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ABSTRACT  
 
GPS-derived ZTD (Zenith Tropospheric Delay) plays a 
key role in near real-time weather forecasting, especially 
in improving the precision of Numerical Weather 
Prediction (NWP) models. The ZTD is usually estimated 
using the first-order Gauss-Markov process with a fairly 
large correlation, and under the assumption that all the 
GPS measurements, carrier phases or pseudo-ranges, 
have the same accuracy. However, these assumptions are 
unrealistic. 
 
This paper aims to investigate the impact of several 
stochastic modeling methods on GPS-derived ZTD 
estimations using Australian IGS data. The results show 
that the accuracy of GPS-derived ZTD can be improved 
using a suitable stochastic model for the GPS 
measurements. The stochastic model using satellite 
elevation angle-based cosine function is better than other 
investigated stochastic models.   
 
It is noted that, when different stochastic modeling 
strategies are used, the variations in estimated ZTD can 
reach as much as 1cm. This improvement of ZTD 
estimation is certainly critical for reliable NWP and other 
tropospheric delay corrections.  
 
Keywords: Stochastic Modeling, GPS, ZTD, Gauss-
Markov. 
 
INTRODUCTION  
 
The GPS signal propagating through the neutral 
atmosphere is delayed by variation of the refraction index 
due to temperature, pressure and water content, which 
results in lengthening of the raypath, usually referred to as 
the “tropospheric delay”. This delay is an important error 
source for GPS positioning. This error source contributes 
a bias in height of several centimeters even when 
simultaneously recorded meteorological data are used in 
tropospheric models (Fang et al., 1998; Tregoning et al. 
1998).  
 
Today, GPS has widely been used to determine the ray-
path tropospheric delay (Van et al., 1993; Fang et al., 
1998; Emardson et al., 1998). The corresponding zenith 
tropospheric delay (ZTD) can be obtained from the ray-
path delay through mapping functions (e.g. Niell, 1996), 
which can be transformed into the precipitable water 
vapor (PWV) (Bevis et al, 1994; Duan et al, 1996; 
Tregoning et al. 1998; Manuel et al., 2001). In comparison 
with traditional techniques, such as radiosondes and WVR 
(water vapor radiometer), the GPS technique has more 
advantages, such as its low cost, all-weather operability 
and high accuracy (Vedel et al., 2001; Manuel et al., 
2001). Therefore GPS-derived ZTD play a key role in 
near real-time weather forecasting, especially improving 
the precision of Numerical Weather Prediction (NWP) 
models. In addition, the GPS-derived ZTD provides a new 
high-resolution tool for use in atmospheric sciences. 
Therefore precise GPS-derived ZTD is valuable and 
beneficial. 



ZTD estimation is traditionally obtained using the least 
squares (LS) principle. In order to employ the LS method 
for ZTD estimation, both the functional and stochastic 
models of GPS measurements need to be properly 
defined. The functional model, also called the 
mathematical model, describes the mathematical 
relationships between the GPS measurements and 
unknown parameters, e.g. baseline components and ZTD. 
The stochastic model describes the statistical properties 
of the measurements, which are mainly defined by an 
appropriate covariance matrix indicating the uncertainty 
of, and the correlations between, the measurements 
(Rizos, 1997; Brunner, 1999). Over the past two decades, 
the functional models for GPS measurements have been 
investigated in considerable detail. However, accurate 
stochastic modeling for the GPS measurements is still 
both a controversial topic and a difficult task to 
implement in practice (Wang, 1998; Wang et al., 1998; 
2002). 
 
In the current stochastic models for use in estimating the 
ZTD with GPS, it is usually assumed that all the GPS 
measurements have the same variance. The time-invariant 
covariance matrix of the double-differenced (DD) 
measurements is then constructed using the error 
propagation law. Such assumptions are unrealistic. As 
GPS measurement errors are dominated by the systematic 
errors caused by the multipath, ionosphere, and orbit 
effects, which are quite different for each satellite. 
Therefore the measurements obtained from different 
satellites cannot have the same accuracy due to varying 
noise levels (e.g. Wang, 1998; Wang et al., 1998; Bona, 
2000). Previous studies in precise GPS positioning have 
shown that unrealistic stochastic models may lead to 
errors of up to 10-15 millimeters in the height 
components (Satirapod et al., 2002). Therefore, it is 
expected that the stochastic model will also have a big 
impact on the precise ZTD estimates. The ZTD is usually 
estimated by employing the first-order Gauss-Markov 
(GM) process for calculating variance-covariance (VCV) 
with a fairly large correlation, namely the power density 
of 2 cm/sqrt (hour) (http://kreiz.unice.fr/magic/). Whether 
the first-order GM process and a fairly large correlation 
are optimal to calculate the ZTD should be further 
evaluated.  
 
This paper aims to investigate the impact of stochastic 
models on GPS-derived ZTD using Australian IGS 
(International GPS service) data. In the following section 
the data processing method and strategy are described. 
Stochastic modeling methods and results are then 
presented.  
 
DATA PROCESSING METHOD AND STRATEGY 
 
The ionosphere-free linear combination (LC) equation of 
double-differenced phase can be expressed as: 
 
 
 
 
 
 
                                                                                       (1) 
 
 
where ZTD is the zenith tropospheric delay, m is the 
mapping function, such as Niell’s mapping function 
(Niell, 1996), f is the frequency, N  is the (non-integer) 
ambiguity parameter, and ε is noise. And the linear 
observation equations are expressed as:  
 
         L= Ax + v                                                             (2) 
 
In Eq. (2), A is the design matrix, L is a vector of the 
observed-minus-computed DD carrier phase values (O-C), 
and x is the unknown parameters including ZTD, baseline 
and ambiguities.  
 
The stochastic models used in ZTD estimation are: a) the 
covariance matrix for the double-differenced GPS 
measurements, and b) the stochastic properties of the ZTD 
parameters which are usually described by the Gauss-
Markov process. In some cases the baseline components 
may also be stochastically constrained. The stochastic 
models for GPS measurements can be estimated by the 
MINQUE method (Wang, 1998; Wang et al. 2002) or may 
be defined by a variety of empirical formulae, whilst the 
Gauss-Markov process could be set up as the first or 
second order. In our initial studies, the models to be 
considered here are the ones that can be easily 
implemented within scientific GPS data processing 
software packages such as GAMIT and BERNESE. The 
details of the variations in the stochastic models are 
discussed below. 
 
Standard stochastic model 
 
In a commonly-used stochastic model, it’s usually 
assumed that all the carrier phases or pseudo-ranges have 
the same variance (σ2) and are statistically independent. 
Therefore, the observations Φ are treated as independent 
and uncorrelated, and the covariance matrix of the 
observations Φ can be formulated as: 
 
        Cov (Φ) = σ2I                                                          (3) 
 
where I is the unit matrix. Through the error propagation 
law the time-invariant covariance matrix (called the 
stochastic model) of the DD measurements can be 
obtained: 
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This is a standard stochastic model for DD 
measurements, which is easy to implement in practice. 
However, this simplified stochastic model may contain 
some misspecifications, and thus could result in 
unreliable ZTD estimates. 
 
Baseline length dependent weighting 
 
As the distances between GPS stations in a network are 
different, the baseline length dependent variances for 
GPS measurements are defined with the following 
function (King and Bock, 1999):  
 
        2Distance*222 β+α=σ                                     (5) 
 
where α  = 9mm and β = 0.1mm/km. This formula 
describes the relative qualities of GPS measurements 
from different GPS baselines in a network. 
 
Satellite elevation angle dependent weighting 
 
GPS measurement errors are dominated by systematic 
errors, such as signal-to-noise ratio, atmospheric delay 
and multipath errors, which may be closely connected 
with the satellite elevation angles. The effects of these 
error sources are different for each satellite. Therefore 
GPS measurements from different satellites may not have 
the same accuracy. In order to model the variances of 
GPS measurements from different satellites, a function of 
satellite elevation angle is used to describe the variances 
of raw GPS measurements in practice, namely: 
 

))((/ 222
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2 ielevfba j
ris

r +=φσ                      (6) 
 
where a  and b  are constant values, and ))(( ielevf j

r  is 
the function of satellite elevation angle at epoch i. Given 
the variances of one-way GPS measurements, the 
covariance matrix for the DD measurements is derived 
using the error propagation law: 
 
     biaiiL TbTaC ⋅+⋅= 22

)(                                        (7) 
 
where aiT  is the same as Eq. (4), and  
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Because of the complexity of unknown factors in the 
stochastic modelling, the functional relationship between 
the accuracy of GPS measurements and satellite elevation 
angles can only be approximately expressed. The sine and 
cosine functions of satellite elevation angles are often 
used for this purpose. In the GAMIT software package the 
sine of the satellite elevation angle is currently used to 
calculate the accuracy of the one-way GPS measurements 
(King and Bock, 1999): 
  
       ))((sin/ 222

)(
2 ielevba j

ris
r +=φσ                    (9) 

 
where a =4.3mm and b =3mm. The function is a good 
approximation to the tropospheric sensitivity. In addition, 
the BERNESE software takes another relationship based 
on satellite elevation angle with the accuracy of the one-
way GPS measurements, the cosine of the satellite 
elevation angle, namely (Hugentobler et al., 2001): 
  
       ))((cos222

)(
2 ielevba j

ris
r ⋅+=φσ                    (10) 

 
For this study, the GAMIT software package has been 
modified to include this function as one of the options for 
stochastic modeling.  
 
Gauss-Markov process 
 
The GAMIT software parameterizes ZTD as a stochastic 
variation from the Saastamoinen model with piecewise 
linear interpolation (King and Bock, 1999). The variation 
is currently constrained to be a first-order Gauss-Markov 
process with a special power density (known as the 
“zenith parameter constraint”) of 2 cm/sqrt (hour).   
 
Gauss-Markov (GM) random processes are stationary 
processes that have exponential autocorrelation functions 
(Brown and Hwang, 1992). The current GAMIT software 
package employs a first-order GM process with a fairly 
large correlation to calculate the variance-covariance 
(VCV) for ZTD parameter. The autocorrelation function 
for a second-order GM process X (t) is defined (e.g., 
Brown and Hwang, 1992) as: 
 

        )1()( 2 tetR t
x βσ β += −                                (11) 

 



The impact of the second GM process on ZTD estimation 
will not discussed here (but will be evaluated in further 
studies). 
 
In addition, the baseline components may be treated as 
observations with defined uncertainty to improve the 
geometry of the network solutions for the ZTD 
estimation.   
 
TEST RESULTS 
 
The test data sets used were from the IGS stations in 
Australia, as shown in Fig. 1. The GAMIT software was 
used for the data processing with tightly constrained 
positions of the IGS stations (each coordinate was 
assigned a standard derivation of 0.002m). The IGS 
precise orbits were used. Some parameters used in the 
data processing were: 1) cut-off elevation: 15 degrees; 
and 2) GPS data sampling interval: 30 seconds. 
 
The ZTD estimates for these stations on Day 151 2004 
were obtained at an interval of two hours using the first-
order GM model for the ZTD parameters with “zenith 
parameter constraint” of 2 cm/sqrt(hour). The 
performance of the following four stochastic modeling 
methods for GPS measurements was evaluated: 
 
A: Standard GPS processing method with a simplified 

stochastic model; 
B:  Baseline length dependent weighting; 
C:  Satellite elevation angle-based Sine function; and 
D:  Satellite elevation angle-based Cosine function. 
 
Fig. 2 shows the standard deviations of the ZTD 
estimates at the tid1 station using different stochastic 
models. The differences between the standard deviations 
for Methods A and D are the biggest ones, reaching 2mm, 
while the corresponding differences between the ZTD 
estimates is up to 1cm (Fig. 3).  
 
In addition, the standard deviations of the ZTD estimates 
based on the baseline length weighting (Method B) is 
higher than those from the standard processing method 
(A). The satellite elevation angle-based models (Method 
C and D) are better than other tested stochastic models. 
Among all the tested stochastic modeling methods, 
Method D has the best performance.  
 
Figure 1 The distribution of GPS stations in Australia 
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Figure 2 Standard deviations of ZTD estimates at tid1 
station using different stochastic models 
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Figure.3 ZTD estimates at the tid1 station using different 
stochastic models. 

The standard deviations and ZTD estimates from the 
hob2 station are listed in Tables 1 and 2 respectively. The 
averaged standard deviation for Method D is 2mm 
smaller than Method B. The results show that Method D  
yields more reliable ZTD estimates than the other tested 
methods. In the interval 17-19, the difference between the 
ZTD estimates from Methods B and D is up to 1.2cm.  
 
Table.1 The standard deviations of the ZTD estimates at 
the hob2 station 
 

Standard deviations  (mm) Intervals 
(hour) A B C D 

1-3 4.1 4.9 3.6 2.5 
3-5 2.9 3.4 2.7 2.0 
5-7 3.5 4.2 3.2 2.2 
7-9 3.8 4.6 3.5 2.4 
9-11 3.3 3.9 3.0 2.1 

11-13 3.4 4.0 3.1 2.2 
13-15 4.0 4.8 3.5 2.5 
15-17 3.2 3.8 2.9 2.1 
17-19 4.5 5.4 4.3 2.8 
19-21 4.0 4.8 3.7 2.5 

     21-23 3.1 3.7 2.9 2.0 
 
The above test results show that misspecifications in the 
stochastic models will result in unreliable ZTD 
estimation. Using Method D the precisions of GPS-
derived ZTD can be improved.   
 
 

Table.2 The estimated ZTD values at the hob2 station 
 

ZTD estimations (m) Intervals 
(hour) A B C D 

1-3 2.397 2.398 2.396 2.391 
3-5 2.391 2.393 2.392 2.385 
5-7 2.399 2.400 2.398 2.392 
7-9 2.427 2.428 2.429 2.422 
9-11 2.426 2.427 2.423 2.420 

11-13 2.416 2.417 2.419 2.412 
13-15 2.399 2.401 2.398 2.393 
15-17 2.402 2.403 2.401 2.396 
17-19 2.382 2.386 2.380 2.374 
19-21 2.389 2.389 2.387 2.384 

     21-23 2.408 2.409 2.407 2.402 
 
 
 
CONCLUDING REMARTKS 
 
The ZTD was usually estimated using the first-order 
Gauss-Markov process and under the assumption that all 
the GPS measurements have the same variance.  
 
It has been noted that, with different stochastic modeling 
methods tested in the paper, the changes in the estimated 
ZTD values can reach 1.2cm, which is significant for 
some ZTD applications.   
 
The stochastic modeling testing results here have shown 
that misspecification in the stochastic models will result in 
unreliable ZTD estimations. Using the satellite elevation 
angle-based cosine function the precision of GPS-derived 
ZTD estimations can be improved.   
 
This improvement of GPS-derived ZTD is certainly 
critical for reliable numerical weather prediction 
applications and other tropospheric research. This initial 
study has demonstrated that the stochastic model methods 
play an important role in the ZTD estimation process. 
Suitable stochastic modeling strategies for GPS 
measurements, baseline components (or the coordinates of 
GPS tracking stations) and the ZTD parameters should be 
further investigated.   
 
 
ACKNOWLEDGMENTS 
 
The authors would like to thank Dr Bob King and Dr Peng 
Fang for their valuable discussions and help in this study.   
 



REFERENCES 
 
Bona P., (2000), Precision, Cross Correlation, and Time 

Correlation of GPS Phase and Code Observations, 
GPS Solutions, 4(2), 3-13. 

Bevis M., S. Businger, S. Chiswell, et al. (1994), GPS 
Meteorology: Mapping Zenith Wet Delays Onto 
Precipitable Water, J. App. Meteor., 33, 379-386.  

Brown R.G. and P.Y.C. Hwang (1992), Introduction to 
Random Signals and Applied Kalman Filtering, John 
Wiley & Sons Inc. 

Brunner F.K., H. Hartinger and L. Troyer (1999), GPS 
Signal Diffraction Modelling: The Stochastic 
SIGMA-∆ Model, Journal of Geodesy, 73, 259-267. 

Duan J., M. Bevis, P. Fang, et al. (1996), GPS 
Meteorology: Direct Estimation of the Absolute 
Value of Precipitable Water, J. of Appl. Meteor., 35, 
830-838.  

Emardson T.R., G. Elgered and J.M. Johansson (1998), 
Three Months of Continuous Monitoring of 
Atmospheric Water Vapor with a Network of GPS 
Receivers, J. Geophys. Res., 103, 1807-1820. 

Fang P., M. Bevis, Y. Bock, S. Gutman and D. Wolfe 
(1998), GPS Meteorology: Reducing Systematic 
Errors in Geodetic Estimates for Zenith Delay, 
Geophys. Res. Lett., 25, 3583-3586.  

Hopfield H.S. (1969), Two-Quartic Tropospheric 
Refractivity Profile for Correcting Satellite Data, 
Journal of Geophysical Research, 74(18), 4487-4499. 

Hugentobler U., S. Schaer and P. Fridez (2001), Bernese 
GPS Software Version 4.2,.Astronomical Institute, 
University of Bern. 

King R.W. and Y. Bock (1999), Documentation for the 
GAMIT GPS Analysis Software, Mass. Inst. of 
Technol., Cambridge Mass. 

Manuel H., J. Juan, J. Sanz, et al. (2001), A New Strategy 
for Real-Time Integrated Water Vapor Determination 
in WADGOPS Networks, Geophy. Res. Lett., 28(17), 
3267-3270 

Niell A.E. (1996), Global Mapping Functions for the 
Atmosphere Delay at Radio Wavelengths, Journal of 
Geophysical Research, 101(B2), 3227-3246. 

Rizos C. (1997), Principles and Practice of GPS 
Surveying Monograph 17, School of Geomatic 
Engineering, the University of New South Wales, 
555pp. 
Saastamoinen J. (1973), Contributions to the Theory of 
Atmospheric Refraction, In three parts, Bulletin 
Geodesique, 105, 279-298; 106, 383-397; 107, 13-34. 

Satirapod C., J. Wang and C. Rizos (2002), Modelling 
Residual Systematic Errors in GPS Positioning: 
Methodologies and Comparative Studies, In Vistas for 
Geodesy in the New Millennium, J. Adams & K.P. 
Schwarz (eds.), IAG Symp. Vol.125, Springer-Verlag, 
ISBN 3-540-43454-2, 410-414. 

Tregoning P., R. Boers and D. O’Brien (1998), Accuracy 
of Absolute Precipitable Water Vapor Estimates from 
GPS Observations, Journal of Geophysical Research, 
103(28), 701-710.  

Van Hove T.M., C. Alber and J.M. Johnson (1993), 
Atmospheric Water Vapor as Noise and Signal for 
Global Positioning System Applications, 6th Int. Tech. 
Meeting of the Satellite Division of the U.S. Inst. of 
Navigation, Salt Lake City, Utah, September 22-24, 
797-804. 

Vedel H., K.S. Mogensen and X. Huang (2001), 
Calculation of Zenith Delay from Meteorological 
Data, Comparison of NWP Model, Radiosondes and 
GPS Delay, Phys. Chem. Earth., 26(6-8), 497-502. 

Wang J. (1998a), Stochastic Assessment of GPS 
Measurements for Precise Positioning, 11th Int. Tech. 
Meeting of the Satellite Division of the U.S. Inst. of 
Navigation, Nashville, Tennessee, 15-18 September, 
81-98. 

Wang J., M. Stewart and M. Tsakiri (1998b), Stochastic 
Modeling for Static GPS Baseline Data Processing, 
Journal of Surveying Engineering, 124(4), 171-181. 

Wang J., C. Satirapod and C. Rizos (2002), Stochastic 
Assessment of GPS Carrier Phase Measurements for 
Precise Static Relative Positioning, Journal of 
Geodesy, 76(2), 95-104. 

 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 941
	02: 942
	03: 943
	04: 944
	05: 945
	06: 946
	footer1: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer2: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer3: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer4: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer5: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer6: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA


