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Abstract

The global positioning system (GPS) has become an essential tool for the high precision navigation and positioning. The quality of GPS
positioning results mainly depends on the model’s formulations regarding GPS observations, including both a functional model, which
describes the mathematical relationships between the GPS measurements and unknown parameters, and a stochastic model, which reflects
the physical properties of the measurements. Over the past two decades, the functional models for GPS measurements have been inves-
tigated in considerable detail. However, the stochastic models of GPS observation data are simplified, assuming that all the GPS measure-
ments have the same variance and are statistically independent. Such assumptions are unrealistic. Although a few studies of GPS stochastic
models were performed, they are restricted to short baselines and short time session lengths. In this paper, the stochastic modeling for GPS
long-baseline and zenith tropospheric delay (ZTD) estimates with a 24-h session is investigated using the residual-based and standard sto-
chastic models. Results show that using the different stochastic modelling methods, the total differences can reach as much as 3–6 mm in
the baseline component, especially in the height component, and 10 mm in the ZTD estimation. Any misspecification in the stochastic
models will result in unreliable GPS baseline and ZTD estimations. Using the residual-based stochastic model, not only the precision
of GPS baseline and ZTD estimation is obviously improved, but also the baseline and ZTD estimations are closer to the reference value.
� 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, the global positioning system (GPS) has
been widely used for various high precision positioning
and navigation. Traditionally, data processing for precise
GPS positioning is invariably performed using the least
squares (LS) method. The quality of LS solutions depends
on the model’s formulation regarding GPS observations,
including both a functional model, which describes the
mathematical relationships between the GPS measure-
ments and unknown parameters, and a stochastic model,

which reflects the physical correlations of the measure-
ments (Brown and Hwang, 1992; Han and Rizos, 1995;
Hofmann-Wellenhof et al., 1997; Blewitt, 1998; Barnes
et al., 1998; Brunner et al., 1999). Over the past two dec-
ades, the functional models for GPS measurements have
been widely investigated in considerable detail. However,
accurate stochastic modelling for the GPS measurements
is still a difficult and challenging issue (Jin et al., 2005).
In the current stochastic models for GPS positioning and
applications (e.g., zenith tropospheric delay estimates), it
is usually assumed that all the GPS measurements have
the same variance. The time-invariant covariance matrix
of the double-differenced (DD) measurements is then con-
structed using the error propagation law. Such assump-
tions are unrealistic.
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As GPS measurement errors are dominated by the sys-
tematic errors caused by the multi-path, atmospheric refrac-
tion, orbit effects, and so on, it is impossible to model all
systematic errors into the functional model. Therefore, mod-
eling some systematic errors into the stochastic model is a
new challenging strategy to further realize the full potential
of increasingly more accurate GPS positioning and applica-
tions. Although there were only a few studies to investigate
the effects of stochastic models on the GPS relative position-
ing (El-Rabbany, 1994; Jin and de Jong, 1996; Bona, 2000;
Satirapod et al., 2003; Tiberius and Kenselaar, 2003), they
were mainly restricted to short baselines and short time ses-
sion lengths, and also focused only GPS baseline estimates.
Up to now, the effects of stochastic modelling on GPS long
baseline and zenith tropospheric delay (ZTD) estimates
have not been investigated, particularly for the long baseline
IGS (International GPS service) network. In this paper, the
residual-based stochastic model is implemented and investi-
gated for the GPS long baseline and ZTD estimates (with a
24-h session). In the following sections the stochastic model-
ling methods and results for GPS long baseline and ZTD
estimates are presented and discussed.

2. Stochastic modelling methods

The linearized GPS observation equations are written as
(Hofmann-Wellenhof et al., 1997; King and Bock, 1999):

L ¼ Axþ v ð1Þ

where L is the n � 1 vector of the observed-minus-com-
puted double difference (DD) carrier phase values (O–C),
A is the n � q design matrix that describes the linearized
functional model corresponding to the kth observation
epoch, k = 1 . . . n, x is the unknown parameters including
coordinate and ambiguity, etc., and v is the n � 1 vector
of error terms. Using the least square method (LS), the un-
known parameters and their uncertainties can be deter-
mined, namely

x̂ ¼ ðAT C�1
x AÞ�1AT C�1

x L

�v ¼ L� Ax̂

r̂2 ¼ vT C�1
x v

f

ð2Þ

where x̂ is the parameter estimate (including baseline length
or coordinate, ZTD, ambiguity, etc.), Cx is the variance–
covariance matrix for the double-differenced GPS measure-
ments, called the stochastic model, �v is called the LS resid-
ual vector, r̂ is the uncertainty and f is the degree of
freedom. It can be seen that the estimation of the unknown
parameter x and its precision indicator are dependent on
the stochastic model. Any mis-specifications of the stochas-
tic model may result in unreliable parameter estimations.
The residuals obtained from the LS solution contain
unmodelled biases and noise. The true residual should rep-
resent a good statistic property of GPS measurements. As
it is impossible to model all systematic errors in the func-
tional model, modelling the residuals into the stochastic

model is a new challenging strategy to improve the GPS
positioning solutions. Additionally, it can further test the
impacts of the stochastic modelling on the GPS unknown
parameter estimations. The following two easily realized
stochastic modeling methods for GPS long baseline and
ZTD estimates are tested and analyzed:

� A: Standard stochastic model.
� B: Residual-based stochastic model.

2.1. Standard stochastic model

In a commonly-used stochastic model, it’s usually
assumed that all the carrier phases or pseudo-ranges have
the same variance (r2) and are statistically independent.
Therefore, the observation U is treated as independent
and uncorrelated, and the covariance matrix of the obser-
vations U can be formulated as:

CovðUÞ ¼ r2I ð3Þ

where I is the unit matrix. Through the error propagation
law the time-invariant covariance matrix (called the sto-
chastic model) of the DD measurements can be deter-
mined. This is a standard stochastic model for DD
measurements, which is easy to be implemented in practice.
However, this simplified stochastic model may contain
some mis-specifications, and thus could result in unreliable
GPS results.

2.2. Residual-based stochastic model

The residual-based stochastic model is based on the clas-
sic variation covariance (VCV). The classical variance
covariance matrix is defined as following:

Cv ¼ E½ðv� �vÞðv� �vÞT Þ�

¼ E

v1 � �v

v2 � �v

..

.
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where v is the residual estimation from Eq. (2) and �v is the
mean value of residual v. With the new variance-covariance
matrix of Eq. (4), the solutions of Eq. (1) can be re-ob-
tained, including the unknown parameters and its standard
deviations. For long observation period data sets, the com-
putational load is big and consumes immense computer
memory. Therefore, the entire session is divided into short
segments. In a short time, as the error characteristics
change slowly with time, it is appropriate to divide the
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entire session into short segments, in which each short seg-
ment has the same number of satellites and the measure-
ments of the same satellite pairs have an invariant
stochastic model. If the epoch is N in one short segment,
the variance–covariance matrix can be obtained through
averaging the residuals within the same segment

Cv ¼
1

N

XN

i¼1

vivT
i ð5Þ

From Eq. (5), it can see that the width of moving window
(N) affects on variance–covariance matrix. Therefore, the
optimal width of moving window needs to be tested and
defined. The test data sets used were from the Australian
IGS GPS network (Fig. 1). At first the raw GPS observa-
tions are processed with the Bernese GPS-Software 5.0.
In this run program, IGS-precise orbits, and ionosphere-
free linear combination are used, and then the matrices A

and L in Eq. (1) created by the Bernese GPS-Software
(Hugentobler et al., 2001) are drawn out. Thus the resid-
ual-based and standard stochastic models can be realized
with an independent program in Matlab 6.5. The impact
of stochastic modelling on the ambiguity resolution is also
important but not analyzed here. Finally, the results (un-
known parameters and accuracies) of the residual-based
stochastic model were compared with the results of the
standard stochastic model in an independent program.
We tested all kinds of moving window width (N) impacts
on the GPS parameter estimation from 1 to 120 epochs.
It has been shown that the moving window width (N) must
be larger than or equal to the satellite pairs, otherwise the
matrix (Cv) is singular. Also the satellite pairs should be the
same within N epoch in one short segment. Table 1 lists the
test results for six pairs of satellites with different moving
window width from 6 to 120 epochs. It has been shown that
the standard deviation for 8-epoch window width is small-
est (namely optimal), but nearly closer to other longer
moving window widths, indicating that the GPS error char-
acteristics change slowly with time in a short time.

3. Results

The GPS measurements of IGS stations in Australia
(Alic, Cedu, Tow2 and Mobs) on day 151 2004 are pro-
cessed using the Bernese 5.0, and the matrices A, L and v

in Eq. (1) are obtained. Stochastic modeling methods A
and B are then realized in an independent Matlab program.
In the following, effect of stochastic models on baseline
length and ZTD estimates are investigated.

3.1. Effect of moving window widths

As the width of moving window (N) directly affects the
variance-covariance matrix, the different moving window
widths of 8, 10, 12, 16, 20, 25, 30, 40 epochs in the baseline
estimates are further tested and compared in the indepen-
dent Matlab program, respectively. Fig. 2 shows a compar-
ison of standard deviations of baseline estimations with
different widths of moving window. It has been seen that
the standard deviations of horizontal baseline component
are twice as small as the height for each moving window
width, and the standard deviation with an 8-epoch moving
window width is obviously better than other cases, again
indicating that 8-epoch window width is better.

3.2. Effect of stochastic models on baseline length

The stochastic modelling effects on baseline length esti-
mates are investigated with standard stochastic model A
and residual-based stochastic model B at an optimal
8-epoch window width. Fig. 3 shows a comparison of
Alic–Cedu baseline solutions. Using method B, the

Fig. 1. IGS sites distribution in Australia.

Table 1
Effect of the moving window width on normalized RMS of GPS solutions.

Width (epochs) 6 7 8 9 10
Sigma (mm) 8.01 6.57 5.89 7.01 6.89
Width (epochs) 20 30 40 60 120
Sigma (mm) 7.17 7.47 7.87 7.98 7.61
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Fig. 2. Standard deviations of Alic–Cedu baseline estimation with
different moving widow widths.
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standard deviation of baseline component is obviously
smaller than the method A (in the left panel of Fig. 3),
and the corresponding difference of baseline component is
about 5.8 mm in the vertical component and 1–3 mm in
the horizontal component (in the right panel of Fig. 3).
Fig. 4 shows the standard deviations and the baseline differ-
ences between methods B and A for the baseline Alic–Tow2,
whose baseline length is 1445.5 km. It also shows that the
standard deviation using method B is obviously better than
method A, and the difference of baseline components
between methods B and A is about 5 mm. In addition, the
baselines of Alic–Mobs and Tow2–Mobs are further tested
and compared. It has been shown that using different sto-
chastic models, the difference in baseline estimates can reach
3–6 mm, mainly in GPS height component, while the preci-
sion estimations are largely improved when the residual-
based stochastic model B is taken into account. Further-
more, the results using stochastic model B are closer to
the reference value from the ITRF2000 (International Ter-
restrial Reference Frame 2000) (http://itrf.ensg.ign.fr/ITRF
solutions/2000/ITRF2000).

GPS data with different time session lengths were further
investigated and compared using stochastic modeling
methods A and B (Fig. 5). Results show that the precision
for GPS long baseline with short time observations (e.g., 4
or 6 h) is worse, at about 1-2 cm in horizontal component
and 3–4 cm in vertical component, and moreover larger dif-
ferences of baseline components between methods B and A

are found (about 1–2 cm). When the time of GPS observa-
tions is longer than 12 h, reliable results can be obtained
when compared to the reference value (Fig. 6). The differ-
ence of baseline components between methods B and A is
up to 3 mm, mainly in the height component, gradually
decreasing with the increase of GPS observation time
length (12, 18 and 24 h). In addition, the results using sto-
chastic model B with 24-h session are closer to the reference
value.

3.3. Effect of stochastic models on ZTD estimate

The ZTD is also estimated using stochastic models A
and B. Figs. 7 and 8 show the standard deviations and
absolute ZTD estimations at the Alic station on day 151
2004 using stochastic models A and B. The ZTD difference
can reach 10 mm between Methods A and B, but using sto-
chastic model B the standard deviation of ZTD estimations
is much improved and also the ZTD is closer to the refer-
ence value from the IGS solution. Figs. 9 and 10 show the
comparisons of standard deviations and absolute ZTD esti-
mations on day 151 2004 at the Cedu station using stochas-
tic models A and B. It again shows that the standard
deviations of ZTD estimations are much improved with
Method B and also the ZTD is closer to the reference value
from the IGS solution. Therefore, any misspecifications of
stochastic model could result in unreliable ZTD estimates,
up to 1 cm deviation. Using the residual-based stochastic
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model (method B), the better performance of ZTD estimate
is obtained.

4. Conclusions and discussion

Stochastic models are tested for long baseline and ZTD
estimations of the IGS network in Australia with 24-h
observations. It has been noted that, with the different sto-
chastic models, the total differences can reach as much as
10 mm in the ZTD and 3–6 mm in the estimated baseline
components, especially in the height component, which is
not ignored for the current sub-millimeter precision GPS
positioning and applications. Any mis-specification in the

stochastic models will result in unreliable GPS baseline
and ZTD estimations. Using the stochastic model B, resid-
ual-based stochastic model, not only the GPS baseline and
ZTD estimations are closer to the reference value, but also
their precisions are obviously improved. Therefore, the
residual-based stochastic model has a best performance
and is proposed to use in scientific software packages,
e.g., GAMIT, Berenese and GIPSY. In addition, the opti-
mal moving window width is tested using all kinds of mov-
ing widths from 1 to 120 epochs. It has been shown that the
moving window width (N) must be larger than or equal to
the satellite pairs, otherwise the matrix (Cx) is singular.
Also the satellite pairs should be the same within N epoch
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in one short segment. The optimal moving window width is
8 epochs in tested cases, but does not largely affect on

stochastic model and GPS positioning solutions in a short
time.

As GPS observation errors are dominated by the sys-
tematic errors, such as the multi-path, atmospheric delays,
receiver noise and orbit errors, it is quite different for each
satellite and GPS receiver. Although some errors can be
mitigated or minimized by some models and appropriate
processing techniques, parts of error sources are still not
well eliminated, particularly for a low GPS satellite elevate
angle. Such errors are difficult to be taken into account in
the functional models. This paper demonstrated that GPS
results could be improved by modelling some unmodelled
errors into the stochastic model. This initial study has
shown that the stochastic model methods play an impor-
tant role in the GPS baseline and ZTD estimations. Suit-
able stochastic modeling strategies for GPS positioning
applications should be further investigated in the future.
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