APPENDIX A

Algorithm 1
Joint inversion based on the GN method of gravity and magnetic data

a) Initialization:

Prepare gravity and magnetic data \(d_1 \) and \(d_2 \), reference density model \(m_1^{\text{ref}} \), reference magnetization model \(m_2^{\text{ref}} \), the range of density values \((m_1^-, m_1^+) \) and the range of magnetization values \((m_2^-, m_2^+) \). Set the weighting parameters \(\mu_1 \) and \(\mu_2 \) of the correlation-analysis constraints. Calculate the initial regularization parameters \(\lambda_1^0 \) and \(\lambda_2^0 \) according to the L-curve method, and adopt \(\lambda_1^0 \) and \(\lambda_2^0 \) to perform separate inversions for gravity and magnetic data. The recovered density model and the recovered magnetization model obtained by the separate inversions are used as the initial density model \(m_1^0 \) and initial magnetization model \(m_2^0 \) for the joint inversion. Let \(k=0 \). Set the maximum number of iterations \(k_{\text{max}} \) and the iteration threshold \(\sigma \).
Appendix B

Algorithm 2 The MS-ICG Joint inversion of gravity and magnetic data

a) Initialization:

Prepare gravity and magnetic data d_1 and d_2, reference density model m_1^{ref}, reference magnetization model m_2^{ref}, the range of density values (m_1^-, m_1^+) and the range of magnetization values (m_2^-, m_2^+). Set the weighting parameters μ_1 and μ_2 for the correlation-analysis constraints, the initial regularization parameters λ_1^0 and λ_2^0, and the initial density model m_1^0 and the initial magnetization model m_2^0. Let $k=0, i=0$ and calculate $w_{1,0}, w_{2,0}$. Set the maximum number of iterations of the outer loop k_{max}, the maximum number of iterations for the inner loop i_{max}, the threshold of the outer loop σ, the threshold of the inner loop ϵ_{ps} and the value of q.

\[b) \text{Joint inversion iteration:}\]

While $(k < k_{max})$ and $\left[(\phi_d^1 \geq \sigma) \right.$ or $\left. (\phi_d^2 \geq \sigma) \right]$

$k = k + 1$;

Compute $H_{1,k}, H_{2,k}$ according to equation (7) and compute g_1^k, g_2^k according to equation (9);

Use CG method to calculate Δm_1 and then update $m_1^k = m_1^{k-1} + \Delta m_1$.

Use CG method to calculate Δm_2 and then update $m_2^k = m_2^{k-1} + \Delta m_2$.

Impose constraint on physical property model to force $m_1^- \leq m_1^k \leq m_1^+$ and $m_2^- \leq m_2^k \leq m_2^+$.

Compute $\phi_d^1 = \|d_1 - G_1 m_1^k\|_2^2$ and $\phi_d^2 = \|d_2 - G_2 m_2^k\|_2^2$.

End While
b) Joint inversion iteration:

While \(k < k_{\text{max}} \) and \(\left[\left(\phi_d^1 \geq \sigma \right) \text{ or } \left(\phi_d^2 \geq \sigma \right) \right] \) (The outer loop)

\[k = k + 1. \]

1) Iteration of gravity data.

Update \(\lambda^k_i = \lambda^{k-1}_i q \) and \(w_{1,k} \).

Calculate \(H_{1,k} \) according to equation (7) and \(g^k_i \) according to equation (9).

Let \(x^0_i = 0 \) and \(r_{i,0} = d_{i,0} = g^k_i \).

Calculate \(t^0_i = \left(d^T_{i,0} r_{i,0} \right) / \left(d^T_{i,0} H_{1,k} d_{i,0} \right) \). Let \(i = 0; \)

While \(i \leq i_{\text{max}} \) and \(\sqrt{\text{tr}(r_{i,i}^T r_{i,i})} \geq \text{eps} \) (The inner loop)

\[i = i + 1. \]

Update \(x_i^j = x_i^{i-1} + t_i^{i-1} d_i^{i-1} \).

Calculate \(d^i_i = r_{i,i} + \beta_i d_i^{i-1} \) and \(\beta_i = r_{i,i}^T r_{i,i} / r_{i,i}^T d_i^{i-1} \).

Calculate \(t_i^i = \left(d^T_{i,i} r_{i,i} \right) / \left(d^T_{i,i} H_{1,k} d_{i,i} \right) \).

End While

Update \(m_i^k = m_i^{k-1} + x_i^i \).

Impose constraint on density model to force \(m_i^- \leq m_i^k \leq m_i^+ \).

2) Iteration for magnetic data.

Update \(\lambda^k_2 = \lambda^{k-1}_2 q \) and \(w_{2,k} \).

Calculate \(H_{2,k} \) and \(g^k_2 \).

Let \(x^0_2 = 0 \) and \(r_{2,0} = d_{2,0} = g^k_2 \).

Calculate \(t^0_2 = \left(d^T_{2,0} r_{2,0} \right) / \left(d^T_{2,0} H_{2,k} d_{2,0} \right) \). Let \(i = 0; \)
While \(i \leq i_{\text{max}} \) and \(\sqrt{\langle r_{2,i}^T r_{2,i} \rangle} \geq \varepsilon \) (The inner loop)

\[
i = i + 1.
\]

update parameter \(x_2^i = x_2^{i-1} + t_2^{i-1} d_2^{i-1} \).

Calculate \(d_2^i = r_{2,i} + \beta_2^i d_2^{i-1} \), \(\beta_2^i = r_{2,i}^T r_{2,i} / r_{2,i-1}^T r_{2,i-1} \).

Calculate \(t_2^i = \left(d_2^T r_{2,i} \right) / \left(d_{2,i}^T H_{i,i} d_{2,i} \right) \).

End While

Update \(m_2^k = m_2^{k-1} + x_2^i \).

Impose constraint on magnetization model to force \(m_2^k \leq m_2^k \leq m_2^k \).

Compute \(\phi_d^i = \| d_2 - G_1 m_1 \|_{L^2}^2 \) and \(\phi_d^i = \| d_2 - G_2 m_2 \|_{L^2}^2 \).

End While