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Abstract

The NNR-NUVEL-1A model, as an international standard model of the International Terrestrial Reference Frame
(ITRF), should be an accurate and rigorous enough no net rotation (NNR) model. In this paper, the new inertial
Q-tensor of global plates is accurately calculated with a new method, and further the total angular momentum of
global plates is obtained. The result shows that the reference frame constrained by NNR-NUVEL-1A is rotating
at 0.012◦/Ma with respect to the Earth lithosphere, and the NNR constraint of NNR-NUVEL-1A is not realized
completely. A new revised model NNR-NUVEL-1B is presented.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The terrestrial reference frame is an important reference benchmark for researching global and regional
motions of the Earth. At present, it is maintained by International Earth Rotation Service (IERS) incor-
porating space geodetic techniques and following four principles (Jin and Zhu, 2003). One principle that
should be satisfied by the terrestrial reference frame is no net rotation (NNR) with regard to the Earth’s
lithosphere, which can be mathematically expressed as the Tisserand Condition (namely the total angular
momentum of global plates is zero). In 1996, the NNR-NUVEL-1A model established byDeMets et al.
(1990, 1994)from geological and geomagnetic data in the last 3 Ma was regarded as an international stan-
dard model of the ITRF. From ITRF91 to ITRF94, NNR conditions were imposed to achieve the NNR
constraint with respect to the Earth’s lithosphere by using NNR-NUVEL-1A. The NNR constraint of
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ITRF2000 published recently by IERS was also satisfied by the NNR-NUVEL-1A model. Consequently
the NNR-NUVEL-1A should be an accurate and rigorous enough NNR model.

The NNR-NUVEL-1A model, however, was deduced from NUVEL-1A based on NNR constraint of
the Earth’s lithosphere byArgus and Gordon (1991). The inferred inertialQ-tensor is subject to the
following problems: (1) the sites along global plate boundaries within a subset of the NUVEL-1A model
are sparse, and (2) the components of the inertialQ-tensor have been obtained through a simple and
imprecise integral, so the precision of inertialQ-tensor is very low. Therefore, the NNR constraint of
the NNR-NUVEL-1A model is not realized based on the inertialQ-tensor rigorously and completely. In
addition, many authors have found that there is a net rotation in the ITRF96 (Zhang et al., 1999), ITRF97
(Zhu et al., 2000) and ITRF2000 (Jin and Zhu, 2002a,b) frames based on the inertialQ-tensor calculated
by Argus and Gordon (1991), and have respectively established the corresponding NNR models, such as
NNR-ITRF96VEL, NNR-ITRF97VEL and NNR-ITRF2000VEL. Strictly speaking, these conclusions
and results are not accurate and rigorous. In this paper, we recalculate the new inertialQ-tensor of global
plates with a new method, discuss the rigorous NNR condition of the reference frame constrained by
NNR-NUVEL-1A, and further give a revision of the parameters of the NNR-NUVEL-1A plate velocity
model.

2. New inertial Q-tensor of global plates

NNR, which is also called the Tisserand Condition, is one of the criteria of Conventional Terrestrial
Reference Frame (CTRS). The strict Tisserand Condition is used to define an ideal terrestrial reference
frame, i.e. the angular momentum summation of the whole Earth is zero with respect to this reference
frame. It can be expressed as follows

�L =
∫

D

�r × �V dm = 0, (1)

where�L is the total angular momentum summation of the Earth’s lithosphere,�V and�r are the site velocity
vector and position vector respectively,D is the whole lithosphere surface of the Earth and dm is a unit
mass of the Earth.

Assuming the Earth is a unit sphere and the density of the Earth’s crust distributes uniformly,Eq. (1)
can be approximately written as

�L =
k∑

i=1

�Qi
�Ωi = 0, (2)

wherek is the total number of plates,�Ωiis the Euler vector of platei, and �Qi is the inertial tensor of plate
i which can be written as

�Qij =
∫

(δij − xixj) dA =
∫

(δij − xixj) sinϕ dϕ dλ (3)

where �Qij are the components of the inertialQ-tensor,xk (k = 1, 2, 3) are Cartesian coordinates along
plate boundaries,δij is the Kronecker symbol, andϕ andλ are the latitude and longitude respectively.
Argus and Gordon (1991)calculated the coefficients�Qij throughEq. (3).Here we present a new method
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to calculate the coefficients�Qij. Firstly let�r and �V in Eq. (1)be expressed using Cartesian coordinates
(Li, 2003), so that�r × �V dm can be written as

�r × �V dm = [(yvx − zvy)i + (zvx − xvz)j + (xvy − yvx)k] dm (4)

where


x

y

z


 =




R cosϕ cosλ

R cosϕ sinλ

R sinϕ


 ,




vx

vy

vz


 =




yωz − zωy

zωx − xωz

xωy − yωx


 , dm = ρR2 cosϕ dϕ dλ dR,

where dϕ, dλ and dR are differences of latitude, longitude and radius, respectively, and(ωx, ωy, ωz) are
the components of Euler vectors.

Under the assumptions that the Earth is a unit sphere and the density of the crust distributes uniformly,
we can easily obtain the following equations through an integral overR (Earth radius) on the two sides
of Eq. (4):∫

D

[(sin2 ϕ + cos2 ϕ sin2 λ)ωx − cos2 ϕ sinλ cosλωy − sinϕ cosϕ cosλωz]cosϕ dλ dϕ = 0

∫
D

[(−cos2 ϕ sinλ cosλ)ωx + (sin2 ϕ + cos2 ϕcos2 λ)ωy − sinϕcosϕ sinλωz]cosϕ dλ dϕ = 0

∫
D

[(−sinϕ cosϕ cosλ)ωx − sinϕ cosϕ sinλωy + cos2 ϕωz]cosϕ dλ dϕ = 0

whereD is the whole lithosphere surface.Eq. (2)can be reduced to the following expression:

m∑
i=1




Q11,i Q12,i Q13,i

Q12,i Q22,i Q23,i

Q13,i Q23,i Q33,i






ωx,i

ωy,i

ωz,i


 = 0 (5)

whereQ11 = [Q11,1, Q11,2, . . . , Q11,m] are

Q11,i =
nj∑

j=1

[
1

3
(sin3 ϕi,j,2 − sin3 ϕi,j,1)(λi,j,2 − λi,j,1)

+ 1

2

(
sinϕi,j,2 − sinϕi,j,1 − 1

3
(sin3 ϕi,j,2 − sin3 ϕi,j,1)

)

×
(

λi,j,2 − λi,j,1 − 1

2
(sin 2λi,j,2 − sin 2λi,j,1)

)]

Q12 = [Q12,1, Q12,2, . . . , Q12,m]

Q12,i =
nj∑

j=1

(
−1

2

)[(
sinϕi,j,2 − sinϕi,j,1 − 1

3
(sin3 ϕi,j,2 − sin3 ϕi,j,1)

)
(sin2 λi,j,2 − sin2 λi,j,1)

]
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Q13 = [Q13,1, Q13,2, . . . , Q13,m]

Q13,i =
nj∑

j=1

1

3
[(cos3 ϕi,j,2 − cos3 ϕi,j,1)(sinλi,j,2 − sinλi,j,1)]

Q22 = [Q22,1, Q22,2, . . . , Q22,m]

Q22,i =
nj∑

j=1

[
1

3
(sin3 ϕi,j,2 − sin3 ϕi,j,1)(λi,j,2 − λi,j,1)

+ 1

2

(
sinϕi,j,2 − sinϕi,j,1 − 1

3
(sin3 ϕi,j,2 − sin3 ϕi,j,1)

)

×
(

λi,j,2 − λi,j,1 + 1

2
(sin 2λi,j,2 − sin 2λi,j,1)

)]

Q23 = [Q23,1, Q23,2, . . . , Q23,m]

Q23,i =
nj∑

j=1

[
−1

3
(cos3 ϕi,j,2 − cos3 ϕi,j,1)(cosλi,j,2 − cosλi,j,1)

]

Q33 = [Q33,1, Q33,2, . . . , Q33,m]

Q33,i =
nj∑

j=1

[(
sinϕi,j,2 − sinϕi,j,1 − 1

3
(sin3ϕi,j,2 − sin3ϕi,j,1)

)
(λi,j,2 − λi,j,1)

]

ωx = [ωx,1, ωx,2, . . . , ωx,m], ωy = [ωy,1, ωy,2, . . . , ωy,m], ωz = [ωz,1, ωz,2, . . . , ωz,m]

In the expressions above,i (i = 1, 2, . . . , m) is the number of plates,nj is the number of small regular
block in the platei, ϕi,j,1, ϕi,j,2, λi,j,1 andλi,j,2 are respectively the least value of latitude, the largest value
of latitude, the least value of longitude, and the largest value of longitude in the small regular blockj
of platei. Finally, the inertialQ-tensor of global plates is obtained with the plate boundary data of the
current plate velocity model NUVEL-1 (DeMets et al., 1990) (Table 1, the plate boundary data can be
obtained through anonymous FTP from the serverftp.iamg.org).

Schettino (1999)computed some important geometric parameters of the tectonic plates based on a
triangulation algorithm for spherical polygons, such as plate areas or components of the inertialQ-tensor,
and produced highly reliable results. The components of the inertialQ-tensor of 14 modern plates modified
from Schettino (1999)are listed inTable 2, which almost coincide with our results. The total area of 14
plates within a subset of the NUVEL-1 model is 12.56633 which equates to 4π, entirely standing for the
whole area of the Earth’s surface, which shows the components of the inertialQ-tensor derived from the
two methods are reliable. Additionally, the differences between components of the inertialQ-tensor of
Argus and Gordon (1991)and ours are very small (Table 3).

http://ftp.iamg.org
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Table 1
The components of the inertialQ-tensor of 14 modern plates

Plate Q11 Q22 Q33 Q12 Q13 Q23

Africa 0.66051 1.53907 1.64090 −0.25689 0.05547 0.10900
Antarctica 1.33020 1.17667 0.36426 −0.04962 0.05285 0.07723
Arabia 0.07914 0.06921 0.10397 −0.04901 −0.03053 −0.03226
Australia 0.83575 0.69715 0.94326 0.21084 −0.22493 0.29134
Caribbean 0.09684 0.01388 0.09958 0.02353 −0.00577 0.02099
Cocos 0.07266 0.00348 0.07190 −0.00617 0.00130 0.01088
Eurasia 1.43062 1.09600 0.90479 0.10812 −0.15475 −0.41478
India 0.25547 0.03997 0.25223 −0.05459 −0.01371 −0.05804
Nazca 0.38932 0.06997 0.34533 −0.01394 −0.00376 −0.11589
North America 1.26934 0.99651 0.58104 0.07511 0.01888 0.38472
South America 0.67813 0.64465 0.85539 0.35215 0.20517 −0.19160
J.de Fuca 0.00614 0.00519 0.00369 −0.00174 0.00224 0.00302
Philippine 0.07658 0.07808 0.12405 0.06082 0.02901 −0.02785
Pacific 1.19518 2.00993 2.09106 −0.39917 0.07051 −0.05852

Unit: Steradian.

Table 2
The components of the inertialQ-tensor modified fromSchettino (1999)

Plate Area Q11 Q22 Q33 Q12 Q13 Q23

Africa 1.92039 0.66069 1.54150 1.63858 −0.25148 0.05431 0.10942
Antarctica 1.43634 1.33036 1.17699 0.36532 −0.05097 0.05227 0.07885
Arabia 0.12610 0.07901 0.06922 0.10397 −0.05033 −0.03114 −0.03340
Australia 1.20547 0.83653 0.63133 0.94307 0.21035 −0.22510 0.29022
Caribbean 0.10521 0.09692 0.01395 0.09955 0.02354 −0.00582 0.02111
Cocos 0.07401 0.07264 0.00351 0.07186 −0.00620 0.00130 0.01087
Eurasia 1.71569 1.43059 1.09595 0.90481 0.10818 −0.15478 −0.41443
India 0.27345 0.25452 0.04004 0.25234 −0.05468 −0.01363 −0.05808
Nazca 0.40221 0.39023 0.06993 0.34426 −0.01399 −0.00360 −0.11521
North America 1.42221 1.26952 0.99509 0.57981 0.07523 0.01896 0.38485
South America 1.08960 0.67790 0.64589 0.85540 0.35121 0.20546−0.19116
J.de Fuca 0.00752 0.00617 0.00518 0.00369 −0.00178 0.00227 0.00298
Philippine 0.13934 0.07761 0.07713 0.12394 0.06065 0.02837 −0.02792
Pacific 2.64879 1.19484 2.01177 2.09096 −0.39975 0.07112 −0.05810
Earth 12.56633 8.37752 8.37749 8.37756 −0.00001 −0.00001 0.00001

Unit: Steradian.

3. New NNR model NNR-NUVEL-1B

The values of total angular momentum of the NNR-NUVEL-1A model based on several inertial
Q-tensors are shown inTable 4. The total angular momentum of global plates based on our new inertial
Q-tensors is about 0.012◦/Ma, which shows that the reference frame constrained by the NNR-NUVEL-1A
model is rotating at 0.012◦/Ma with respect to the Earth’s lithosphere, and the NNR constraint of the
NNR-NUVEL-1A model is not realized rigorously.
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Table 3
The differences between the inertialQ-tensor of Argus and Gordon and ours

Plate Q11 Q22 Q33 Q12 Q13 Q23

Africa 0.0038 0.0025 0.0094 −0.0068 0.0002 0.0002
Antarctica −0.0336 −0.0335 −0.0129 −0.0030 −0.0107 0.0057
Arabia 0.0014 0.0002 0.0003 0.0011 −0.0000 0.0003
Australia 0.0008 0.0647 −0.0005 −0.0085 0.0003 0.0011
Caribbean 0.0124 0.0014 0.0133 0.0028 −0.0004 0.0012
Cocos −0.0020 −0.0002 −0.0019 0.0002 −0.0001 −0.0003
Eurasia 0.0348 0.0211 0.0297 0.0120 0.0073 −0.0062
India −0.0221 −0.0024 −0.0230 0.0036 0.0003 0.0015
Nazca −0.0048 −0.0010 −0.0018 −0.0005 −0.0002 0.0005
North America −0.0024 −0.0031 0.0061 0.0021 −0.0052 0.0096
South America 0.0134 0.0192 −0.0105 −0.0025 0.0117 −0.0143
J.de Fuca 0.0004 0.0004 0.0002 −0.0000 0.0001 0.0002
Philippine −0.0033 0.0001 −0.0013 −0.0005 −0.0003 0.0014
Pacific −0.0006 −0.0072 −0.0032 −0.0006 −0.0014 −0.0029

Unit: Steradian.

Table 4
Comparisons of the total angular momentum (|L|, ◦/Ma)

Schettino (1999) This study Argus and Gordon (1991)

NNR-NUVEL-1A 0.0115 0.0124 0.0047

Table 5
Comparisons of Euler parameters between NNR-NUVEL-1B and NNR-NUVEL-1Aa

Plate NNR-NUVEL-1A NNR-NUVEL-1B

Ω (◦/Ma) λ (◦) ϕ (◦) Ω (◦/Ma) � (◦) ϕ (◦)

Africa 0.291 −74.0 50.6 0.291 −73.591 50.640
Antarctic 0.238 −115.8 63.0 0.238 −115.261 63.222
Arabia 0.543 −4.5 45.0 0.544 −4.437 44.935
Australia 0.646 33.2 33.9 0.647 33.154 33.866
Caribbean 0.214 −93.0 25.0 0.214 −92.627 25.135
Cocos 1.510 −115.8 24.5 1.509 −115.758 24.526
Eurasia 0.234 −112.3 50.6 0.234 −111.889 50.806
India 0.545 0.3 45.5 0.546 0.348 45.432
Nazca 0.743 −100.1 47.8 0.743 −99.962 47.850
North America 0.207 −85.9 −2.4 0.207 −85.540 −2.299
South America 0.116 −124.4 −25.3 0.115 −123.920 −25.341
Philippine 0.900 −35.4 −38.0 0.900 −35.319 −37.948
Pacific 0.641 107.3 −63.0 0.641 107.041 −62.990

a Ω is the rotation rate, andλ andϕ are the longitude and latitude of rotation pole, respectively.
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In order to rigorously obtain the NNR model constrained by the NNR-NUVEL-1A model, the Euler’s
vector of a new revised model NNR-NUVEL-1B,�Ω′

j can be obtained from the following formula (Zhang
et al., 1999):

�Ω′
j = �Ωj −

(∑
i

Qi

)−1∑
i

Qi
�Ωi = �Ωj −

(
3

8
π

)
�L (6)

where �Ωj is the Euler vector of the NNR-NUVEL-1A model, and�L is the total lithosphere angular
momentum. The Euler parameters of the NNR-NUVEL-1B model are shown inTable 5.

4. Discussion

The differences between the NNR-NUVEL-1B and NNR-NUVEL-1A models are very small, and the
largest difference of Euler rotation rate is 0.0012◦/Ma that is almost equal to plate motion of 0.1 mm/a.
For space geodetic studies with an accuracy of about 1 mm/a, it can be entirely ignored. However, the
reference frame constrained by NNR-NUVEL-1A is rotating at 0.012◦/Ma with respect to the Earth’s
lithosphere, which is almost equal to the long-term variation of the Earth’s rotation rate and polar
motion at 0.0436 mas/a (milli-arc-sec/a). The newest measured result of long-term polar motion from
space geodesy has the amplitude 4.123± 0.002 mas/a and the direction 73.9 ± 0.03 W◦ (Gross and
Vondrak, 1999). Thus it can be seen that the magnitude of NNR is one order of magnitude larger than the
present measured long-term polar motion. Accordingly, the net rotation of reference frame constrained by
NNR-NUVEL-1A, about 0.012◦/Ma, cannot be ignored for the measurement of long-term polar motion.
The new revised model NNR-NUVEL-1B rigorously satisfies the NNR condition and can be regarded as
a better international standard model of the ITRF.

In addition, the inertialQ-tensors calculated byArgus and Gordon (1991)are imprecise. Our method
to calculate the coefficientsQij yields results, which are almost consistent with the ones bySchettino
(1999)with the same plate boundary data of the model NUVEL-1. The new inertialQ-tensors of this
paper are useful for studying the net rotation of ITRF and realizing NNR models in the future.
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