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Abstract: The ionospheric influence is one of the largest error sources in GPS positioning and 

navigation after closing the Selective Availability (SA). Therefore, it is available to establish a 

real time ionospheric correction model to eliminate or mitigate the ionospheric influence. In this 

paper, a new method, Hardy Function Interpolation method, is presented to establish a high 

precision grid ionospheric model (GIM) over the Yangtze River Delta using continuous GPS 

data of SIGAN network, and the internal and external accuracy of TEC from the GIM are 

evaluated. It has shown that the real time and high precision GIM over the Yangtze River delta is 

well established using the Hardy Function Interpolation. The internal and external accuracy of 

TEC from the GIM are all smaller than 0.3m and better than the methods of distance weight 

function of WAAS and spherical harmonic function. In addition, these methods are further used 

to initially investigate and analyze the seasonal variations of TEC over Yangtze River delta. 
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INTRODUCTION 

  The ionospheric affects the transmission of electromagnetic waves, which can result in 

disturbance or intermission of signals (Jin and Zhu, 2002). The magnitude of this effect is 

determined by the amount of total electron content (TEC) and the frequency of electromagnetic 

waves. The Global Positioning System (GPS) is a satellite microwave technique whose signals 

are transmitted on microwave (L-band) carriers through the Earth’s atmosphere, and it inevitably 

suffers the ionospheric effect. The magnitude of influence on GPS signals is usually in the range 

from a few meters to tens of meters but it could reach more than 100 meters during severe 

ionosphere storms (e.g. Liu et al, 1999). Therefore, the ionospheric effect must be estimated so 

that a correction can be made to eliminate or mitigate for high precision GPS positioning 

applications. Additionally, precise estimates of ionospheric effect are also important for space 

weather researches and predictions of the ionospheric events.  

  Now GPS receivers of double-frequency can monitor the variation of ionospheric electron 

content (e.g. Yuan and Ou, 2001; Zhao X F, 2003). Establishing a high precision GIM is one of 

the critical steps for investigating the ionosphere using GPS data. IGS Ionosphere Working 

Group also uses the GPS-based GIM to research and investigate the variation and action of 

global ionosphere. The ionosphere is related to the time, season, location, and activity of the Sun, 

and therefore, the difference of ionospheric effects on the propagation of radio in different local 

areas or time is very large (e.g. Yuan Y and Ou J, 2001). For some (grid) ionospheric models 

established by GPS, the parameters of the ionospheric models are usually determined by fitting 

all GPS data in the large area, which limits the precision of the model due to neglecting the local 

character of ionosphere and also is not suitable for analyzing the local effects of ionospheric 
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parameters (e.g. Yuan and Ou, 2001; Liu et al, 1999; Zhao X F, 2003). For a small and local 

region, many methods are used to investigate grid ionospheric model using GPS data from 

ground GPS networks in the past several years, such as the methods of distance weight function 

of WAAS (e.g. Skone, S., 1998), spherical harmonic function and the polynomial function (e.g. 

Schaer, 1999; Komjathy, 1997). In this paper, a new method, Hardy Function Interpolation 

method, is presented to establish a high precision grid ionospheric correction model over the 

Yangtze River delta region using GPS data of the Shanghai Integration GPS Application 

Network (SIGAN). The internal and external accuracy of TEC from the GIM are evaluated to 

investigate the possibility that the GIM provides high precision ionospheric correction. 

 

HARDY FUNCTION INTERPOLATION 

  The current empirical ionospheric correction models, such as the Klobuchar model, could 

only correct about 50% of the total ionosphere effects (e.g. Klobuchar, 1987). Therefore, the 

more precise ionosphere model is required. As an approximation, the ionosphere may be 

considered to be a thin layer, i.e. an ionospheric spherical shell, to a height of 350 km above the 

earth’s surface (e.g. Otsuka Y, 2002). The grid ionospheric model values are the vertical 

ionospheric delays or vertical total ionospheric content (VTEC) at the specified Ionospheric 

Grid Points (IGPs. i.e. the intersection points of the selected longitude and latitude lines) 

covering the area.  

  In 1977, Hardy developed the Hardy Function Interpolation (HFI) method and applied it to 

analyze crustal vertical deformation (e.g. Liu et al, 2001). We here apply the HFI method to 

establish GPS grid ionospheric model over a small local region. For the GPS site coordinate (Bi, 

Lj), the VTEC of fitting model can be written as (e.g. Liu et al, 2001): 

                  VTEC (B, L) = ),,,(

1

ii

n

i

i
LBLBQa



                     (1) 

where VTEC(B，L) is the VTEC of the measurement points in a single plane, (Bi and Li ) is the 

coordinate of grid node, and ai is the vector of the VTEC value at the grid point. The 

corresponding core function can be expressed as follows: 
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  In Eq. (2), ε
2
 and β are the smooth factor, whose empirical values are 0.01 and 0.5 

respectively (Liu et al, 2001). If there are m measurement points(Bj，Lj) and n grid nodes (Bi，

Li), and let n grid nodes (Bi，Li) as central sites of core function Q .Thus, the VTEC of each GPS 

epoch in the Eq. (1) can be written as follows: 
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The error equation is as follows:  

                 
V T E C

vQav                          (5) 

  Through the Eq. (4) we can obtain the vector a by a weighted least squares adjustment to all 

GPS observations in each epoch, namely 

                            vPQQPQa
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where 
v

P  is the weight matrix of the VTEC. And that, we can obtain the VTEC of random grid 

sites, namely: VTECh= aQ
t

h
, where )(
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SIGAN network 

  In order to accurately monitor and predict the atmospheric state parameters over the Yangtze 

River delta region, China, starting from 1999 SHAO (Shanghai Astronomical Observatory, 

Chinese Academy of Sciences), Shanghai meteorology bureau, and Shanghai institute of 

surveying and mapping jointly established the Shanghai Integrated GPS Application Network 

(SIGAN), together with the international GPS service (IGS) station Shanghai (SHAO). The 

SIGAN network is a 24-hour continuous operating geodetic GPS arrays consisting 14 GPS 

stations in which the dual frequency Ashtech
TM

 GPS receivers were installed, covering the 

Yangtze River delta region (Figure 1.). Since July 2002, the SIGAN network has been operating 

normally. All the sites transmit GPS data of 30 sec and surface meteorological data of 6 min to 

the center of data process (SHAO) every 30 min. 

 

Figure 1. GPS site distribution of Shanghai Integration GPS application Network 

 

RESULTS AND APPLICATIONS 

  To measure the TEC over the Yangtze River delta region, we have developed a Grid 

Ionospheric model of TEC over in the Yangtze River Delta using the Hardy Function 

Interpolation method with a spatial resolution of 0.2
o
x0.2

o
. The TEC of each grid site can be 

mapped for every 30 seconds from the GPS dual frequency phase and code observable. For 

example, at 6:00(UT) on September 7, 2003, the distribution of VTEC of each grid sites with a 

spatial resolution of 0.2
o
x0.2

o
 and contour of VTEC over the Yangtze River delta region are 
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shown clearly in Figure 2 ( 216
m/e 101TECU1  ), and the mean standard deviation of the 

TEC estimated from this GIM is less than 1 TECU. The VTEC variations every six hours over 

the Yangtze River region are shown in Figure 3. 

 

 

 
Figure 2. The VTEC and contour over the Yangtze River delta region (UT: 6:00) 

 

Figure 3. VTEC variations over the Yangtze River delta region on September 7, 2003 
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  The internal and external accuracy of VTEC reflect the quality of VTEC estimated from the 

Grid Ionospheric Model, where the internal accuracy denotes the root mean square (RMS) of the 

discrepancy between the observing and fitting VTEC value, and the external accuracy represents 

the root mean square (RMS) of VTEC. In order to test the reliability of VTEC estimated from 

the Grid Ionospheric Model of HFI (Hardy Function Interpolation), we develop another two 

kinds of Grid Ionospheric Models using the distance weight function of Wide Area Augment 

System (WAAS) (e.g. Chao and Tsai 1996; Skone S, 1998; Liu et al, 1999) and spherical 

harmonic function method (Schaer, 1999), respectively. The corresponding internal and external 

accuracy of VTEC are derived respectively. Figure 4 shows comparisons of the internal and 

external accuracy of VTEC from three Grid Ionospheric Models. It has seen that the accuracies 

from the three methods are almost consistent, and the mean internal accuracy is 0.1 m, and the 

mean external accuracy is 0.3m. However, the internal and external accuracy from Hardy 

Function Interpolation are slightly better than the ones from other two methods. Therefore, it is 

available to establish the GIM with the HFI method. 

 

 

Figure 4. Comparisons of the internal and external accuracy of TEC from GIMs  

(Note: the vertical axis is the accuracy of vertical delay in L1 frequency (unit: meter); 1, 3 and 5 
represent the internal accuracy from Hardy Function Interpolation, distance weight function of WAAS 
and spherical harmonic function methods respectively; and 2, 4 and 6 represent the external accuracy 
from Hardy Function Interpolation, distance weight function of WAAS and spherical harmonic function 
methods respectively) 

 

  In addition, the gridded TECs over the Yangtze River Delta in January (winter), April (spring), 

July (summer) and October (autumn) 2003 are further derived from the SIGAN network using 

the Hardy Function Interpolation, distance weight function of WAAS and spherical harmonic function 

methods. These results are almost close to each other with less than 5 TECU. The seasonal variations 

of TEC over the Yangtze River delta are investigated and analyzed. The greater TECs are found 

in the equinoxes, i.e. the so-called semiannual anomaly. Generally speaking, the TEC is higher in winter 

than in summer from in daytime, but opposite in nighttime. This is due mainly to the fact that the loss 

rate of electron density depends mainly on the molecular nitrogen concentration [N2] with some 

contribution from molecular oxygen concentration [O2] in F region, while the production rate depends 

on the atomic oxygen concentration [O]. The composition changes can be a result of the equinox 

anomaly effect of TEC due to the convection of atomic oxygen from the summer to the winter 
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hemisphere (Torr and Torr, 1973). In addition, Torr and Torr (1973) also suggested that the semiannual 

TEC anomaly is due to the semiannual variations in neutral densities associated with geomagnetic and 

auroral activity. Millward et al. (1996), using the coupled thermosphere –ionosphere–plasmasphere 

model (CTIP), showed that the offset of the geomagnetic axis from Earth’s spin axis is the cause of the 

semiannual anomaly of noontime NmF2 in the South American sector. 

 

Conclusion and discussion 

  The Hardy Function Interpolation (HFI), distance weight function of WAAS and spherical 

harmonic function methods are used to establish the grid ionospheric models (GIM) over the 

Yangtze River Delta using continuous GPS data of SIGAN network. The internal and external 

accuracy of VTEC from three methods are all better than 0.3m, but the internal and external 

accuracy from the HFI are slightly better than ones from other two methods. Therefore it is 

reliable to establish a real time and high precision GIM over the Yangtze River delta region with 

the Hardy Function Interpolation method. Using the regional GIM model from the Hardy 

Function Interpolation it can produce more detailed instantaneous maps of the regional 

ionosphere, as compared to other global models, e.g., monitoring and forecasting the local 

ionospheric events over the Yangtze River delta region. 

   

Furthermore, the seasonal variations of gridded TEC over the Yangtze River Delta in 2003 are 

initially investigated and analyzed from the SIGAN network using the Hardy Function 

Interpolation, distance weight function of WAAS and spherical harmonic function methods. It has shown 

that the greater TECs are found in the equinoxes, while the TEC is higher in winter than in summer 

from in daytime, but opposite in nighttime. This is due mainly to the composition changes in the 

molecular nitrogen concentration [N2], molecular oxygen concentration [O2] and atomic oxygen 

concentration [O] in F region. In the future, more detailed analysis in spatio-temporal variation 

characteristics of TEC over the Yangtze River Delta will be analyzed using multi-satellite data 

(e.g. GPS and TOPEX data). 
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