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An improvement of GPS height estimations: stochastic modeling
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The results of GPS positioning depend on both functional and stochastic models. In most of the current GPS
processing programs, however, the stochastic model that describes the statistical properties of GPS observations
is usually assumed that all GPS measurements have the same accuracy and are statistically independent. Such
assumptions are unrealistic. Although there were only a few studies modeling the effects on the GPS relative
positioning, they are restricted to short baselines and short session lengths. In this paper, the stochastic modeling
for IGS long-baseline positioning (with 24-hour session) is analyzed in the GAMIT software by modified
stochastic models. Results show that any mis-specifications of stochastic model result in unreliable GPS baseline
results, and the deviation of baseline estimations reaches as much as 2 cm in the height component. Using the
stochastic model of satellite elevation angle-based cosine function, the precision of GPS baseline estimations can
be improved, and the GPS baseline component is closest to the reference values, especially GPS height.
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1. Introduction
The global positioning system (GPS) has become an es-

sential tool for the high-precise positioning. GPS height,
however, is still poorly estimated. Traditionally, data pro-
cessing for precise GPS positioning is invariably performed
using the least squares (LS) method. The quality of LS so-
lutions depends on the model’s formulation regarding GPS
observations, including both a functional model, which de-
scribes the mathematical relationships between the GPS
measurements and unknown parameters, and a stochastic
model, which tells us the statistical properties of the mea-
surements (Han and Rizos, 1995; Rizos, 1997; Brunner et
al., 1999). Over the past two decades, the functional models
for GPS measurements have been investigated in consider-
able detail. As GPS measurement errors are dominated by
the systematic errors caused by the multi-path, atmosphere,
orbit effects, and so on, it is impossible to model all system-
atic errors in the functional model, especially in the vertical
direction. Therefore, modeling some systematic errors into
the stochastic model is a current challenging topic to further
realize the full potential of increasingly more accurate GPS
positioning, especially GPS height.

To date, however, accurate stochastic modeling for the
GPS measurements has not sufficiently been analyzed. In
the current stochastic models for GPS positioning, it is usu-
ally expressed with a simple format in most of the GPS
processing programs, assuming that all the GPS measure-
ments have the same variance. The time-invariant covari-
ance matrix of the double-differenced (DD) measurements
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is then constructed using the error propagation law. Such
assumptions are unrealistic (e.g. Wang, 1998a; Wang et al.,
1998b; Bona, 2000). Any mis-specifications of stochastic
model will result in unreliable parameter estimations. Many
researchers are aware of the importance of the stochastic
model. Blewitt (1998) pointed out that both stochastic and
functional models are equivalent in the theory.

Although there were only a few studies modeling the
effects on the GPS relative positioning (El-Rabbany, 1994;
Wang et al., 1998b, 2002; Satirapod et al., 2002, 2003;
Tiberius and Kenselaar, 2003), they were restricted to short
baselines and short session lengths.

In this paper, the stochastic modeling for IGS long-
baseline positioning (with 24-hour session) is analyzed in
the GAMIT software modified with stochastic models, and
the impact on GPS baseline estimations, especially GPS
height, is investigated. In the following section the stochas-
tic modeling methods and results for IGS station position-
ing are presented.

2. Stochastic Modeling Methods and Results
The linear observation equations of GPS can be ex-

pressed as
L = Ax + v (1)

where L is a vector of the observed-minus-computed DD
carrier phase values (O-C), A is the design matrix, x is the
unknown parameters and v is the residual. Using the least
square method (LS), the unknown parameters and accuracy
indicator can be obtained, namely

x̂ = (AT (Cx )
−1 A)−1 AT (Cx )

−1L

v = L − Ax̂ (2)

σ̂ 2 = vT (Cx )
−1v

f
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where x̂ is the parameter estimate, Cx is the variance-
covariance matrix for the double-differenced GPS measure-
ments, called the stochastic model, σ̂ is the accuracy indi-
cator and f is the degree of freedom. It’s easy to see that
the estimation of unknown parameter x and its accuracy in-
dicator are dependent on the stochastic model. Any mis-
specifications of stochastic model will result in unreliable
unknown-parameter estimations. In our initial studies, the
models to be considered here are the ones that can be eas-
ily implemented within scientific GPS data processing soft-
ware packages such as GAMIT and BERNESE. The details
of the variations in the stochastic models are discussed be-
low.
2.1 Standard stochastic model

In a commonly-used stochastic model, it is usually as-
sumed that all the carrier phases or pseudo-ranges have the
same variance (σ 2) and are statistically independent. There-
fore, the observation � is treated as independent and uncor-
related, and the covariance matrix of the observation � can
be formulated as:

Cov(�) = σ 2 I (3)

where I is the unit matrix. Through the error propaga-
tion law the time-invariant covariance matrix (called the
stochastic model) of the DD measurements can be obtained.

Cx = σ 2




4 2 · · · 2
2 4 · · · 2
...

...
. . . 2

2 2 · · · 4


 (4)

This is a standard stochastic model for DD measure-
ments, which is easy to implement in practice. However,
this simplified stochastic model may contain some mis-
specifications, and thus could result in unreliable GPS posi-
tioning results.
2.2 Baseline length dependent weighting

As the distances between GPS stations in a network
are different, the baseline length dependent variances for
GPS measurements are defined with the following function
(King and Bock, 1999):

σ 2 = α2 + β2 ∗ Distance2 (5)

where α = 9 mm and β = 0.1 mm/km. This formula de-
scribes the relative qualities of GPS measurements from dif-
ferent GPS baselines in a network. And the baseline com-
ponents may be treated as observations with defined uncer-
tainty to improve the geometry of the network solutions for
the parameter estimation.
2.3 Satellite elevation angle dependent weighting

GPS measurement errors are dominated by systematic
errors, such as signal-to-noise ratio, atmospheric delay and
multi-path errors, which may be closely connected with
the satellite elevation angles and azimuths. The effects of
these error sources are different for each satellite. Therefore
GPS measurements from different satellites may not have
the same accuracy. In order to model the variances of
GPS measurements from different satellites, a function of

satellite elevation angle is used to describe the variances of
raw GPS measurements in practice, namely:

σ 2
φs

r (i)
= a2 + b2 ∗ f 2(elev j

r (i)) (6)

where a and b are constant values, and f (elev j
r (i)) is the

function of satellite elevation angle at epoch i . Given the
variances of one-way GPS measurements, the covariance
matrix for the DD measurements is derived using the error
propagation law:

CL(i) = a2 · Tai + b2 · Tbi (7)

where Tai is the same as Eq. (4), and

Tbi =




f1i + f2i f1i · · · f1i

f1i f1i + f3i · · · f1i
...

...
. . .

...

f1i f1i · · · f1i + fni


 (8)

where

f ji = f (elev j
1(i)) + f (elev j

s (i)), j = 1, 2, . . . , n.

Because of the complexity of unknown factors in the
stochastic modeling, the functional relationship between the
accuracy of GPS measurements and satellite elevation an-
gles can only be approximately expressed. The sine and
cosine functions of satellite elevation angles are often used
for this purpose. In the GAMIT software package the satel-
lite elevation angle-based sine function is currently used to
calculate the accuracy of the one-way GPS measurements
(King and Bock, 1999):

σ 2
φs

r (i)
= a2 + b2/ sin2(elev j

r (i)) (9)

where a = 4.3 mm and b = 3 mm. The function is a good
approximation to the tropospheric sensitivity. In addition,
the cosine function of the satellite elevation angle is usually
used to calculate the accuracy of the one-way GPS measure-
ments (Jin and Jong, 1996; Barnes et al., 1998; Hugentobler
et al., 2001; Jin and Wang, 2004), expressed by the follow-
ing two formulas

σ 2
φs

r (i)
= a2 + b2/ cos2(elev j

r (i)) (10)

σ 2
φs

r (i)
= a2 + b2/ cos−2(elev j

r (i)) (11)

For this study, the GAMIT software package has been mod-
ified to include the two functions as one of the options for
stochastic modeling, and other rarely used functions of the
satellite elevation angle are not discussed here.

The test data sets used were from the Australian IGS
GPS network (Fig. 1). The GAMIT software was used for
the data processing with constrained positions of the IGS
stations (horizontal and vertical coordinates were assigned
a standard derivation of 5 mm and 10 mm, respectively).
The IGS precise orbits, phase center variation model of
GPS antenna and ERP (Earth Rotation Parameters) were
used. Some parameters used in the data processing were:
1) cut-off elevation: 15 degrees; and 2) GPS data sampling
interval: 30 seconds.

The performance of the following five stochastic model-
ing methods for GPS measurements was evaluated:
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Fig. 1. The distribution of GPS stations in Australia.

A: Standard stochastic model;

B: Baseline length dependent weighting;

C: Satellite elevation angle-based sine function;

D: Satellite elevation angle-based cosine function, ex-
pressed as Eq. (10); and

E: Satellite elevation angle-based secant function ex-
pressed as Eq. (11).

Figure 2 shows the standard deviations of each baseline
component using different stochastic models, and Fig. 3
shows the deviations between estimated baseline compo-
nents and referenced values on the day 300, 2003. The
reference value is the fitting solution of 14-year daily po-
sition estimates of IGS stations processed by GIPSY in the
ITRF2000 (International Terrestrial Reference Frame 2000)
(http://sideshow.jpl.nasa.gov/mbh/all/table.txt). Here, we
didn’t directly compare stochastic modeling solutions be-
tween GAMIT and GIPSY as both softwares have different
functional and stochastic models. For instance, the GAMIT
software uses GPS double difference (DD) based on the
least squares (LS) method, and the GIPSY software uses
GPS non-difference based on the Kalman Filtering tech-
nique. In addition, GIPSY doesn’t have a set stochastic
model. We just used the reference value, which is actu-
ally a good average value of long-term GPS solutions pro-
cessed by GIPSY. The comparisons in Figs. 2 and 3 show
that, using different stochastic models, the differences be-
tween the standard deviations reach 1–2 mm in horizon-

tal components and 2∼3 mm in height, while the differ-
ences between the baseline estimations are up to 20 mm
in height components. In addition, the standard deviations
of the GPS baseline estimations based on the Method B
are higher than those from the standard processing method
(A), and the satellite elevation angle-based cosine functions
(Method D and E) are better than other tested stochastic
models. Although the standard deviations of methods C
and E are small, the corresponding baseline components
severely deviate from the reference values. The tradition-
ally used stochastic model in the GAMIT program, satellite
elevation angle-based sine function (Method C) not only de-
grades the precision of GPS baseline estimations, but also
result in a big deviation from the reference value. Compar-
ing the reference value, the baseline components of method
D is closest to the reference value, especially GPS height.
Therefore, among all the tested stochastic modeling meth-
ods, Method D has the best performance.

Figures 4 and 5 are the results on 301, 2003. Among
all the tested stochastic modeling methods, Method D has
the best performance. The precision of GPS baseline es-
timations can be improved, and the GPS baseline compo-
nent, especially GPS height is closest to the reference val-
ues. GPS data on another day (151, 2004) are further tested,
and the conclusions are the same.

3. Discussions
The GPS baseline or coordinate was usually estimated

under the assumption that all the GPS measurements have
the same variance. Such assumptions are unrealistic. As



256 S. JIN et al.: AN IMPROVEMENT OF GPS HEIGHT ESTIMATIONS

Fig. 2. Comparisons of baseline standard deviations on 300, 2003.

Fig. 3. Deviations between estimated baseline components and reference values on 300, 2003.
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Fig. 4. Comparisons of baseline standard deviations on 301, 2003.

Fig. 5. Deviations between estimated baseline components and referenced values on 301, 2003.
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GPS measurement errors are dominated by the systematic
errors caused by the multi-path, atmosphere, receiver noise
and orbit effects, which are quite different for each satellite.
Therefore the measurements obtained from different satel-
lites cannot have the same accuracy due to varying noise
levels. Although some errors can be mitigated or minimized
by some models and appropriate processing techniques, the
most important error sources in a low GPS satellite ele-
vate angle are not well eliminated, such as the tropospheric
correction models of Saastamoinent (1973) and Hopfield
(1969). Figure 6 shows the relationship between DD residu-
als and the satellite elevation angles. The lower the satellite
elevation angles, the higher the DD residuals, which were
mainly caused by the multi-path and troposheric delay.

Both errors increase when the satellite elevation cut-off
angle decreases. Such errors are not good but difficult to
be taken into account in the functional models. Therefore,
in the theory, it can further improve accurate GPS position-
ing (especially GPS height) by modeling some systematic
errors into the stochastic model.

The test results show that using the stochastic model of
satellite elevation angle-based cosine function, not only the
precision is obviously improved, but also the GPS baseline
component, especially GPS height, is closest to the refer-
ence value. The reference value is the fitting solution of
14-year daily position estimates of IGS stations processed
by GIPSY (http://sideshow.jpl.nasa.gov/mbh/all/table.txt).
We also take another reference value from ITRF2000 so-
lution published by IERS, namely the combination solution
of each GPS analysis center (e.g. GFZ, JPL, CODE, IGN,
and NOAA) (http://itrf.ensg.ign.fr/ITRF solutions/2000/
results/ITRF2000 GPS.SSC.txt). And the comparison con-
clusion is the same, which the stochastic model of satellite
elevation angle-based cosine function has the best perfor-
mance.

It shows that other tested stochastic models cannot well
model some systematic errors, and the cosine weight func-
tion is sensitive to errors with elevation angle variations. In
addition, the impact of stochastic modeling on GPS base-

Fig. 6. Satellite elevation angle (line, in degrees) and DD residuals (curvy
line, in mm) with respect to time.

line estimates with different cutoff elevation angles, 8◦, 10◦,
15◦, and 20◦, is further tested and the cosine weighting can
get better solutions when weighting more on low elevation
data. This result is also supported by daily repeatabilities.It
shows that the cosine weighting can further improve GPS
positioning solutions by modeling some unmodeled errors.

This initial study has demonstrated that the stochastic
model methods play an important role in the GPS height
estimation. Suitable stochastic modeling strategies for GPS
measurements and baseline components (or the coordinates
of GPS tracking stations) should be further investigated.

4. Concluding Remarks
It has been noted that, in the paper, with different stochas-

tic modeling methods tested in the GAMIT, the changes
in the estimated baseline values can reach 2 cm in height
components, and mis-specification in the stochastic mod-
els will result in unreliable baseline estimations. The tradi-
tional stochastic model used in the GAMIT program, satel-
lite elevation angle-based sine function, not only degrades
the precision of GPS baseline estimations, but also will re-
sult in a big deviation (especially height component) from
the reference value. Although the precision of GPS baseline
estimations is smallest using the stochastic model of satel-
lite elevation angle-based secant function (Method E), the
GPS height component severely deviates from the reference
value, indicating a poorer accuracy. Using the satellite ele-
vation angle-based cosine function, not only the GPS base-
line component, especially GPS height, is closest to the ref-
erence values, but the precision is also obviously improved.

And therefore, the stochastic model of satellite elevation
angle-based cosine function has the best performance, and
is proposed to be used in the GAMIT.
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