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Abstract—The geophysical inversion with combining prior

information is very important for resource exploration and studies

of the Earth’s internal structure. Guided fuzzy C-means clustering

inversion (FCM) is normally applied for the Tikhonov regularized

inversion, but has the shortcoming of uniform model parameter

shrinkage, leading to inaccuracy. In this paper, an improved guided

fuzzy clustering algorithm is proposed by adding a fuzzy entropy

term to the original guided FCM. This method not only enforces

the discrete values to a high degree of approximation by guiding

the recovered model to cluster tightly around the known petro-

physical property values, but also calculates the distributed

characteristics of the model parameter set. Based on this method,

the shortcoming of uniform shrinkage of the original guided FCM

clustering algorithm is improved, and more accurate inversion

results are obtained, making the FCM method more efficient and

broadly applicable. Furthermore, a new parameter search algorithm

is proposed to accelerate the search speed. The results recovered by

using this method with three kinds of theoretical gravity anomaly

data show more accurate density anomalies compared with the

results generated from the original guided FCM clustering inver-

sion and greater efficiency in the parametric search process when

using the new parameter search algorithm. The improved FCM

clustering algorithm could enable more extensive and efficient use

of gravity inversion.

Key words: Fuzzy entropy, discrete-valued inversion, gravity

inversion, parameter search, fuzzy C-means algorithm.

1. Introduction

Three-dimensional (3-D) petrophysical inver-

sion has been widely used in resource exploration

and studies of the Earth’s internal structure. The

general approach is to find the minimum of an

objective function based on the L2-norm, resulting

in a model whose petrophysical property values

typically vary smoothly across the volume of

interest (e.g., Constable et al. 1987; de Groot-

Hedlin and Constable 1990; Holtham and

Oldenburg 2012; Li and Oldenburg

1996, 1998, 2000, 2003; Mackie and Madden 1993;

Newman and Alumbaugh 2000; Sun and Li 2010;

Zelt and Barton 1998). However, the boundaries

between geological units are not clear, and the

inverted petrophysical property values exhibit less

variability than the true values (Lelièvre and

Oldenburg 2009). Several types of prior informa-

tion can be used to improve the recovered model in

such petrophysical inversion (e.g., Farquharson

et al. 2008; Lane et al. 2007). Indeed, multiple

categories of priori information can be incorpo-

rated into such inversions, including but not limited

to petrophysical property measurements, structural

orientations, geostatistical information, and the

expected shape of a target (Farquharson et al. 2008;

Lelièvre and Oldenburg 2009; Phillips 2001;

Williams 2008).

One key issue is how to use petrophysical infor-

mation in a regularized inversion based on the L2-

norm. Several methods are currently used for discrete

inversion of gravity data. Krahenbuhl and Li

(2006, 2009) solved the minimization in a regularized

inversion via ‘‘binary inversion.’’ Camacho et al.

(2000) proposed a method of ‘‘growing bodies,’’
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which starts with an initial guess then increases the

volume of the anomalous density body until a suit-

able solution is obtained. Uieda and Barbosa (2011)

began with user-defined ‘‘seeds,’’ each with a given

density contrast. The seeded regions are then allowed

to expand and form compact source bodies with

varying density contrasts.

Although the aforementioned methods have wide

applications for the inversion of field data, several

problems remain. By restricting the model to have

only two discrete values, one for the background

geological body and the other for the target body, the

minimization of the objective function becomes a

quadratic integer programming problem. However,

the calculation of this formula requires large amounts

of computer memory and central processing unit

(CPU) time (e.g., Chaovalitwongse et al. 2008).

There are also practical problems regarding the

strict imposition of discrete values when using these

methods. For instance, priori information of the

density contrasts always has uncertainties, which will

lead to imprecise inversion results. Elizabeth and Li

(2018) proposed a method to approximate a discrete-

valued inversion problem by applying the

guided FCM clustering technique, which avoids the

above computing challenges. This method enforces

the recovered model to cluster tightly around the

known petrophysical property values. The guided

FCM clustering technique was initially proposed by

Sun and Li (2015) and then applied by Sun and Li

(2016) and Li and Sun (2016). This technique adds a

‘‘guiding’’ term to encourage the model parameters to

cluster around the known petrophysical information.

Although these studies using the guided FCM

clustering method solved several of the problems

faced by classical methods, some problems still

remain. The FCM clustering algorithm is a type of

division method (Li et al. 2003), inevitably suffering

from the disadvantage of uniform shrinkage of the

clustering result of the model values during the

convergence process (Li et al. 2004; Lin et al. 2009).

This not only leads to the requirement for a lot of

computing time and resources, but also limits the

application of the method for petrophysical inversion.

Therefore, it is important to overcome this short-

coming of uniform shrinkage with the FCM

algorithm and to improve the clustering accuracy.

The purpose of this paper is to address the above-

mentioned shortcomings by combining the improved

fuzzy C-means clustering algorithm (Xing et al.

2010) with the original guided FCM clustering

method and to obtain a new algorithm for discrete-

valued inversion.

FCM inversion relies heavily on the selection of the

weighting parameters (Sun and Li 2015, 2016; Maag

and Li 2018). In previous inversion algorithms, the

parameters are manually adjusted during the inversion

process (Sun and Li 2015, 2016). Maag and Li (2018)

proposed an inversion workflow in which an enumer-

ation method is used to select the optimal values of the

weighting parameters. However, such methods

undoubtedly increase the amount of calculations as well

as the complexity of parameter selection. Thus, a new

parameter selection algorithm based on a new FCM

inversion method is proposed herein for the automatic

selection of two weighting parameters in the FCM term

to reduce the computational cost and the complexity of

the selection process.

In the following, this improved FCM clustering

technique based on regularization inversion is presented

and discussed. Three-dimensional petrophysical inver-

sion of gravity anomalies with two types of discrete

density differences is then carried out to prove the

correctness and advantages of the improved algorithm.

Furthermore, the algorithm is validated using theoretical

gravity anomaly data. Finally, some improved results

for discrete-valued gravity inversion are presented and

analyzed using the improved guided FCM clustering

technique.

2. Methodology

We focus on the application of discrete petro-

physical property values within an inversion by

minimizing the objective function:

minU ¼ Ud þ bUm; ð1Þ

subject to mj 2 0; 1f g;

where Ud denotes the data misfit,Um denotes the

model objective function, and b denotes the
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Tikhonov regularization parameter, subject to model

parameters mj with one of two discrete values. In

some cases, when the densities of the anomalous

body and the surrounding background rock are rela-

tively uniform, it can be considered that there are two

types of geological bodies in the area under consid-

eration. However, after calculating the residual

gravity anomaly from Bouguer gravity anomaly data,

the density of the anomalous body becomes the dif-

ference between the original density value and the

density value of the background geological body,

while the density of the background geological body

becomes 0 g/cc. For example, constant density values

of 0 g/cc for the background and 1 g/cc for the

anomalous region are used (Maag and Li 2018).

The guided FCM clustering was combined with

Tikhonov regularized inversion by Sun and Li (2015)

to include scattered petrophysical information. In

practical applications, the clustering algorithm suffers

from the disadvantage of uniform shrinkage, which

causes inaccuracy. However, when considering the

distribution characteristics of model parameter values

during the inversion process, the inversion results

will be more accurate. This section presents the

inversion of the guided FCM clustering formulation

with fuzzy entropy added to the regularization

inversion formula, and then discusses how to mini-

mize it.

2.1. Improved Guided Fuzzy Clustering Inversion

The inversion minimizes the following objective

function using the guided FCM clustering algorithm

presented by Sun and Li (2015):

Uðm; u; vÞ ¼ Ud þ bUm þ kUFCM; ð2Þ

which includes the data misfit (Ud), regularized

parameter (b), model objective function (Um), a

weighting parameter for the clustering (k), and the

guided FCM clustering objective function (UFCM).

Each component of the above objective function

plays a different and significant role. Firstly consider

the data misfit as:

Ud ¼ Wdðdpre � dobsÞ
�
�

�
�

2

2
; ð3Þ

dpre ¼ Gm;which computes the distance between the

observed (dobs) and predicted data (dpre), multiplied

by the data weighting matrix (Wd), which is a diag-

onal matrix with the inverse of the standard

deviations of the data as its elements (Parker 1994;

Aster et al. 2016).

A commonly used model structure term Um has

the following form (Li and Oldenburg 1996; Aster

et al. 2016):

Um ¼ Wmðm � mrefÞk k2
2; ð4Þ

Wm ¼ DS;

which measures the distance between the current

model (m) and a reference model (mref), multiplied by

the model weighting matrix (Wm). The model

weighting matrix is defined as the discretized opera-

tor matrix (D) multiplied by a depth weighting matrix

(S) chosen to counteract the natural decay with dis-

tance of the gravity kernel matrix (G). We choose to

include a model objective function to encourage the

spatial coherence of the recovered model.

The concrete form of the original guided FCM

objective function can be expressed in the following

specific form (Sun and Li 2015, 2016; Li and Sun

2016; Maag and Li 2018):

UFCMðm; u; vÞ ¼
XM

j¼1

XC

k¼1

u
q
jk mj � vk

�
�

�
�

2

2

þ g
XC

k¼1

vk � tkk k2
2; ð5Þ

where M is the number of model cells, ujk measures

the degree of the jth model cell belonging to the kth

cluster, q is the fuzziness factor, C is the number of

cluster categories, g is a scalar weighting parameter,

the vk are the cluster centers, and the tk are the target

cluster centers. In this paper, we choose q equal to 2.0

and a total number of clusters C as 2. The value of the

membership function is greater than zero and less

than one, and the sum of membership function values

belonging to each class of each model is one:

XC

k¼1

ujk ¼ 1: ð6Þ

In Eq. 5, given a number of objects such as

petrophysical property values, the task of classifying

them into a certain number of groups derived from

prior petrophysical information can be accomplished
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by FCM clustering through minimization. However,

the FCM clustering algorithm is a partitioning

method and suffers from the disadvantage of a

uniform shrinking trend of the clustering result. This

not only consumes a lot of time and resources, but

also limits the application of the FCM clustering

algorithm for petrophysical inversion.

A more orderly system corresponds to lower

information entropy (Zhang and Leung 2004). When

the information entropy is introduced into the objec-

tive function of the FCM algorithm, the membership

function of the sample points conforms to a Gaussian

distribution, thereby effectively suppressing the influ-

ence of noise data on the cluster centers. To a certain

extent, the use of the information entropy can thus

make up for the shortcomings of the FCM algorithm

(Xing et al. 2010). The fuzzy entropy can be defined

by the following function:

EðxÞ ¼ �
XM

j¼1

XC

k¼1

u
q
jk ln u

q
jk: ð7Þ

Adding this function for the fuzzy entropy term to

the guided FCM clustering algorithm results in

UEFCM ¼
XM

j¼1

XC

k¼1

u
q
jk mj � vk

�
�

�
�

2

2

�
XM

j¼1

XC

k¼1

cju
q
jk ln u

q
jk

þ g
XC

k¼1

vk � tkk k2
2:

ð8Þ

In Eq. 8, the second term estimates the distribu-

tion of petrophysical parameter data and a lower

value of the fuzzy entropy indicates more ordered

parameter values. The parameter c is the fuzzy

entropy parameter, whose specific form is mentioned

in the next section.

The data misfit (Eq. 3), model objective function

(Eq. 4), and improved FCM clustering objective

function (Eq. 8) can be combined to obtain

Uðm; u; vÞ ¼ Ud þ bUm þ kUEFCM: ð9Þ

From Eq. 9, a model that fits the data, is spatially

cohesive, and whose density values are well clustered

to the target cluster values can be recovered. Addi-

tionally, by adding the fuzzy entropy term, a more

accurate solution will be obtained.

2.2. Minimization Algorithm for Improved Guided

FCM Clustering

To minimize the objective function in Eq. 9 with

respect to these parameters, we choose a sequential

minimization process. Provided that the final solution

depends on the choice of these weighted parameters,

the issue of determining those values will be fully

considered.

2.2.1 Sequential Minimization

The improved guided FCM clustering technique

requires the solutions for the petrophysical property

model (m), cluster centers (v), and membership function

(u). To minimize the objective function (Eq. 9) with

respect to these variables, we use a sequential mini-

mization process, and the details can be found in Maag

and Li 2018, while herein we highlight the changes in

the improved FCM clustering technique.

Firstly, to minimize the objective function in the

direction of the membership values, we take the

derivative of the objective function (Eq. 9) with

respect to the ujk. The result is then set to zero and

solved for ujk, resulting in

ujk ¼ e

mj�vkk k2

2
qkj

�1
q: ð10Þ

Applying the result of Eqs. 6–10 yields the

following formula for c (Xing et al. 2010):

cj ¼
1

PC
i¼1 mj � vi

�
�

�
�

2

2

: ð11Þ

Application of Eqs. 10 and 11 in Eq. 8 yields

(Xing et al. 2010):

UFCM ¼
XM

j¼1

XC

k¼1

u
q
jk

PC
i¼1 mj � vi

�
�

�
�

2

2

þ g
XC

k¼1

vk � tkk k2
2:

ð12Þ

We analyze the petrophysical meaning of

1PC

i¼1
mj�vik k2

2

, which actually represents a spatial

distribution feature of petrophysical parameter data.

For convenience of expression and calculation, we set

1PC

i¼1
mj�vik k2

2

equal to dj.
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According to the above analysis, the original

FCM (Eq. 5) algorithm is adjusted to obtain the

formula as

Uðu; v;mÞ ¼ Ud mð Þ þ bUm mð Þ

þ k
XM

j¼1

XC

k¼1

dq
j u

q
jj mj � vk

�
�

�
�

2

2

þ g
XC

k¼1

vk � tkk k2
2

 !

:

ð13Þ

To minimize the objective function in the direc-

tion of the cluster centers, we take the derivative of

the objective function (Eq. 13) with respect to the

cluster centers vk. The result is then set to zero and

solved for vk, resulting in

vk ¼
PM

j¼1 d
q
j u

q
jkmj þ gtk

PM
j¼1 d

q
j u

q
jk þ g

: ð14Þ

We then take the derivative of the objective

function (Eq. 13) with respect to the membership

function values ujk. The result is then set to zero and

solved for ujk, yielding:

ujk ¼
aj

qdq
j mj � vk

�
�

�
�

2

2

 ! 1
q�1

: ð15Þ

The following formula is then obtain after substi-

tuting Eq. 6 into Eq. 15:

a
1

q�1 ¼
XC

k¼1

qdq
j mj � vk

�
�

�
�

2

2

� � 1
q�1

: ð16Þ

Substituting Eq. 16 into Eq. 15 yields:

ujk ¼
mj � vk

�
�

�
�

�2
q�1

PC
i¼1 mj � vi

�
�

�
�

�2
q�1

: ð17Þ

Thus, we derive the membership functions

(Eq. 17) and cluster centers (Eq. 14) using the

improved FCM algorithm. The membership function

in this paper has the same form as proposed by Maag

and Li (2018), but the cluster center formulas have a

different form. Obviously, the newly proposed cluster

center formula fully considers the data distribution of

the petrophysical property model in the calculation,

so that the calculation of the cluster centers can more

reasonably represent the actual data.

2.3. Inversion Workflow

The value of b is determined based on the

uncertainty in the data by methods such as the

discrepancy principle (Parker 1994), which declare

that the optimal value of b is that which can yield the

expected value of the data misfit.

The prior model from the regularized inversion

specifies an underground spatial distribution of a

petrophysical property, and a similar spatial distribu-

tion for the subsequent inversion result. In this

section, the variance of each cluster is used to

estimate the quality of the recovered model defined as

(Maag and Li 2018):

Sk ¼
XMk

i¼1

mi � tkk k2
2; ð18Þ

where mi is the petrophysical property value

belonging to the kth cluster which has the corre-

sponding target petrophysical property value of tk,

and Mk is the number of model parameters in this

cluster. We then assign model parameter values to

each cluster, determined by their maximum mem-

bership value. Obviously, when the calculated

variance values are smaller, the inverted petrophysi-

cal parameter model is better clustered around the

discrete values, tk, the prior property information.

Therefore, in the subsequent inversion process, our

goal is to seek a model that produces tiny variance

errors for each cluster and with data misfit close to

the expected target data misfit.

To determine the optimal values of b, k, and g, we

use a workflow similar to that proposed by Maag and

Li (2018). The inversion workflow and details are

shown as follows:

1. Set the value ofk to zero and determine the value ofb
using the L-curve method. Then, perform a smooth

inversion using the value of b, and take the obtained

petrophysical property model as a reference model.

2. Carry out many inversions using many k� g pairs

to obtain an optimal set of k� g values depending

on the value of b and the reference model produced

in the first step, as detailed in Algorithm 1. In each

inversion, the data misfit (Eq. 3) and the variance of

each cluster (Eq. 18) are recorded. Each of these
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values is then drawn as a function of k and g on

logarithmic scales. Finally, the pair k� g that

produces tiny variance values for each cluster and a

data misfit close to the expected target data misfit is

taken.

1010 S. Liu and S. Jin Pure Appl. Geophys.



3. The parameter values selected in step 1 and step 2

may not be optimal. Therefore, it is necessary to

adjust their values and choose the most reasonable

parameter values. Sequentially, the values of the

three parameters b, k, and g are adjusted based on

the results of the previous two steps. In this

parameter adjustment process, the terminal toler-

ance value e is reduced while the number of

iterations C1 increases, still using Algorithm 1 for

inversions. Consequently, the corresponding opti-

mal values of each parameter set also produce tiny

variance values of each cluster and the data misfit

is close to the expected target data misfit.

4. Finally, perform the final inversion using the

reference model obtained from step 1 and the most

reasonable weighting parameters after the adjust-

ment operation. Similarly, continue to use

Algorithm 1 to reduce the termination tolerance

value e without limiting the number of iterations

C1 to ensure optimal inversion results. The

details of the FCM inversion are described in

Algorithm 3.
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2.4. Analysis of Original and New Inversion Methods

To test the proposed method for discrete-valued

gravity inversion, inversions are carried out using

synthetic gravity data.

A depiction of the true model is shown in Fig. 1a.

Obviously, we take t1 = 0.0 g/cc and t2 = 1.0 g/cc.

The gravity anomaly values are calculated using a

simple model contaminated with random Gaussian

noise with zero mean and standard deviation of

0.2 gu. Figure 1b shows the distribution of the

gravity anomaly. The surface data are calculated on

a 100 9 100 m2 grid, with 100 m spacing. The total

number of computational points is 441.

Using these data, we illustrate the improvements

in the recovered density contrast models obtained

using the improved method. Firstly, we start by

inverting the data without clustering and determine

the initial optimal value of b. Figure 1c shows the

results of using the L-curve method to obtain the

optimal regularization weighting parameter, provid-

ing an optimal value of 251,188.703. Figure 1d

shows the results of regularization inversion. The

result exhibits lower density contrast values near the

edges of the block and smaller petrophysical values

compared with the true model.

Secondly, we conduct the original guided FCM

clustering inversion. Using the value of b and the

reference model recovered by the smooth inversion,

we perform step 2 of the inversion workflow for

clustering inversion to determine the set k� g.

Figure 2 shows the values of the data misfit (a) and

the variance of each cluster (b, c). The value of k is

chosen to be 51, while the value of g is 10,000. When

this pair of weighting parameters is selected, the

inversion results show that the data misfit is 444,

close to the total number of gravity data, while the

variance of each cluster is small. Subsequently, we

perform step 3 to obtain the optimal values of the

three weighting parameters and conduct the final

inversion. Figure 2d shows the result of the original

inversion workflow.

Compared with the regularized inversion, the

result of the original FCM clustering inversion is

greatly improved. The spatial distribution of the

petrophysical inversion model is closer to the real

(a)

(c)
(d)

(b)

Figure 1
a Spatial location of a single model. b Contour map of forward gravity anomaly of single model with added Gaussian noise. c Determination

of optimal regularization weighting parameters using the L-curve method. d Combined result slices of regularized inversion
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model, and the density values of the result are well

gathered around the values of the prior property

information. Compared with the regularized inver-

sion results, the inversion results are significantly

better, but a large gap with the actual model still

remains.

Similarly, retaining the value of b and the

reference model obtained in step 1, we perform steps

2 and 3 of the inversion workflow using the improved

guided fuzzy clustering algorithm. Figure 3 shows

the values of the data misfit (a) and the variance of

each cluster (b, c) obtained from the improved guided

FCM clustering inversion. The value of k is chosen to

be 10,000, while the value of g is 10,000. Also, the

inversion results show that the data misfit is 408,

close to the total number of gravity data, while the

variance of each cluster is small. We then carry out

step 3 to obtain the optimal values of the three

weighting parameters and conduct the final inversion.

Figure 3d shows the results of the original inversion

workflow.

The results shown in Figs. 2 and 3 all show

distinct boundaries between different geological

features for the two types of clustering inversion,

but the density values from the latter inversion are

better gathered around the discrete prior property

values. Comparing Figs. 2a–c with 3a–c, in terms of

data selection of the same magnitude, there are

obviously more pairs of parameters available for

selection of the parameters a and b in Fig. 2.

However, the wide choice of parameter pairs means

that the algorithm is not sensitive to changes in the

values of the weighted parameter pairs. When

selecting a parameter pair from the perspective of

numerical magnitude, the original algorithm is often

confused and chooses a pair of nonoptimal weighted

parameter pairs. However, the improved algorithm

shows a very small area of selectable parameter

values in Fig. 3a–c. When using the enumeration

method for parameter pair selection, if the optimal

parameter pair value lies outside the originally set

parameter value range, it will be difficult to obtain

optimized numerical parameters. It can be clearly

seen by comparing Figs. 2a–c and 3a–c that the

available weighted parameter pairs often have values

of the parameter g greater than or equal to the values

of the parameter k.

We next analyze why there are more unusable

weighted parameter pairs when using the new FCM

inversion scheme. Initialize the initial cluster center

(a)

(c)
(d)

(b)

Figure 2
Original fuzzy C-means clustering inversion performed on the theoretical data of the simple model. a Values of the data misfit, b, c variance

of each cluster using the original guided FCM clustering algorithm of a single model. d Combined result slices of the original FCM inversion
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values as v1 = 0.05 g/cc and v2 = 0.20 g/cc. Three

pairs of weighted parameter values k; gð Þ ¼
ð100; 100Þ; 500; 500ð Þ; 2000; 2000ð Þf g and Algo-

rithm 3 are used to illustrate the difference between

the original method and the improved method based

on the reference model and regularization parameter

b obtained from step 1 of the inversion workflow.

Using k ¼ 100 and g ¼ 100, the improved method

yields the results shown in Fig. 4a while the original

method yields those shown in Fig. 4b. It can be seen

that the values of the cluster centers in Fig. 4a are

gradually decreasing, while the values of the cluster

centers in Fig. 4b are gradually increasing and

approach the target cluster centers. Similarly, Fig. 4c,

d k; gð Þ ¼ 500; 500ð Þf g and Fig. 4e, f k; gð Þ ¼
2000; 2000ð Þf g show similar results. In the inversion

process, the final aim of the parametric search is to

find pairs of weighted parameters with small vari-

ances. It can be concluded that, when selecting an

unreasonable weighted parameter pair, the cluster

centers updated by the improved algorithm will

exhibit a large variety of variance values, which

ultimately renders the parameter pair unsuitable.

It can be seen from Fig. 4b, d, f that the cluster

center values calculated based on the original FCM

method algorithm are all changed with respect the

target cluster centers, and the cluster centers change

rapidly. As shown in Fig. 2a–d, the range of weight-

ing parameters is large, often selecting nonoptimal

parameter pairs. However, the values of the petro-

physical model are updated more slowly to the

petrophysical constraint information. When a better

result is not achieved, the iteration ends. From

Fig. 2a–d, the range of weighting parameters is

chosen to be large, and nonoptimal weighted param-

eter pairs are often chosen. However, the values of

the petrophysical property model are updated more

slowly towards the petrophysical prior information,

and the iteration ends when the inversion results have

not yet been reached. Therefore, it becomes critical to

design a search algorithm to obtain the two weighting

parameters according to the guided cluster constraint.

2.5. Weighted Parameter Search Algorithm

Based on the above analysis, we propose a search

algorithm from the new FCM clustering inversion

(a)

(c)
(d)

(b)

Figure 3
Improved fuzzy C-means clustering inversion performed on the theoretical data of the simple model. a Values of the data misfit, b, c variance

of each cluster using the improved guided FCM clustering algorithm of a single model. d Combined result slices of the improved FCM

inversion
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(a) (b)

(e) (f)

(c) (d)

Figure 4
The changes (a, c, e) show in the clustering center during the implementation based on improved FCM inversion with different parameter set.

The changes (b, d, f) present t is presented in the cluster center during the original FCM inversion using different weighting parameter pair.

The red and blue lines show the changes in cluster centers v1 and v2, respectively

(a)

(c)

(b)

Figure 5
The process of automatically clustering weighted parameters to search for optimal values. The variation curve of the weighting parameters

(a) and the two types of cluster center (b) values in the parameter search process. c Combined result slices of improved FCM inversion based

on the optimized parameters from the search algorithm
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scheme for optimal values of the weighting param-

eters k� g. We can now formulate the problem of

finding the optimal weighting parameters as follows:

find k; gð Þ such that the updated cluster centers are

changed in the direction of the target cluster centers.

In other words, the cluster centers obtained in the

second calculation tend to be closer to the target

cluster centers than the cluster centers obtained in the

first time. Essential to the implementation of the

searching algorithm, summarized in Algorithm 3, are

four building steps. In step 1, the conjugate gradient

method is used to obtain the petrophysical parameter

values of the model.

This search algorithm relies on two criteria. The

first is that the values of the updated cluster centers

change to the target cluster centers, while the other is

(a) (b)

Figure 6
In the final inversion process, the numerical curves of the cluster centers of the simple model. The numerical change of the cluster centers in

the iterative process of the final inversion using the original (a) and improved FCM inversion method (b)

(a)

(c)
(d)

(b)

Figure 7
a Spatial location of model 2. b The contour map of forward gravity anomaly of the complicated model with added Gaussian noise.

c Determination of the optimal regularization weighting parameters using the L-curve method. d Combined result slices of the regularized

inversion
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that the value of the parameter k be less than or equal

to the value of the parameter g. If the updated cluster

centers are farther away from the target cluster

centers than the cluster centers obtained the previous

time, continue to adjust the parameter values of

k� g. Continue the above operations until a reason-

able pair of weighted parameters are selected. The

search algorithm is validated in the following

sections.

3. Results and Validation

To test the proposed method for discrete-valued

gravity inversion, we carry out several inversions

using synthetic data.

3.1. Simple Model Test

We use the above data to verify the search

algorithm, applying the reference model and the

regularization weighting parameter obtained from the

above operations. The values of the initial cluster

centers are set to v1 = 0.05 g/cc and v2 = 0.20 g/cc

and the initial values of k and g to 1500.

Figure 5a shows the changes in the values of the

weighting parameters k and g throughout the param-

eter search process. Figure 5b illustrates the changes

of the two types of cluster centers. In Fig. 5b, v1(1)

and v1(2) represent the values of the first cluster

center calculated in the first and second time,

respectively, while v2(1) and v2(2) represent the

values of the second cluster center obtained by the

first and second calculations, respectively. The

weighted parameter pairs are transformed five times,

yielding ten results. We find that the value of the first

cluster center from the second calculation is always

(a)

(c) (d)

(b)(a)

(c) (d)

(b)

Figure 8
Original fuzzy C-means clustering inversion performed on the theoretical data of the simple model. a Values of the data misfit, b, c variance

of each cluster using the original guided FCM clustering algorithm of a single model. d Combined result slices of original fuzzy C-means

inversion
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smaller than the corresponding value that computed

from the first calculation. However, until the last

time, the values of the clustering weighted parameter

pair change, and the second clustering center

obtained from the second calculation is larger than

the value obtained from the first calculation. Ulti-

mately, one gets k equal to 5062.5 and g equal to

7593.75.

We replace the parameter pair obtained in the

second step of the inversion workflow using the last

transformed parameter pair in the calculation process

of the search algorithm. Then, consistent with the

inversion workflow, the values of the weighting

parameters b, k, and g are adjusted separately to

obtain the optimal values of the three weighting

parameters. Finally, performance of step 4 in the

inversion workflow yields the results shown in

Fig. 5c. Comparison of Figs. 5c, 1d, 2d and Figs. 3d,

5c reveals a better inversion result. Not only are the

boundaries between different anomalies more obvi-

ous, but the values of the inversion results are better

clustered around the two types of petrophysical

constraint information. Moreover, the parameter

search only requires ten times, which greatly

improves the search speed compared with the number

of calculations required for the enumeration method

for the parameter search. This example verifies the

correctness of the algorithm. Using the inversion

workflow, Fig. 6a or b shows the cluster center

changes of the original or improved FCM inversion

method. From Fig. 1d, the petrophysical properties of

the reference model are mostly concentrated around

0.0 g/cc and 0.15 g/cc. Comparing Fig. 6a and b, it is

found that, when the original FCM method is used for

inversion, the cluster centers are updated very

quickly, and the target cluster center are approached

in just a few steps. However, the improvement

scheme shows that the cluster centers change

(a)

(c)

(b)

(d)

Figure 9
Original fuzzy C-means clustering inversion performed on the theoretical data of a complicated model. a Values of the data misfit, b,

c variance of each cluster using the original guided FCM clustering algorithm of the complicated model. d Combined result slices of original

FCM inversion
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gradually, which is undoubtedly more consistent with

the trend of the density variation of the model. The

clustering centers always explain the distribution

characteristics of the data to some extent. Obviously,

the cluster centers obtained by using the new method

can better explain the actual distribution characteris-

tics of the petrophysical model data, so it can be

considered that the calculated cluster centers are

more reasonable.

Next, we use more complex examples to verify

the correctness of the proposed algorithm.

3.2. Model Test 2

Model 2 is depicted in Fig. 7a. Figure 7b shows

the gravity anomaly values contaminated with ran-

dom Gaussian noise with zero mean and standard

deviation of 0.2 gu. The surface data are also

calculated on a 100 9 100 m2 grid, with 100 m

spacing.

Firstly, we carry out the regularization inversion

and determine the value of b. Figure 7c displays the

results of the L-curve method to obtain the optimal

regularization weighting parameter, 251,188.703.

Figure 7d shows the results of the regularization

inversion. The results show lower density contrast

values near the edges of the block and smaller

petrophysical values compared with the true model.

Then, we execute the operations of the inversion

workflow using the original FCM method. Similarly,

an initial set of k� g in step 2 of the inversion

workflow is determined. Figure 8 shows the values of

the data misfit (a) and the variance of each cluster (b,

c). The values of k and g are both chosen to be

10,000, while the corresponding data misfit is 647,

and the variance values of the two classes are all

small. We perform step 3 in the inversion workflow

to obtain the optimal values of the three weighting

parameters and carry out the final inversion. Fig-

ure 8d shows the results obtained from the original

FCM inversion.

(a)

(c)

(b)

Figure 10
The process of automatically clustering weighted parameters to search for optimal values. The variation curve of the weighting parameters

(a) and the two types of cluster centers (b) in the parameter search process. c Combined result slices of the improved FCM inversion based on

the optimized parameters from the search algorithm
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Then, retaining the value of b and the reference

model, we perform step 2 of the inversion workflow

using the improved FCM algorithm. Figure 9 shows

the values of the data misfit (a) and the variance of

each cluster (b, c). The values of k and g are also both

chosen to be 10,000. At this point, only a better

combination is selected from bunches of parameter

pairs, but this parameter pair results in a larger

variance value and data misfit. Next, carry out step 3

to adjust the three weighting parameters and conduct

the final inversion. Figure 9d shows the results

obtained from the improved FCM inversion using

the inversion workflow.

Next, the gravity data of model 2 are used to

prove the correctness of the weighted parameter

search algorithm of Algorithm 2. Use the reference

model and the b, set values of the initial cluster

centers of v1 = 0.05 g/cc and v2 = 0.20 g/cc, make

the initial values of k and g both equal to 1500, and

perform the parameter search algorithm. Figure 10a

displays the changes in the values of k and g
throughout the parameter search process. Figure 10b

shows the changes in the values of the two cluster

centers. The weighted parameter pairs are trans-

formed for 7 times, yielding 14 results. In this

example, k equals 5695.31 and g equals 8542.97.
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Then, we use the parameter pair obtained from the

parameter search algorithm and adjust the values of

the weighting parameters b, k, and g separately.

Finally, the final inversion is performed, yielding the

results shown in Fig. 10c based on the adjusted

weighting parameters. Comparing Figs. 8d, 10c, and

Figs. 9d, 10c reveals more obvious boundaries

between different blocks, and the values of the

inversion result are better clustered around the prior

petrophysical information. Moreover, the parameters

search only needs 14 times, which also improves the

speed of the parameter search process. Figure 11a

and b show the changes in the values of the cluster

centers when using the original or improved FCM

inversion. Comparing Fig. 11a and b, it is found that

the cluster centers are updated very quickly, and the

target cluster centers are also approached in just a few

steps when using the original FCM method for

(a)

(c)

(b)

Figure 12
a Spatial location of model 3. b Contour map of forward gravity anomaly of complicated model with added Gaussian noise. c Determination

of optimal regularization weighting parameters using the L-curve method

(a) (b)

Figure 11
In the final inversion process, the numerical curves of the cluster centers of the second model. The numerical change of cluster centers in the

iterative process of the final inversion using the original (a) and improved FCM inversion method (b)
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inversion. However, the cluster centers change grad-

ually when using the improved FCM inversion

method. Obviously, the cluster centers obtained using

the new method can better explain the actual

distribution characteristics of the petrophysical

model, thus it can also be considered that the

calculated cluster centers are more reasonable.

3.3. Model Test 3

The third model is used to test the algorithm. A

depiction of the true model is shown in Fig. 12a. The

gravity anomaly of model 3 contaminated with

random Gaussian noise with zero mean and standard

deviation of 0.2 gu is shown in Fig. 12b. We retain

the same number of data points and the same dot and

line spacing as in the above two models.

Firstly, we perform the regularization inversion

and determine the value of b. Figure 12c shows the

results of using the L-curve method, yielding an

optimal value of the regularization parameter of

251,188.0. Figure 13a–g shows the inversion results

for each layer at different depth. The inversion results

are similar to the above examples. The results show

lower density contrast values near the edges of the

blocks and smaller densities compared with the true

model.

Then, we perform the inversion workflow using

the original FCM method. Figure 14 shows the values

of the data misfit (a) and the variance of each cluster

(b, c). The values of k and g are chosen to be 794 or

10,000. The corresponding data misfit is 647, and the

variance values are small. Then, the values of the

three weighting parameters are adjusted and the final

inversion is carried out. Figure 15 displays the

inversion results for each layer at different depth.

In this model test, we directly use the parameter

search algorithm to prove the advantages of the

proposed algorithm. Continue to use the reference

model and the regularization parameter obtained from

(a)

(d)

(g)

(b)

(e)

(c)

(f)

Figure 13
Regularized inversion of the test of model 3, and the stratified results of the inversion at z equals 50 m (a), 150 m (b), 250 m (c), 350 m (d),

450 m (e), 550 m (f), and 650 m (g)
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step 1 in the inversion workflow. The initial values of

the cluster centers are set to v1 = 0.05 g/cc and

v2 = 0.20 g/cc and the initial values of k and g to

1500 and then we perform the parameter search

algorithm; Fig. 16a shows the changes in the values

of k and g throughout the parameter search process.

Figure 16b displays the variation of the cluster centers

in this process. The weighted parameter pairs are

transformed for 12 times, yielding k of 7593.75 and g
of 11,390.6250.

Then, use the parameter pair obtained from the

parameter search algorithm of model 3 and adjust the

values of b, k, and g separately. Finally, the final

inversion is performed using the improved FCM

method to obtain the results shown in Fig. 17.

Comparing Figs. 15, 17, and Figs. 13, 17 reveals

clearer boundaries between different blocks and more

clustered results around the two discrete petrophys-

ical constraints. Moreover, the parameter search

algorithm accelerates the speed of determining opti-

mal and reasonable weighting parameters.

Figure 18a, b shows the changes in the values of

the cluster centers of the original and improved FCM

inversion methods. Obviously, the cluster centers

obtained using the new method can better explain the

actual distribution characteristics of the petrophysical

model. This example thus verifies the superiority of

the proposed algorithm.

4. Conclusions

A new scheme for FCM inversion based on dis-

crete petrophysical constraint information is

proposed. The purpose of the method is to fully

consider the data distribution characteristics of the

model parameters in the inversion process and

thereby obtain more reasonable cluster center values.

Firstly, the theoretical data of a simple model and the

methods in the inversion workflow are applied to

verify the new FCM inversion method, revealing the

following characteristics: (1) When using the

(a)

(c)

(b)

Figure 14
Original fuzzy C-means clustering inversion performed on the theoretical data of model 3. a Values of the data misfit, b, c variance of each

cluster using original guided FCM clustering algorithm of complicated model
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enumeration method for the parameter search, the

new inversion method is more sensitive to the

weighted parameter values than the original inversion

method. It appears that the weighting parameters

have the same domain, while the original method has

a wider range of applicable parameter values. How-

ever, the original method often selects a pair of

nonoptimal weighting parameters due to the data

representation in the parameter search process, lead-

ing to poor inversion results; (2) We use three sets of

(a)

(d)

(g)

(e) (f)

(b) (c)

Figure 15
Original FCM inversion of the test of model 3, and the stratified results of the inversion at z equals 50 m (a), 150 m (b), 250 m (c), 350 m (d),

450 m (e), 550 m (f), and 650 m (g)

(a) (b)

Figure 16
Process of automatically clustering weighted parameters to search optimal values of model 3 with the variation curve of the weighting

parameters (a) and the two types of cluster centers (b) values in the parameter search process
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weighting parameters with different values to illus-

trate the difference between the original inversion

method and the improved inversion means. The

results show that the cluster centers calculated using

the original FCM method always approach the target

cluster centers, but the cluster centers calculated by

the latter scheme show the opposite results. The basis

for selecting the weighting parameters is that the

obtained weighting parameter pairs must yield small

variances between the two types of petrophysical

parameter values and the target clustering centers.

However, the improved FCM inversion scheme often

(a)

(d)

(g)

(e) (f)

(b) (c)

Figure 17
Improved FCM inversion performed using the weighted parameters obtained by the parameter search algorithm, and the stratified results of

the inversion at z equals 50 m (a), 150 m (b), 250 m (c), 350 m (d), 450 m (e), 550 m (f), and 650 m (g)

(a) (b)

Figure 18
The numerical curves of the cluster centers of the test of model 3 in the iterative process of the final inversion using the original (a) and

improved inversion method (b)
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leads to the opposite result. Therefore, we propose a

parameter search algorithm for reasonable selection

of the weighted parameter pairs in the improved

inversion scheme.

We establish the following rules for the search

algorithm: (1) the results of the parameter selection

using the enumeration method reveal that the rea-

sonable parameter pairs all have k less than or equal

to g. Therefore, in the parameter search algorithm, the

parameter g is always maintained at 1.5 times the

value of the parameter k. (2) After transforming the

weighting parameters, if the cluster centers obtained

from the second computation tend towards the target

cluster centers more than those calculated from the

first calculation, an optimal weighting parameter pair

has been selected.

Theoretical gravity data are used to verify the

improved FCM method and the parameter search

algorithm. Firstly, applying the operations mentioned

in the inversion workflow to implement the new

discrete-valued inversion method, we compare the

results of the two clustering inversion using synthetic

examples. The results show that the use of the

improved method in the gravity inversion can

increase the accuracy of the recovered results in

terms of the definition of the boundaries and the

petrophysical property values. Secondly, the theo-

retical gravity data are furthermore used to verify the

parameter search algorithm based on the improved

FCM inversion method. The results show that the

parameter search algorithm can obtain optimal

weighted parameters within a shorter number of

computations. Using it to replace the weighted

parameters obtained in the second step of the inver-

sion workflow yields better final inversion results

than the original FCM inversion method. Therefore,

the new method and the new algorithm proposed

herein are more efficient for geophysical inversion.
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