 400$ m, respectively. The black boxes represent the locations of the actual models.
Fig. 7. The fast cross-gradient joint inversion of synthetic data. (a) and (b) represent the slices of the recovered density model at $x = 1000$ m and $z = 400$ m, respectively. (c) and (d) represent the slices of the recovered magnetization model at $x = 1000$ m and $z = 400$ m, respectively. The black boxes represent the locations of the synthetic models.

Conducted for the synthetic data. Fig. 10a–d represent the slices of the recovered physical property models, respectively. The computing time of the fast inversion is reduced to 14 min, which is $1/10$ times the computing time of the original joint inversion. Additionally, from Figs. 9 and 10, the recovered results of the 2 joint inversions are very close, which once again certifies that the fast method covers the same structural coupling ability as the original method.

The cross-gradient values calculated from the recovered models are displayed in Fig. 11. Fig. 11a and c represent the slices of the cross-gradient values derived from the recovered results of the original cross-gradient joint inversion, respectively. Fig. 11b and d represent the slices of the cross-gradient values calculated from the reconstructed results of the fast cross-gradient joint inversion, respectively. It also can be found that the cross-gradient values of

Fig. 8. The vertical slice (a) and horizontal slice (d) of the cross-gradient values from the separate inversions, the vertical slice (b) and horizontal slice (e) of the cross-gradient values from the original cross-gradient joint inversion, and the vertical slice (c) and horizontal slice (f) of cross-gradient values from the fast cross-gradient joint inversion. The black box represents the location of the actual models.
Fig. 9. The original cross-gradient joint inversion of synthetic data. (a) and (b) represent the slices of the recovered density model at $x = 1000$ m and $z = 400$ m, respectively. (c) and (d) represent the slices of the recovered magnetization model at $x = 1000$ m and $z = 400$ m, respectively. The black boxes are the locations of the actual models.

Fig. 10. The fast cross-gradient joint inversion of synthetic data. (a) and (b) represent the slices of the recovered density model at $x = 1000$ m and $z = 400$ m, respectively. (c) and (d) represent the slices of the recovered magnetization model at $x = 1000$ m and $z = 400$ m, respectively. The black boxes are the locations of the actual models.
the fast cross-gradient joint inversion are very similar to that of the original cross-gradient joint inversion, indicating that the fast cross-gradient joint inversion method also has the ability of the structural consistency constraint of the original cross-gradient joint inversion method.

3.2. Application to the field data

The joint inversion is applied to interpreting of field data in the Baoshan lead-zinc-silver polymetallic mining area in Hunan Province, China. After removing the regional gravity anomalies from the observed gravity anomalies, the residual gravity anomalies (Fig. 12a) are acquired. Simultaneously, the regional magnetic field is subtracted from the observed magnetic anomaly data (Fig. 12b). The observed gravity and magnetic data is a regular grid of 41×31, with a total of 1271 equidistant data points. The subsurface volume is discretized into $30 \times 20 \times 12$ prisms. From prior petrophysical information obtained from the borehole data in the mining area, the bound constraints $-1.0 = m_1 \leq m_1 \leq m_1^\prime = 3.0$ g/cc, and $-1.0 = m_2 \leq m_2 \leq m_2^\prime = 3.0$ A/m, are imposed.

Firstly, the initial density and initial magnetization models are homogeneous half-space models of 0.1 g/cc and 0.1 A/m, respectively. The number of iterations is set to 70, the parameters of the regularization method are set to $\tau_1 = 0.9$, $\varepsilon = 0.1$, and the separate inversions of gravity and magnetic data are conducted, respectively. Fig. 13a–c represent the slices of the reconstructed density model at $z = 250$ m, $z = 450$ m and $z = 650$ m, respectively. Fig. 13d–f represent the slices of the recovered magnetization model at $z = 250$ m, $z = 450$ m and $z = 650$ m, respectively. Obviously, from Fig. 13, the reconstructed models of separate inversions can present the spatial distribution of underground geological bodies.
Then, the weighting parameters of the cross-gradient constraints are to 5.0, the rest parameters are the same as those of the separate inversions, and the original cross-gradient joint inversion for the gravity and magnetic data are conducted. Fig. 14a–c represent the slices of the recovered density model at $z = 250$ m (a), $z = 450$ m (b) and $z = 650$ m (c). The slices of the recovered magnetization model at $z = 250$ m (d), $z = 450$ m (e) and $z = 650$ m (f).
reconstructed magnetization model at $z = 250$ m, $z = 450$ m and $z = 650$ m. The computing time of the original cross-gradient joint inversion is 71 min. From Figs. 13 and 14, the reconstructed models of the original joint inversion differ from those of the separate inversions, especially the spatial distributions of density and magnetization models present certain structural consistency. Additionally, the recovered results of the joint inversion are more detailed in the description of spatial distributions, which presents that the recovered models of the gravity and magnetic data have a good mutual constraint effect and reduce the diversity of solutions.

Furthermore, the weighting parameters are consistent with those of the previous original joint inversion for field data, and then the fast cross-gradient joint inversion is conducted. Fig. 15a–c represent the slices of the reconstructed density model at $z = 250$ m, $z = 450$ m and $z = 650$ m, respectively. Fig. 15d–f represent the slices of the reconstructed magnetization model at $z = 250$ m, $z = 450$ m and $z = 650$ m, respectively. Obviously, from Figs. 14 and 15, it can be found that the 2 reconstructed models are very close, both models can accurately delineate the distribution of anomalous geology bodies, and the density model obtains more similar underground structure distribution through the contribution of the structural constraints of the recovered magnetization model. In addition, the computing time of the fast cross-gradient joint inversion is 12 min, which is only 0.17 times the computing time of the original cross-gradient joint inversion. Simultaneously, the maximum memory consumptions for field data inversions among different methods are listed in Table 2 and the memory requirements can be effectively reduced by using the fast cross-gradient joint inversion method. Therefore, this improved calculation efficiency can once again prove that the fast method’s computation efficiency is much higher than that of the original method.

Fig. 16 represents the cross-gradient values calculated from the recovered models. Fig. 16a and d illustrate the slices of the cross-gradient values derived from the recovered results of the separate inversions, respectively. Fig. 16b and e represent the slices of the cross-gradient value calculated from the recovered results of the fast cross-gradient joint inversion, respectively. Fig. 16c and f represent the slices of the cross-gradient value calculated from the recovered results of the original cross-gradient joint inversion, respectively. Apparently, it can be found that the cross-gradient values of the 2 joint inversion results are much smaller than that of the separate inversion results, which implies that the reconstructed density model and magnetization model from the 2 cross-gradient joint inversions cover a higher degree of structural coupling.

4. Conclusions

In this paper, a fast cross-gradient joint inversion method for gravity and magnetic data is developed based on the storage and operation strategies of the triple sparse matrices, and then the joint inversion is conducted in the parametric domain. The triple method is adopted to optimize the storage and computation of the sparse matrices’ operations involving physical property models’ gradients, which need not operate on all elements of those sparse matrices, and only needs to conduct on non-zero elements. The developed method in this paper was validated by synthetic data, and the reconstructed results present that the proposed fast cross-gradient joint inversion method can effectively achieve structural consistency coupling and

<table>
<thead>
<tr>
<th>Meshing Memory Cost</th>
<th>30 × 20 × 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-gradient joint inversion</td>
<td>1.90 GB</td>
</tr>
<tr>
<td>Fast cross-gradient joint inversion</td>
<td>0.477 GB</td>
</tr>
</tbody>
</table>

Table 2

Fig. 15. The result of the fast cross-gradient joint inversion of gravity and magnetic data. The slices of the recovered density model at $z = 250$ m (a), $z = 450$ m (b) and $z = 650$ m (c). The slices of the recovered magnetization model at $z = 250$ m (d), $z = 450$ m (e) and $z = 650$ m (f).
improve the accuracy of recovered models when compared with the separate inversions, and effectively improve the computational efficiency of the original cross-gradient joint inversion. In addition, the relevant calculations’ storage involving the gradients’ matrices of the physical models is compressed to at least a fraction of the number of meshing units in the memory required by the original cross-gradient joint method. When the number of meshing units increases, the memory compression ratio increases. Furthermore, the inversions of the field data verified the proposed method’s effectiveness and stability, and proved that the algorithm developed in this paper provided an effective technical method for the detection of the internal structure.

Author contributions

Sheng Liu carried out the analyses, interpreted the results and drafted the manuscript. Shuanggen Jin and Xiangyun Wan guided the study and gave useful advice about the results. Songbai Xuan, Bin Jia, Quan Lou, Binbin Qin, Rongfu Peng and Dali Sun took part in the design of the study. All authors read and approved the final manuscript.

Availability of data and materials

Field data adopted in this paper are available on request from Dr. Sheng Liu.

Declaration of competing interest

Authors have no conflicts of interest to declare.

Acknowledgements

We would like to thank ones who made practical field data in a mining area of Hunan province. Thank anonymous reviewers for their suggestions. This work was supported by the National Key Research and Development Program (Grant No. 2021YFA0716100), the National Key Research and Development Program of China Project (Grant No. 2018YFC0603502) and Henan Youth Science Fund Program (Grant No. 212300410105).

References

Sheng Liu, PhD, Associate professor of Henan University of Urban Construction, China. His interests focused on the exploration of terrestrial planet interior structures using gravity and magnetic field inversion.

Shuanggen Jin, PhD, Professor of Shanghai Astronomical Observatory, CAS and Vice-President of Henan Polytechnic University, China. His interests focused on Satellite Navigation, Remote Sensing and Space/Planetary Exploration.

Songbai Xuan, PhD, Associate professor of Shanghai Astronomical Observatory, Chinese Academy of Sciences. His interests focus on interior structures of terrestrial planets using the gravity inversion.

Bing Jia, PhD, Director of the Department of Safety Engineering of Henan University of Urban Construction. He is mainly engaged in the monitoring and early warning research of coal and rock dynamic disasters.

Quan Lou, PhD, Associate professor of Henan University of Urban Construction, China. His interests focused on safety monitoring and early warning, prevention and control of coal and rock dynamic disaster.

Binbin Qin, PhD, Associate professor of Henan University of Urban Construction. His interests focused on safety technology and engineering, underground space engineering.

Shuanggen Jin, PhD, Professor of Shanghai Astronomical Observatory, CAS and Vice-President of Henan Polytechnic University, China. His interests focused on Satellite Navigation, Remote Sensing and Space/Planetary Exploration.

Songbai Xuan, PhD, Associate professor of Shanghai Astronomical Observatory, Chinese Academy of Sciences. His interests focus on interior structures of terrestrial planets using the gravity inversion.

Bing Jia, PhD, Director of the Department of Safety Engineering of Henan University of Urban Construction. He is mainly engaged in the monitoring and early warning research of coal and rock dynamic disasters.

Quan Lou, PhD, Associate professor of Henan University of Urban Construction, China. His interests focused on safety monitoring and early warning, prevention and control of coal and rock dynamic disaster.

Binbin Qin, PhD, Associate professor of Henan University of Urban Construction. His interests focused on safety technology and engineering, underground space engineering.
Rongfu Peng, MD, Teaching assistant of Henan University of Urban Construction. His interests focused on Safety management and technology.

Dali Sun, MD, Assistant Engineer of the First Monitoring and Application Center, CEA. His interest centered on electromagnetic prospecting.