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ABSTRACT

An efficient and precise spatial sampling design is critical to capture spatial and temporal water quality variations
under cost and labor constraints. Therefore, it is practically essential to optimize the sampling locations using lim-
ited sampling numbers to obtain the most comprehensive water quality monitoring results considering both the
spatial and temporal dynamics. Existing sampling methods were restricted due to lacking pre-information and
specific sampling objective function. This paper proposed an optimal sampling strategy using remote sensing
(RS) big data and spatial sampling annealing (SSA) integrated approach for sampling design. The proposed
method involved spatial-temporal clustering of the total suspended sediment (TSS) using long-term remote
sensing data (Terra/Aqua MODIS, 2000-2014), determining the required sampling numbers using geostatistical
analysis, and SSA simulation following the objective function of minimization of the spatial-temporal mean esti-
mation error using remote sensing data as references. Taking total suspended sediment (TSS) observations at Po-
yang Lake, China, as the case study and application region. Results showed that the RS + SSA sampling approach
is superior to conventional sampling methods such as systematic, stratified, and expert sampling, concerning
spatial and temporal sampling accuracy. TSS estimation errors of the whole lake were reduced by 18.11% and
29.34% on average when compared to systematic and stratified sampling under the same sample size. The annual
TSS estimation errors were dropped by approximately 50%. The sampling accuracy was affected by the synthetic
effects of sampling strategy (station numbers and spatial distributions) and water quality variations (coefficient
of variation, CV). Sampling optimization is more efficient to improve the sampling accuracy than increasing sam-
pling size, which requires more cost and human resources. Remote sensing showed great potential as ideal
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means to provide spatially contiguous and comprehensive data as prior-knowledge for efficient sampling design.
This paper provides solutions and recommendations for evaluating existing monitoring stations in their repre-
sentation of water quality or optimizing a new sampling network for future implications of more efficient and
precise water quality sampling and routine monitoring.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Lakes, estuaries, and reservoirs worldwide have experienced dra-
matic changes under pressure from climate change and anthropic activ-
ities over the past several decades (UNEP, 2016). A global exacerbation
of bloom conditions was observed with increasing summertime bloom
intensity in 68% of the lakes worldwide (Ho et al., 2019). The U.S. Envi-
ronmental Protection Agency (EPA) reported that only 28% of U.S. rivers
and streams are in good biological condition, while 46% are low (USEPA,
2017). To maintain the sustainability of the aquatic functions to food, se-
curity, and society (Read et al., 2017), a set of regulations and policies on
water quality protections have been implemented at regional, national,
and even global scales. For instance, a Water Framework Directive
(WFD) was introduced for all European Union (EU) member states
countries since 2000, aiming to protect the water quality and ecosystem
status in the inland and coastal waters (Destouni et al., 2017). To ad-
dress the requirement for standardized water quality monitoring, a
Water Quality Portal (WQP) has been developed and established,
under the joint effort of the U.S. Geological Survey (USGS), the U.S.
EPA, and the National Water Quality Monitoring Council. China has
placed the China 13th (2016-2020) and 14th (2021-2025) National
Five-Year Science and Technology Development Plan for Environmental
Protection has focused on prevention, treatment, and monitoring of
water quality nationwide, which promote the construction and imple-
mentation of the “space-and-ground” integrated monitoring network
for pollution monitoring and emergency response to environmental as-
sessment (Fujiang, 2017). These actions are related to achieving the
Sustainable Development Goals (SDGs) and the 2030 Agenda for Sus-
tainable Development to improve water quality by 2030 (Alcamo,
2019; Hering, 2017).

Implementation of these policies requires continuous and consistent
water quality monitoring at lakes, regional, national, and even global
scales (UNEP, 2016). A proper monitoring approach should provide a
systematic assessment of the water quality's evolution to support
water resources assessment and management (Chen et al.,, 2012). Var-
ied water quality sampling approaches and techniques have been
adopted, including traditional field station sampling methods (Abd-
Elrahman et al., 2011), automatic network (Pule et al., 2017), and re-
mote sensing (I0OCCG, 2000), or some new optical tools proposed for
the real-time diagnosis of water quality without traditional sampling
and laboratory physico-chemical analysis (Krapivin et al., 2017;
Varotsos and Krapivin, 2018; Varotsos et al., 2019; Varotsos et al.,
2020), each with its pros and cons. In-situ sampling is still one of the
most common methods adopted by policy-makers, water conservation
organizations, research institutes, and the general public for water qual-
ity monitoring. The three most widely used sampling strategies includ-
ing random, systematic, and stratified sampling (Brus and Knotters,
2008). However, the field sampling method requires field water sample
collection and laboratory analysis to determine water quality parame-
ters, which are labor and cost-intensive, time-consuming, and limited
spatial coverage (Koparan et al., 2018). Random sampling is the most
straightforward strategy, using a random number generator to deter-
mine the sample locations (Tammi et al., 1999). However, the sampling
uncertainty is generally more considerable than other methods for the
same sampling numbers unless the study region was sampled exhaus-
tively (Croft and Chow-Fraser, 2009). The systematic sampling strategy
uses a regular grid to select the sample locations at a fixed, periodic

interval (Agency, 2002). In contrast, stratified sampling was designed
to use prior information, such as water quality classification, to divide
the whole region into relatively homogeneous clusters and ensure
that the sample is distributed across significant gradients (Catherine
et al., 2008). However, water quality is typically spatial heterogeneous
and not uniform across space, the optimal sampling design to be more
efficient and effective is required to satisfy monitoring objectives.

Remote sensing technology is superior to traditional field sampling
regarding broader spatial and temporal coverage at a low cost (Liu
et al., 2003). With more synoptic and frequent observations, remote
sensing sensors like Terra/Aqua MODIS, Landsat TM/ETM+-/OLl, etc.
could significantly improve comprehensive water quality assessments
more effectively and efficiently (IOCCG, 2013; Palmer et al., 2015).
These data have been commonly adopted to complement field sampling
to expand water quality monitoring's spatial and temporal coverage.
Such abundant information from remote sensing big data is essential
to meet many of the challenges of information asymmetry, and data
gaps from field sampling, especially in developing countries but is rec-
ommended to integrate with traditional sampling methods and field
surveying to improve its precision (Arabi et al., 2020). Under ideal con-
ditions, more sampling stations are better for higher quality monitoring
data. However, it is essential to determine sampling sizes and locations
accurately and efficiently to monitor the water quality variations (Alilou
etal., 2018), which desires the optimal sampling design of water quality
monitoring. Taking advantages of the remote sensing data, some pio-
neer studies have made some efforts on sampling network optimizing
based on remote sensing imagery (Karabork, 2009; Kiefer et al., 2015).
However, research on methods and applications of remote sensing big
data-based sampling optimization is still less. Existing studies mainly
focused on the statistical indicators (such as mean, the variance of the
water quality index) obtained from single or limited images. Simulta-
neously, the spatial-temporal variations were not considered compre-
hensive information and prior-knowledge to design or optimize a
sampling network.

Efforts have been made to identify representative sampling stations,
reduce sampling numbers, or optimize sampling distributions using sta-
tistical methods or models. Most research on water quality sampling fo-
cused on reducing sampling numbers of the existing sampling network
using statistical spatial assessment methods, such as cluster analysis
(Wang et al.,, 2014). Besides, some optimal sampling approaches have
been proposed to optimize spatial distributions of water quality sam-
pling stations, including principal component analysis (Ouyang, 2005),
matter element analysis (Wu et al., 2010), fuzzy clustering (Karamouz
etal., 2009a), entropy analyses (Karamouz et al., 2009b), and genetic al-
gorithms (Park et al., 2006). However, these sampling methods are
based on sufficient data from an existing sampling network to obtain
statistically significant results. Such prior information could be missing
if sampling networks are not properly located and water quality data
not sufficiently collected (Karabork, 2009). The ideal approach for sam-
pling optimization requires high spatial-temporal resolution water
quality data under different hydrological conditions (Bendoricchio and
De Boni, 2005), which are often limited due to economic and labor con-
straints (Letcher et al., 2002).

This study proposed an optimal sampling strategy based on long-
term spatial-temporal remote sensing data to resolve the issues above
for water quality monitoring by taking total suspended sediment
(TSS) observations at the Poyang Lake, China, as a region of interest.
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The optimal sampling strategy involved the following questions to be
addressed: (Abd-Elrahman et al., 2011) How to describe the spatial-
temporal variations of water quality index quantitively, such as TSS,
using long-term remote sensing data (Terra/Aqua MODIS,
2000-2014)? (Agency, 2002) How to determine the required number
of samplings objectively; and (Alcamo, 2019) How to optimize the sam-
pling distributions efficiently for water quality monitoring. Besides, tra-
ditional sampling methods' precision and efficiency, including
systematic, stratified, and expert sampling, will be assessed as well as
the effect factors of water quality on the sampling accuracy. This study
aims to provide a novel approach and recommendations for future im-
plications of water quality sampling, monitoring, and assessment.

2. Materials and datasets
2.1. Poyang Lake

Located in the middle of the Yangtze River basin, the maximum area
of the Poyang Lake could reach up to 4000 km? during the wet season
(28°22'-29°45'N, 115°47'-116°45'E, Fig. 1). Listed as the National Na-
ture Reserve and a Ramsar site (www.ramsar.org/), Poyang Lake and
adjacent wetland are of great importance to local and global ecological
conservations (Dronova et al,, 2012). The lake was selected as the case
study region for its dramatic variations in suspended sediments induced
by anthropogenic activities, including impacts of the Three Gorges Dam
and sand mining, and thus needs effective monitoring and water quality
regulation (Feng et al., 2013) (see Fig. 2).

Field survey-based routine monitoring of water quality at Poyang
lake was conducted by the Water Resources Department of Jiangxi

"*‘
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Province monthly. In general, only 19 sampling stations are set
around the lake (Guo and Wang, 2014), where data are collected
and then interpolated to represent the water quality of the whole
lake. Extensive research primarily focused on remote sensing of
water quality monitoring using Terra/Aqua MODIS (Feng et al.,
2012), Landsat TM/ETM+/OLI (Wu et al., 2013), or HJ-1 CCD, GF-1
(Li et al., 2015) at different scales. The lake's long-term variations
have been well documented (Feng et al., 2012; Wu and Cui, 2008),
while how the sampling should be designed and optimized are still
blank.

2.2. Remote sensing dataset and processing

The long-term remote sensing Terra/Aqua MODIS (2000-2014) de-
rived TSS products were used in this study to analyze the spatial-
temporal characteristic of TSS. The detailed information about the TSS
data are provided in our previous study (Hou et al., 2017) and briefly
summarized here: First, the MOD09Q1 and MYD09Q1 with spatial res-
olutions of 250 m and MOD09A1 and MYDO09A1 with quality control
flags of 500 m were obtained from the NASA Land Processes Distribu-
tion Active Archive Center (https://ladsweb.nascom.nasa.gov/), which
have been atmospherically corrected, and a total of 343 cloud-free im-
ages were available for the Poyang Lake. The sharpen method was
used to re-sample 500 m data to 250 m for comparison and elimination
of bad quality pixels (Pohl and Van Genderen, 1998). Then, the land ad-
jacency effects on the water pixels were removed by calculating relative
differences between adjacent pixels using MODIS surface reflectance
bands at 555 and 645 nm along with the land-water profiles (Feng
et al.,, 2012). The NDWI (Normalized Difference Water Index, NDWI =

® Sampling station
Bl Lake&River

25KM

116°40'E
i

Fig. 1. Geographic setting of Poyang Lake and existing water quality monitoring sampling sites (black circles) of Water Resources Department of Jiangxi Province.
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Fig. 2. Flowchart of SSA spatial sampling optimization algorithm.

(Rgreen — Ruir) / (Rgreen + Ryir)) was used to build the water mask since
it enlarges the signal contrast between water and land.

Third, field measurements were performed from 13 July of 2009 to
10 October of 2017 by cruise surveys with a total of 138 sampled sta-
tions, ranged from turbid to clear waters (TSS of 1-300 mg L — 1). At
each station, water samples were collected and filtered immediately
on a pre-weighed Whatman filter (GF/F or Cellulose Acetate Mem-
branes) with a diameter of 47 mm. The filter was stored in a desiccator,
burned at 550 °C for three h, and weighed again in the laboratory. The
TSS concentration was determined according to the weight difference
normalized by the filtered water volume. 79 matchups of MODIS daily
surface reflectance data and in-situ sampling data were selected to de-
velop a remote-sensing TSS retrieval model. The model was based on
MODIS green (555 nm) and red (645 nm) bands extracted from the
above MODIS products, with the formula as: TSS (mg/L) =
132.83 x (R645/R555)2-52.618 x (R645/R555). This model produced
the best precision with the highest determination coefficient (R2 =
0.88, P < 0.05) and the lowest RMSE (34.2%) compared with other
methods, validated using field-collected data.

Additionally, the pixels affected by cloud shadow and atmospheric
correction failure were removed using the Quality Control (QC) flag.
The processing of the MODIS data and statistic analysis, as well as the
sampling approach were programmed and implemented in ENVI/IDL
software.

3. Methods
3.1. How to describe the spatial-temporal variations of water quality?

The K-mean clustering method was selected to assign pixels with
similar variation trends into one cluster, and TSS variations were ob-
tained from remote sensing TSS data from 2000 to 2014. K-means clus-
tering is one of the simplest and widely used unsupervised machine

learning algorithms (Hartigan and Wong, 1979). The purpose of cluster-
ing is to locate pixels with high similarity of spatial-temporal patterns,
and thus one cluster could be represented by interpolation of limited
sampling stations. Thus, pixels of high similarity to each other were de-
termined to the same cluster and could be effectively represented using
typical sampling observations.

One critical issue to be resolved when k-means clustering is used is
to determine the optimal number of clusters. A standard measure
named Sum of Squared Error (SSE) was used to determine k by trial
and error. SSE is the sum of the squared differences between each obser-
vation and its cluster center, thus being used to measure variation
within a cluster. The definition of SSE was given in the eq. 1, in which
X is a data point in a cluster, G, m; is the clustered index and the center
of cluster i.

SSE = Zk: > dist?(m;, x) (1)

i=1 x€C;

From the definition of SSE, it is reasonable to choose clusters with
the smallest SSE. To determine the proper k, we run k-means clustering
on the dataset for a range of values of k. Since SSE tends to decrease to-
ward 0 as k increases, a small k with a low SSE will be chosen. When
clustering the time series TSS data from remote sensing imagery, each
pixel was considered as one data point with 15 dimensions (TSS values
from 2000 to 2014). Thus, pixels with highly similar spatial-temporal
variations would be classified into the same cluster.

3.2. How to determination of optimal sampling size?

An optimal sampling size requires prior spatial-temporal informa-
tion on the TSS variations. In this study, a geostatistical approach
based on semi-variogram analysis is used to analyze the spatial-
temporal variations of TSS. The semi-variogram analysis has been
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widely used in environmental science, including soil mapping (Chaney
et al.,, 2015), vegetation monitoring (Zeng et al., 2014), meteorological
data (Gebremichael and Krajewski, 2005), and water quality (Caeiro
etal., 2003). The semi-variogram plots the semivariance against the dis-
tance between the measurements, which indicates distance separations
beyond which the measurements become irrelevant (Aurin et al., 2013;
Ibrahim et al., 2014). The experimental semivariance (Eq. 2) was calcu-
lated as half the squared TSS difference at different distances (denoted
as spatial lag h):

- %) )—z(x; + h)]* 2
r( )—WH [2(x)) —=2(x; + h)] (2)

In which z(x;) is the TSS value at pixel x;. h is the distance of two dif-
ferent pixels, and N(h) is the data pairs of pixels at a distance of h. Then,
the semivariance with a set of h could be obtained, as shown in Supple-
mentary Fig. S2.

Three parameters could be provided from the semi-variogram:
range (a), sill (c), and nugget (c0). The sill (c) indicates the total vari-
ance of the TSS variations, and the nugget (c0) indicates random mea-
surement uncertainties. The range (a) is the distance at which
observations between two locations become independent over this dis-
tance. Thus, semi-variograms could provide 1) an estimate of the TSS
variance and 2) an estimate of the minimum distance required for sam-
ples to be considered spatially independent, which can be used to in-
form sample size for designing a robust sampling strategy. The range
represents how the sampling points were dependent on each other
(Journel and Huijbregts, 1991). In this study, the commonly used spher-
ical model was adopted to analyze the TSS variation's spatial scale using
an ordinary least squares fit method (OLS) (Li et al., 2018).

3.3. How to obtain the optimal sampling distribution?

Spatial simulated annealing (SSA) is a classical optimization algo-
rithm based on Monte Carlo simulation, which has been widely used
to solve sampling design problems in the environmental sciences. A
standard simulated annealing algorithm was adopted in this study as
developed in Kirkpatrick (Kirkpatrick and Toulouse, 1985), but ex-
panded to the spatial scale following Brus and Heuvelink (Brus and
Heuvelink, 2007). Optimal spatial sampling's main idea is to obtain
the best sampling allocations with high precision and low cost by allo-
cating sampling locations randomly to achieve minimizing prediction
errors or called an objective function. In practice, SSA randomly moves
the spatial location of a candidate sampling point at a time and calculat-
ing whether the updated spatial sample distribution is better than the
previous one by comparing the objective function. Compared to other
local optimal methods such as the hill-climbing method, the SSA is
more robust since it provides chances of accepting a worse spatial
sampling distribution so that the algorithm can escape from local op-
tima solutions. Moreover, the probability of accepting a worse spatial
sample configuration will decrease with the optimization procedure's
iteration. Therefore the SSA can get very close to the global optimum
configuration.

The objective function used in this study to determine whether a
candidate sampling distribution is accepted or rejected during an itera-
tion of the SSA, is defined as the Minimization of the Spatial-temporal
mean Error (MSTE). The MSTE is the temporal average of spatial inter-
polated TSS error compared to observed data over the time-series ob-
servations.

S RILELIeY i )2
MSTE = = j; ﬁsit (Tssobserved _Tssinferred) (3)
where TSSk served, TSSkrerrea Were observed and inferred TSS at location j
and time i using current sampling allocation, Ns and N is the total count
of spatial pixels and days.
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In practice, SSA can be described step by step as; i): First, initialize
the simulation by setting initial temperature Ty, the number of itera-
tions each temperature, and final temperature. ii): Randomly allocating
n sampling locations S, for each spatially clustered region and calculat-
ing the objective function MSTE from these random locations. iii): Up-
date the sampling locations by generating a random neighboring
sampling distribution S; and calculating corresponding objective func-
tion F(S;). iv): Start iteration until the temperate or objective function
is low enough. For each iteration, the probability of changing the current
sampling locations S; to new S; ; following the Metropolis algorithm's
acceptance rule (Metropolis et al., 1953). If the objective function
F(Si+1) is smaller than F(S;) then the probability P is 1, which means
the sampling distribution S;,  is accepted with an improvement to the
final sampling design and is stored for memorizing. If F(S;..1) is smaller
than F(S;) then the current design is accepted only with a certain prob-
ability

(4)

1, if, F(S;)<F(Sii1)
P{S; — Si;1} = F(S;) —F(Si+1
{ i {e< ) i F(S)>F(Si)

where T is temperature, which is set large at the beginning of the algo-
rithm, the larger T indicates a higher probability of accepting a worsen-
ing sampling design. The algorithm then iterates by decreasing T and k
times iterations are performed for each T. Therefore, the probability of
accepting a worse sampling design could prevent the algorithm from
being trapped in local minima of the objective function, and high overall
accuracy can be achieved. In this study, the initial and cooling tempera-
tures were set as 2 and 0.01, and the temperature decreasing rate was
set as 0.95. For each temperature, 500 iterations were performed to ob-
tain a robust result.

3.4. Comparison and accuracy assessment of varied sampling methods

Three commonly used conventional sampling methods were
selected and evaluated to compare the proposed sampling approach, in-
cluding systematic sampling, stratified sampling, and expert sampling.
Detailed information on each sampling method was provided as
follows.

Systematic sampling is frequently adopted in the research commu-
nity for its simplicity and quality and not requiring any prior knowledge
(Haining, 2015). The samples are selected evenly and randomly, which
means each location has an equal and independent chance to be se-
lected. Therefore, the distribution of systematic sampling could be de-
termined while the sampling size or sampling interval was
determined for a specific study region by knowing the spatial area and
geometry shape (Van Niel and Laffan, 2003). The systematic sampling
with the sampling size of 45, 55, 65, 80, 90, 120, 160 for the Poyang
Lake was obtained, which corresponding to a distance of 1.5, 2.0, 2.5,
3.0, 3.3, 3.6, and 4.0 km between two sampling stations. An illustration
of the sampling distributions was presented in Supplementary Fig. S3
(a, b, ¢) at the sample size of 160, 90 and 45, respectively. Besides, the
random number generator was run for 100 times for each sampling
size with different initial points, and the averaged results were then
used for evaluations of each sampling strategy.

Stratified sampling is one sampling approach designed by dividing
the whole study region into independent, non-overlapping subregions,
called clusters or strata, then applying a simple random sample within
each stratum (Crepin and Johnson, 1993). Strata are obtained by clus-
tering or classification based on spatio-temporal characteristics of the
study area and thus are more heterogeneous within strata than
among strata (Wang et al,, 2012). Stratified random sampling is appro-
priate, especially when the study region is heterogeneous and can be
classified with ancillary information such as remote sensing data. The
method's precision depends on each stratum's distinct, which is gener-
ally higher than the simple random or systematic sampling method
(Michalcova et al., 2011). An example of the stratified sampling was
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presented in Supplementary Fig. S3 (d, e, f) with the total sample size of
160, 90 and 45, respectively. The strata were obtained using the method
in Section 3.1. Like systematic sampling design, the random number
generator was run 100 times for each sampling size with different initial
points. The averaged results were then used for evaluations of each
sampling strategy.

Expert sampling is also known as judgmental or purposive sampling,
in which the sampling design, including size and positions, is based on
expert knowledge or professional judgment. The expert sampling is ef-
ficient and cost-effective than systematic or random designs with ex-
pert knowledge of regions of interest. However, its precision of water
quality estimates depends on personal judgment, which may not quan-
tify the investigation's level of uncertainty accurately. Fig. 1 exhibited
the spatial distribution of expert sampling locations in Poyang Lake,
with a sampling size of 17 in total.

For each sampling strategy, the whole lake's TSS values were ob-
tained by interpolating limited sampling values. The spatial interpola-
tion was conducted using the Inverse Distance Weighting (IDW)
method in this study. The IDW is a widely used interpolation method
based on geography's first law that unsampled locations are more sim-
ilar to the sampled point closer to it than those further away (Tobler,
2004). Thus, TSS values of unsampled locations were estimated as a lin-
ear combination of nearby observations where weight was an inverse
function of the distance from the unsampled points to the nearby sam-
pling locations (Burrough et al., 2015).

To evaluate the sampling strategy precision, remote sensing TSS
products were used as a reference or measured data. The root mean
square errors (RMSE, Equation .5) and mean percentage error (MPE,
Eq. 6) were calculated between measured data and interpolated data
from sampling points.

1 i=N 2
RMSE = /5 2 (Pi—Qi) (5)
i=1
MPE—looxlizlep"_QH (6)
NiZ Q

P; stands for the interpolated TSS value at location i using the sam-
pling strategy, Q; is the measured TSS values at the same location. The
time series estimated TSS errors from 2000 to 2014 were obtained
and averaged at different time scales (monthly, annually) to predict sta-
tistical errors for water quality monitoring using different sampling
methods.

4. Results and analysis
4.1. Spatial-temporal variations of TSS

Fig. 3 revealed the trends of SSE, and the total explained variance
with the number of cluster K increased. The clustering algorithm con-
verges to relatively stable values when the number of cluster K larger
enough, for instance, K> 8. A significant drop in SSE was found at 4 clus-
ters, and a knee point was also found correspondingly with 4 clusters,
with 93.4% variance explained. By increasing the number to 5 or even
higher, the SSE and total explained variance were not improved
much; therefore, the final number of clusters was determined to be 4.

The TSS variations of the Poyang Lake could be divided into 4 clus-
ters/classes which could be reasonably recognized (Fig. 4 and Table 1).
Class 1 was mainly located in the south and east-south area of Poyang
Lake. Class 2 and 3 were mainly located in the part of the east and mid-
dle lake. Class 4 was distributed in the narrow water channel in the
north of Poyang lake. Descriptive statistics of long-term TSS variations
in 4 clusters were listed in Table 1. Cluster 1 represents 54.36% of the
total area with the lowest values and variations of TSS. The TSS values
of class 1 ranged from 0.83 to 24.6 mg/L, with a mean value of
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Fig. 3. Variations of Sum of Squared Error (SSE) and total explained variance with
increasing K.

6.73 mg/L. Class 2 occupied 22.89% of the Poyang Lake, representing
the medium concentration of TSS, with the mean values of
28.12 mg/L. TSS became higher for cluster 3, and the highest TSS was
found in cluster 4 and cluster 3. The mean and maximum TSS in cluster
4 were 59.02 and 136.46 mg/L, which were about eight times higher
than the lowest TSS in cluster 1. Therefore, it could be inferred that
the spatial-temporal variations of TSS in Poyang Lake were significant,
which cloud has also been indicted by the standard deviation (STD)
for each class. The STD ranged from 2.72 to 25.91 from class 1 to class
4, which means class 1 was relatively stable, and high variations were
found in class 4.

15-year long-term TSS trends in Poyang Lake observed by Terra/
Aqua MODIS from 2000 to 2014, were shown in Fig. 4. Generally, signif-
icant spatial and temporal variability were revealed for the whole study
area and each class. Class 1 was dominated by low TSS values and low
inter-and inner-annual variations (STD). Class 2 to 4 showed an increas-
ing annual TSS trend, and the largest TSS values and variations were also
found in Class 4. The higher values in Class 3 and 4 were induced by in-
tensive human activities such as sand dredging in Poyang Lake.
Moreover, there were evident drops in TSS around 2008 or 2009,
which were caused by the sudden decrease of sand dredging due to
the sand dredging ban by the local authorities (Feng et al., 2012; Li
etal, 2014).

4.2. Required number of sampling sites

Fig. 5 presents the experimental semivariance plots and the fitted
theoretical variogram models to quantify the spatial variability of TSS
(R*> 0.9, P < 0.01) for each class. Table 2 listed the range, sill, and nug-
get values of different classes corresponding to different levels of TSS
variations, as described in the previous section. A larger variogram sill
(C1) was observed in Class 4 (approximately 3.8) and Class 2, indicating
more considerable TSS variations, and a smaller sill in Class 2 as ex-
pected. Similar patterns were also revealed in the nugget effect (CO)
for these different classes, with increased nugget values from 0.47 for
class 1 to 1.18 for class 4.

The spatial range in the fitted variograms, whereby a suitable sam-
pling distance should be retained to capture the TSS variations. For the
TSS variation in class 1, the mean spatial range was approximately
4.2 km. A smaller spatial range of TSS variation was 1.5 km in class 4, in-
dicating a smaller sampling distance was required to monitor the TSS
variation. Therefore, each class's sampling number was determined as
the spatial range proportion to the class area while considering the
class's shape. From class 1 to class 4, the minimum number of samples
required was 25, 18, 11 and 11.
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Fig. 4. Spatial-temporal clusters of TSS variations in Poyang Lake using 15 years MODIS data.

4.3. Optimal spatial distributions of sampling sites

Fig. 6 shows the decrease of the RMSE and MPE of the predicted TSS
during the SSA. Some worse sampling designs could also be accepted at
the earlier stage of the process. After this initial phase, the RMSE and
MPE decreased steadily and almost stable after 10,000 iterations. No
further reduction of prediction errors was achieved after 24,000 itera-
tions, which means that the algorithm reached an acceptable optimum
design and quitted the simulation after 34,900 iterations. The results
were confirmed by running the algorithm 200 times with different ini-
tial sampling locations and obtaining similar patterns (sensitivity anal-
ysis in Section 5.2). Overall, the RMSE and MPE dropped from
19.1 mg/L, 61.9% to 11.1 mg/L and 35.3%, representing an improvement
of TSS prediction of about 42.1% and 42.9%, respectively.

Table 1
Descriptive statistics of long-term TSS variations in 4 clusters of Poyang Lake.
Class 1 Class 2 Class 3 Class 4

Mean (mg/L) 6.73 28.12 43.80 59.02
STD 2.72 1543 25.01 25.92
Max (mg/L) 24.60 93.22 141.13 136.46
Min (mg/L) 0.83 7.53 5.52 0.09
Median (mg/L) 530 23.94 39.26 60.52
Area percentage 54.36% 22.89% 17.08% 3.71%

Fig. 7 presented an example of the initial and optimized TSS sam-
pling locations. The optimized design showed a higher density in re-
gions with higher TSS and coefficient variation (CV) of TSS. For
instance, more samples were located along the water channel in the
middle and north lake and higher CV regions in the south-east lake.
Fig. 7 presented the histograms of TSS and TSS's CV estimated using
the entire image pixels, initial sampling locations, and SSA optimized
sampling locations. It is worth noticing that the range of both TSS and
CV of TSS from SSA sampling was more consistent with the results
from the entire image pixels and the shape of the distributions. In con-
trast, initial sampling results were prone to miss the higher and lower
value ranges of TSS estimations. The improvement of SSA sampling
was more specific, as listed in Table 3. The maximum, mean, minimum,
upper 95% confidence interval (CI) of mean and lower 95% CI of the
mean of both TSS and TSS CV was more consistent between SSA sam-
pling an entire image data. Thus, it is reasonable to conclude that the op-
timized sampling could improve the overall accuracy of TSS estimations.

The spatial distributions of RMSE (mg/L) and MPE (%) of predicted
TSS errors using SSA sampling were displayed in Fig. 7 (d) and (e).
The RMSE ranged from 0.01 to 47.94 mg/L, with the mean (4-standard
deviation) value of 16.65 (£7.54) mg/L. Higher RMSE was found in
the middle and south lakes, as well as some parts of the north outlet,
and these areas were also high CV regions, but not vice versa. Besides,
regions in some lake bays and lakeshore showed higher RMSE, which
may be caused by irregular lake shape, limited sampling locations, as
well as high CV due to intensive land-lake interaction. Similar spatial
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Fig. 5. Semi-variograms of the TSS calculated from remote sensing TSS products. The solid lines represent the fitted spherical models.

Table 2
Statistics of the semi-variogram analysis of TSS variations at Poyang Lake.

Class Area Range Nugget Sill Sampling numbers
(km?) (m) (Go) (C1)

Class 1 2120.04 4200 0.47 2.34 25

Class 2 892.71 2400 0.78 3.61 18

Class 3 666.12 2100 0.52 3.27 11

Class 4 144.69 1500 1.18 3.79 11

patterns were found with MPE, with the maximum, mean, and mini-
mum values of 93.4%, 20.8% and 4.8%, respectively. To prove
SSA-optimized sampling's improvement, we compared the spatial and

temporal trends of TSS prediction errors to conventional methods in
the next section.

4.4. Improvement compared to conventional methods

The spatial distribution of the average TSS estimation errors (RMSE
and MRE) using conventional sampling methods, including systematic,
stratified, and expert sampling, were presented in Fig. 8. RMSE and
MRE's spatial patterns from three conventional methods were quite
like SSA sampling, but with higher values indicating conventional
methods' lower performances. For instance, higher RMSE was found
for all three methods in the middle, south lake, and parts of north outlet
and some lake bays and lakeshore, where TSS CVs were also high.
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Fig. 6. Trace of the minimization objective function, MPE and RMSE for TSS estimations, during SSA (for a case of 34,900 iterations).
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Table 4 showed the histograms and statistical comparisons of the pro-
posed SSA sampling method and three conventional methods. These re-
sults were obtained and compared under the same sampling size of 65
for SSA, systematic, and stratified sampling method, but only 17 sam-
ples were used for expert sampling. The improvement of SSA sampling
was apparent, with the mean (£STD) RMSE of 15.65 (£6.54) mg/L,
while the mean RMSE for systematic, stratified and expert sampling
was 19.11 (£6.02), 22.15 (49.05), 25.69 (£6.07) mg/L, respectively.
These results implied that by optimizing sampling locations using SSA,
the whole lake's TSS estimations errors were reduced by 18.11% and
29.34% on average, compared to systematic and stratified sampling
under the same sample size. Besides, the maximum and minimum
RMSE of SSA sampling was also reduced. The SSA's superiority was
more pronounced when the MPE of these methods was compared as
listed in Table 4.

Moreover, the improvement of SSA was further demonstrated by an
index called percentage less than a defined RMSE of MPE threshold. For
instance, the percentage of RMSE less than 5 mg/L was 5.83%, 0.07%,
0.49%, 0.03% for SSA, systematic, stratified, and expert sampling method,
respectively, and when the RMSE threshold increased to 20 mg/L, the

Table 3
Statistics and comparison of TSS and CV of TSS estimated using the entire image pixels
(All), initial sampling locations, and SSA optimized sampling locations.

All Initial SSA
TSS Max 124.8 76.3 92.0
(mg/1) Mean 435 45.1 443
Min 4.6 17.9 154

Upper 95% CI of Mean 43.46 46.14 4537

Lower 95% CI of Mean 43.19 39.96 41.29

TSS CV Max 1.07 0.97 0.94

Mean 0.68 0.68 0.66

Min 0.005 0.37 0.17

Upper 95% CI of Mean 0.66 0.71 0.70

Lower 95% CI of Mean 0.62 0.65 0.61

percentage met the criteria for each method was 82.19%, 75.43%,
55.90%, 26.14%. A similar but more significant improvement of SSA
was also revealed from MPE comparisons, with 91.52% of all data has
MPE of less than 30%, while the MPE percentage of systematic, stratified,
and expert sampling method was 15.95%, 17.57%, 8.64%.

Furthermore, we compared the performance of these sampling
methods under the scenario of long-term TSS observations, taking an-
nual TSS observations as a case. The assessments were achieved using
the remote sensing TSS product images as “ground truth” references,
and the annual predicted TSS values were obtained by interpolation
using sampling locations of each sampling method. Finally, the annual
mean RMSE and MPE were calculated and presented in Fig. 9. SSA's ad-
vantage over another three sampling methods in long term TSS moni-
toring was with lower time series RMSE and MPE. RMSE for SSA was
maintained at approximately 10% from 2001 to 2014, while the system-
atic method was around 18%, the stratified method of about 21%, and
the expert method of about 28%. All provided results proved SSA
sampling's superiority in both lower spatial and long-term TSS predic-
tion errors. Besides, it is interesting to notice that the spatial distribu-
tions and temporal trends of both RMSE and MPE showed similar
patterns for different methods or different sampling sizes, which im-
plied that these methods' sampling accuracy might be affected by simi-
lar or even the same factors.

5. Discussions
5.1. Factors of influencing sampling accuracy

Two factors, including sampling method (size and locations) and TSS
variations, were assumed to influence TSS observations' sampling accu-
racy. Fig. 10 provided RMSE and MPE trends under different sampling
sizes from 35 to 165 using systematic and stratified sampling methods,
together with expert sampling with a sampling size of 17. Clear decreas-
ing trends of RMSE and MPE were both observed with the increasing
sampling size, as expected. For instance, the RMSE of the systematic
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Table 4
Statistics and comparisons of RMSE (mg/L) and MPE (%) of TSS estimated using different
sampling methods.
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method dropped from 21.65 to 19.31 mg/L, while the sampling size en-
larged from 35 to 165. This meant the TSS estimation errors only de-
creased by approximately 10.81% and 10.04%, respectively. Similar

SSA  Systematic  Stratified  Expert results could be seen for the stratified sampling method. Therefore,
RMSE  Mean 1565 1911 2215 25.69 the influence of sampling locations or distributions matters more than
(mg/L) STD 6.54 6.52 9.05 6.07 sampling sizes. Fig. 10 also implied the number of samples required to
Min Zgl 6421.30 Gggi 6;-;3 meet a certain sampling accuracy for conventional methods. For in-
Max 54,95 97 . X o :
Percentage (%) < 5 mg/L e 007 0.49 003 stance, at least 120 samples were required in Poyang .Lake to obtam.a
Percentage (%) < 10 mg/L  24.66 124 439 036 long-term TSS accuracy of RMSE less thgn 20 mg/L using a systema.tlc
Percentage (%) < 15 mg/L  57.78 3658 27.32 467 method or more than 140 samples required for the stratified sampling
Percentage (%) < 20 mg/L 8219  75.43 55.90 26.14 method.
MPE  Mean 2077 73.88 49.70 57.56 The spatial distributions and temporal trends of both RMSE and MPE
(%) STD 661  36.93 2293 32.87 howed simil for diff hods. indicating th i
Min 476 399 356 153 showed similar patterns for different methods, indicating the sampling
Max 9340 179.98 139.98 184.88 accuracy may be affected by some common factors. We compared and
Percentage (%) < 10% 027 0.04 0.73 0.17 listed the RMSE, together with TSS CV, sampling density, and CV's
Percentage (%) < 20% 53.59 4.38 7.47 3.31 ratio to sampling density for different methods and TSS cluster classes
Percentage (%) < 30% 9152 1595 17.57 8.64 in Table 5. The sampling density was defined as the ratio of sampling
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Table 5
Influence factors analysis on sampling accuracy of different sampling methods®.
Class 1 Class 2 Class 3 Class 4
TSS cv 0.58 (0.17) 0.49 (0.16) 0.56 (0.15) 0.42 (0.14)
Systematic RMSE (STD) 18.74 (2.35) 16.05 (1.41) 18.86 (1.97) 19.90 (2.91)
Sampling density 0.007 0.019 0.019 0.069
Ratio 78.24 26.05 30.03 6.08
Stratified RMSE (STD) 24.86 (3.51) 23.69 (2.57) 23.92 (2.91) 22.35(3.71)
Sampling density 0.014 0.069 0.054 0318
Ratio 40.86 7.00 10.29 132
Expert RMSE (STD) 23.53 (3.67) 23.98 (6.68) 23.20 (2.48) 22.94 (3.95)
Sampling density 0.0028 0.0034 0.0015 0.0207
Ratio 204.29 144.72 37032 20.26
SSA RMSE (STD) 22.87 (4.46) 20.36 (4.03) 24.84 (3.44) 22.71 (3.08)
Sampling density 0.012 0.020 0.017 0.076
Ratio 49.03 24.12 33.67 5.53

@ Ratio = CV/sampling density; the units of sampling density: samples per km?.

size to the total area of each class. In general, the trends between RMSE
and single factor were not harmonious, such as RMSE and CV, or RMSE
and sampling density. For instance, the RMSE of the systematic method
was 18.87, 16.05, 18.86 and 19.90 mg/L from class 1 to 4, showing first a
decreasing and then an increasing trend. In contrast, the TSS CV showed
a decreasing, increasing, and then increasing trend, and the sampling
density with an increasing trend from class 1 to 4. However, the com-
parison between RMSE and TSS CV's ratio to sampling density showed
better consistency from class 1 to 4. For example, the trends between
RMSE and ratio using a systematic or SSA sampling method were iden-
tical, thus proven that the sampling accuracy was under the joint influ-
ence of multi factors.

The relationships between the TSS prediction errors and TSS CV's
ratio to sampling density were further confirmed using regression anal-
ysis. Strong correlations were found among all four sampling methods,
as shown in Supplementary Fig. S4. The squared coefficient of correla-
tion, R?, was 0.61, 0.73, 0.42, and 0.78 for systematic, stratified, expert,
and SSA sampling methods, respectively. A correlation greater than
0.7 is generally described as a high or strong correlation and a correla-
tion between 0.3 and 0.7 as a moderate correlation. We are confident
to conclude that the sampling accuracy was significantly determined
by the ratio of TSS variations to sampling density, at the 0.05 level (P-
value <0.05), and most of the sampling errors fall within the 95% confi-
dence range. Therefore, for regions or lakes with high TSS variations, it is
crucial to increase sampling size and optimize the sampling distribu-
tions to improve the sampling accuracy. Considering the cost and
human resources of increasing sampling size, sampling optimization
would be more efficient to enhance the sampling accuracy, especially
in the long-term TSS or routine TSS observations.

5.2. Sensitivity analysis of SSA simulation

The initial sampling locations, initial temperature, cooling rate, and
the number of iterations per new temperature may affect the simulation
stability (Van Groenigen, 1997). To ensure that the annealing
optimization's best fitness was reached, the cooling rate and the num-
ber of iterations per new temperature were set to large values as 0.95
and 500, and the cooling temperature was set low enough as 0.01. The
procedure was repeated 500 times, using a combination of 50 different
initial sampling locations and ten initial temperatures from 5 to 0.5 with
an interval of 0.5.

Each simulation's mean center location was obtained as the mean
longitude and latitude of all sampling points for each TSS class. The dis-
tributions of 500 mean center locations were displayed in Supplemen-
tary Fig. S4, together with each class's directional distributions.
Sensitivity analysis indicated that the SSA method and results were rel-
atively stable because the spatial distribution of all mean centers of 500
simulations was concentrated for each class. The percentage of the
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mean centers' distribution ellipse to the total area was 0.92%, 1.49%
and 2.70% for class 2 to 4, while a larger percentage of 4.17% was
found for class 1. Besides, The STD of the mean center locations could
serve as an indicator of variations. As listed in Supplementary
Table S1, the STD values were smaller than 0.03, except for class 1.
The causes of more fluctuations during class 1, maybe its irregular
shape and more considerable TSS variations (Table 5). However, these
analyses proved that the SSA simulation method is stable, and the re-
sults were reliable.

The robustness of SSA lies in the possibility of accepting a worse spa-
tial sampling distribution so that the algorithm can escape from local
optima solutions. The probability of accepting a worse spatial sample
configuration will decrease with the iteration of the optimization proce-
dure. Therefore, the SSA can get very close to the global optimum con-
figuration (van Groenigen, 2000). A previous study proved that the
global solution could always be found if infinite calculation time was
given (Aarts and Korst, 1989). The SSA sampling schemes outperformed
the traditional sampling methods. The most prominent disadvantages
of the SSA are the computational resources and time required to find
the best solutions (Ohman and Eriksson, 2002). Therefore, there is a
trade-off between simulation accuracy and efficiency, and improve-
ment could be made by cloud computing or high-performance parallel
computation systems.

5.3. Implications and recommendations

Spatial sampling is a crucial issue in environmental research and en-
vironmental protection departments because the sample configuration
influences both costs and effectiveness of a survey, especially for
long-term routine monitoring. However, existing sampling methods,
including systematic, stratified sampling, often lack or limited prior
knowledge. Although the previous study proposed to reduce the sam-
pling numbers or sampling frequency by using remote sensing data to
evaluate the representatives of existing sampling stations, this paper
showed how remote sensing big data could serve as available pre-
information to optimize the sampling scheme for the first time, to our
knowledge.

Synoptic information on water quality parameters is hard to main-
tain from the routine in situ monitoring network due to the spatial inho-
mogeneity and temporal variations of the water quality parameter.
However, integration of remote sensing, in situ data, and even water
quality models could significantly improve water quality monitoring
(Dekker et al., 2001). In the past few decades, remote sensing water
quality monitoring has been prosperous regarding remote sensing
technology and model development, to derive water quality data with
sufficient accuracy on a regional basis, as well as to detect the spatial-
temporal evolutions of the water quality (Aurin et al., 2013; Barnes
et al., 2014). One main concern that should be addressed is to reduce



J. Li, L. Tian, Y. Wang et al.

uncertainties of water quality to integrate remote sensing and in-situ
measurements, which also required a reliable sampling method to de-
termine the most representative sampling stations and monitoring net-
work. Such work is more crucial for model development/validation,
product validation of remote sensing water quality monitoring, or
other land surface parameters, especially for validation over heteroge-
neous land or water surfaces (Wang et al., 2015; Wu et al., 2016), to ob-
tain reliable remote sensing water quality products. Such water quality
products are the great interest of many sectors such as the scientific
community, government, and public, such as the 2030 Agenda for Sus-
tainable Development (the SDGs) (Ga, 2015), the European Union
(EU) Water Framework Directive (WFD) (De Stefano, 2010) and the
United Nations Framework Convention on Climate Change (UNFCCC)
(Bodansky, 1993). The optimal sampling design will also benefit the de-
sign and implementation of water quality monitoring networks, such as
the National Ground-Water Monitoring Network of the US (https://
acwi.gov/sogw/ngwmn_framework_report_july2013.pdf), the National
Automatic Surface Water Quality Monitoring Station Network project
(http://www.gov.cn/xinwen/2018-07/15/content_5306539.htm). The
remote sensing big-data based sampling optimization would help de-
sign and re-assess the monitoring network's effectiveness.

6. Conclusions

This paper proposed a remote sensing and spatial simulated anneal-
ing integrated method for the optimal sampling design for water quality
monitoring at lakes, which has two critical advantages over the conven-
tional sampling approach. First, utilizing remote sensing big-data over-
came the drawbacks of field sampling-based analysis, with limited
spatial coverage and temporal range. Second, the spatial simulated an-
nealing optimization algorithm based on the Monte Carlo simulation
was adopted following the objective function of the minimization of
the spatial-temporal mean error. By evaluating and comparing the pro-
posed approach to the conventional sampling method, we have shown
that the remote sensing-based SSA sampling design could significantly
improve the accuracy of water quality monitoring at both spatial and
temporal terms. TSS estimation errors of the whole lake were reduced
by 18.11% and 29.34% on average, compared to systematic and stratified
sampling under the same sample size. The annual TSS estimation errors
were dropped by approximately 50%. Remote sensing showed great po-
tential as an ideal means to provide spatially contiguous and compre-
hensive data as prior knowledge for efficient sampling design. Its
capability has been expanded with more satellite data. Using this data,
the water quality monitoring's sampling design could be of more preci-
sion and efficiency by evaluating existing monitoring stations
concerning their representation of water quality or optimizing a new
sampling network in future study and routine monitoring.
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