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aseismic in the Sino-Korean craton, while North China iSouth Korea and process them in the ITRF2000 reference
relatively seismically active. For instance, there was the mdsame using GAMIT softwar&® with IGS precise orbits
devastating earthquake in human history, the 1976 Tangsteard IGS earth rotation parameters. The site velocities are
earthquakeN!l = 7.5) in North China that killed >250,000 estimated by least square linear fitting to time variation
people and completely destroyed the industrial city. of the daily coordinates for each station. All station velo-

Accurate measurements of crustal strain accumulateities are referred to the stable Eurasian plated are
energy rates help understand tectonic features and to evaluewn in Figure 2. It is seen that the China and South Korea
ate the earthquake potential. Now the high precisidnlocks are moving southeastward at about 5-9 mm/yr
space geodesy techniques, especially the low-cost and walith respect to the Eurasian plate and converging with
weather GPS, play a key role in monitoring the crustdlhe southwest Japan block. In addition, the velocities of
strain state and accumulated energy variation. Althougtll GPS sites in the South Korea and China blocks are
there are several investigations in Northeast Asia usimdmost consistent, indicating that they are almost rigid
GPS obsemtions™, a joint study on the Northeast Asiablocks. However, South Korea is seismically quiet compared
kinematics has never been performed well with denge the high seicmicity zone in North China.
GPS observations (including China, Japan and Korea). InMonitoring the pattern of crustal strain and comprehen-
addition, the present-day kinematics of the tectonic dsive understanding of strain accumulation intensity are
formation in the South Korean peninsula is still largelpeneficial to reveal the physical process of crustal tec-
unknown due to lack of observational data. In this studypnic activities and to evaluate earthquake risk. As the
we have collected all available GPS data and new Korefirst step in earthquake risk potential evaluation in North-
GPS Network (KGN) measurements in Northeast Asieast Asia, the strain parameters were derived from the esti-
and processed the dense GPS data in the uniform refarated GPS displacement rate field. In order to reduce the
ence frame, ITRF2000. The derived velocity field is useefffects of abnormal site motions, the subnetwork with
to estimate the strain rates and strain energy density rafesir GPS sites was used to estimate the strain parameters.
in an attempt to verify the aseismic behaviour of Southhe crustal strain rates in South Korea was derived from
Korea and to assess the future earthquake risk potentialGPS horizontal deformation velocitfés

In Northeast Asia, there are some larger GPS networks
such as the Crustal Motion Monitoring Network in China Vg :av_eixé +aVEi . = OVl Xg +% X; (1)
(CMMN) established in 1991, the CtasMotion Obser- 0% 0% OXg 0X;j
vation Network of China (;IONOC) established ih988 .

. , ) wherey, andv,,; are the east and north component veloci-
by the State Seismological Bureau of China @RS Earth ties at the sité located at %y, X). Strain components
Observation Network (GEONET), established in 1996 b ¢ andé . are expresseeld, antlé.ve/ax av/ax. and
the Geographical Survey Institute of Japan. Combining"‘e’a “”a +e”a 19 tivel TE d'nl t.” ¢
the recently established permanent Korean GPS nethﬁé( Vel0X,) + (0vn/0Xe)) respectively. The dilation rates
d

(KGN)?, there are more than 2000 GPS sites distribut iqure 3) .ShOW _that Northeast Asia is upder compres-
throughout Northeast Asia. Here we collect all availabISIOnalI strain regime at WNW-ENE, consistent with the

. focal mechanism of earthquakes in Northeast Asia (Figure
GPS dta (January 1999 toddember2004) in and around 1). The high dilation rates appear in North China, south-
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Figure 1. Earthquake epicentre distribution in Northeast Asia witt 1g
Mw > 5.0 from 1976 to 2005. Solid and open quadrants in the beach

balls denote extension and compression respectively. South Korea (§Kgure 2. Crustal deformation rates in the Eurasia plate fixed refer-
is represented by a rectangle. ence frame. Error ellipses are 95% confidence limits.
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west Japan and at the western boundary of the Philippiités important to estimate the strain energy density from
Sea plate. The strong compression rates are probablyface displacement observations and determinéstee s
caused by the extrusion force due to the subduction of tbestrain energy density within the crust and its temporal
Philippine Sea and Pacific plates, and thputsion of the variations.
Eurasian plate with the Indianape collision, causing fre-  For an elastic body, the strain energy equals the work
quent earthquakes in these regions. Inversely, the Soultne by external forces and its density is the strain energy
Korean peninsula block has relatively lower dilatiorper unit volume. The general tensor form for strain energy
rates, indicating a lower indirect effect of push and suldlensity can be expressed in terms of strain and stress using
duction forces or as if such forces are transmitted througttooke’s Law:
the South Korean peninsula without causing any deforma-
tion/strain. This may be attributed to the strong rheology U =205, (3)
and/or absence of relatively weak zones in the region. 2
In addition, we estimate the scalar strain rate, defined §hereu is the strain energy density (339 ando; and
) - - - &; are the stress and strain respectively. The variation rate of
€= L tENT 2% S, (@) strain ener i i
gy density can be further derived from eq. (3) as
where e and n are the east and north directions respec-. 1 . .
tively. Figure 4 shows the contour map of scalar strain Y ‘E(Gii & *0;§ ). (4)
rates in Northeast Asia, implying that the South Korean . o . )
peninsula and South China are stable blocks with IoWhefseU is the variation rate of the strain energy density
strain rates. It once again highlights that high strain ratgl ™ /¥r), and 6; and & are the stress rate and strain
te respectively. The stress and stress rates are obtained

concentrate in North China, southwest Japan and the we'$t > Fs
ern boundary of the Philippine Sea plate, consistent wittping the laws of elasticity theory as follows:

the high seismicity in these areas (Figure 1). 0y = 2ug +g AL, (5)
The accumulated strain energy is generally released
through earthquakes until the adjacent fault blocks or Oy = 2ué; +4 A, (6)

plates reach a new state of equilibridif. Therefore, re-
lease of tectonic strain energy stored within the crustalhereu is the modulus of rigidity) the Lame parameter,
rock is the cause of major earthquakes. The strain energy ieKronecker delta and and A are the 2D surface dila-
unit volume (i.e. the strain energy density) is an impotion (32,¢&;) and dilation ratgy %, &;) respectively. For
tant index reflecting the intensity of crustal activities, anBoisson’s ratiov = 0.25,A = u, modulus of rigidity is as-
its variation rate indicates the long-term trend of accumaumed to be the standard value of 80" Pa (ref. 17). The
lated energy within the crust. Larger the variation rate stress §;), strain §;) and their rates can be derived from
strain energy density, higher is the energy accumulated@PS displacements (1999-2004) and velocities respec-
the crust, which would more probably result in earthquaketsvely. Using eq. (4), the strain energy density variation
Therefore, for earthquake risk evaluation and predictiomate in Northeast Asia can be obtained using the derived
strain, stress and their rates, which are shown in Figure 5.
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Figure 4. Contour map of scalar strain rates in Northeast Asia. Note:
Figure 3. Dilation rate contour map in Northeast Asia. Very low strain rate in South Korea.
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Custal strain energy density rate

density rates are still highly seismic and the low seismicity
in South Korea with lower strain energy density rates
may continue in the future.
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38 Due to fewer GPS sites in theiljjpine Sea plate and its
T3 150 western boundary as well as the Yellow Sea between China
8 and Korea, the strain energy density rates and specula-
g 55 100 tions need to be further investigated using more data with
§ dense and long-time observations in the future. Moreover,

80 150 the heterogeneous crust should be considered in different
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Figure 5. Variation rate of crustal strain energy density in Northeast
Asia.

The distribution of strain energy density variation rates,
(Figure 5) shows that the most active areas are in North
China, southwest Japan and the west margin of Philippine
Sea plate respectively, again consistent with high seismie
activity zones. As the GPS measurements are most made
after the large historic earthquakes, the strain energy density
rates derived from GPS displacement rates may include
contributions from postseismic relaxation. These regions.
with anomalous large strain energy density rates probably
indicate a high earthquake risk in the future, and the lower

X . . : 8.
strain energy density rates in the South Korean peninsula
imply that low seismicity may continue in the future. 9.

The strain and energy density rates in Northeast Asia
are investigated with GPS observations (January 1999 to
December2004). The dilation rates show that Northeast®:
Asia is under the WNW-ENE-oriented compressional strain
regime, consistent with the focal mechanism of earth-
guakes in the region. High dilation rates appear in North
China, southwest Japan and the western boundary of Phili3-
pine Sea plate, probably caused by the compression force
due to subduction of the Philippine Sea and Pacific plates
and the expulsion of the Eurasian plate with the Indian
plate collision. In contrast, the South Korean peninsula
block has relatively lower dilation rates, indicating a pos14.
sible lower effect of push and subduction forces or that
such forces are transmitted through the South Koregn
peninsula without causing any deformation/strain. This
may be attributed to the strong rheology and/or absence
of weak zones in the region, which leads to fewer earthi5.
guakes. Moreover, the scalar strain rates and strain energy
density rates imply that the South Korean peninsula is g
stable block with low rates, and high rates mainly concen-
trate in North China, southwest Japan and the western
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