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A B S T R A C T

Accurate river water level estimation is essential for effective flood monitoring and water resources management. 
However, traditional techniques and single satellite observations have low accuracy and resolution. In this paper, 
we propose a novel method to enhance river water level estimation by fusing Cyclone Global Navigation Satellite 
System (CYGNSS) data and Sentinel-1 Synthetic Aperture Radar (SAR) imagery based on advanced machine 
learning (ML) techniques. SAR provides high-resolution, all-weather surface imagery, while the GNSS- 
Reflectometry from the eight-satellite CYGNSS mission offers frequent and wide-coverage observations. Dy-
namic river water levels are obtained at a daily temporal resolution by extracting changes in Sentinel-1 back-
scattering coefficients and integrating them with the CYGNSS data’s high temporal resolution feature. To 
guarantee the model’s robustness, a ten-fold cross-validation (CV) procedure is used with incorporating 15 
uniformly distributed gauge sites. Experimental results show that the data fusion method significantly improved 
the temporal resolution, and more importantly the precision of water level estimation. As opposed to the model 
without data fusion, the optimized fusion algorithm achieved a 50.74 % reduction in RMSE from 0.341 to 0.168 
m, while the R was improved from 0.876 to 0.936. An improvement of over 35 % in RMSE was observed at 8 out 
of 15 stations. To further validate the model’s generalizability, we tested it using data from 8 spatially and 
temporally independent hydrological stations. The fusion method reduced the RMSE from 0.479 to 0.202 m and 
increased the R from 0.848 to 0.927, further confirming its effectiveness in enhancing water level estimation. The 
findings indicate that integrating SAR imagery and CYGNSS time series data has complementary effects and 
enables better water level estimation.

1. Introduction

River water levels, also known as river stages or river surface ele-
vations, are a crucial indicator of the hydrological cycle. They form the 
primary basis for water resource management strategies and environ-
mental protection (Dastour and Hassan, 2023; Hu et al., 2023; Zhou 

et al., 2023). Monitoring river water level changes in real-time is 
essential not only for water resource management, ecological environ-
ment assessment, climate modeling, and biodiversity research but also 
for providing decision-making support for policy formulation at local 
and national levels (Biswas et al., 2019). Traditional point-based water 
level measurement methods are simple to operate, while they no longer 

Abbreviations: BJ, Banjing; BY, Baoying; BYB, Baoyingbao; CDP, Chuandong Port; DN, Dingnian; DT, Dongtai; DLP, Doulong Port; FC, Fanchuan; FN, Funing; GG, 
Gaogang; GY, Gaoyou; HQ, Huangqiao; JD, Jiangdu; JHu, Jianhu; JHe, Jinghe; MD, Mangdao; SD, Sanduo; SYT, Sheyang Town; TZ, Taizhou; XH, Xinghua; YC, 
Yancheng; YL, Yiling; ZB, Zhongbao.

* Corresponding author at: School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
E-mail addresses: sgjin@shao.ac.cn, sgjin@hpu.edu.cn (S. Jin). 

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

https://doi.org/10.1016/j.rse.2025.114927
Received 4 September 2024; Received in revised form 16 July 2025; Accepted 16 July 2025  

Remote Sensing of Environment 329 (2025) 114927 

Available online 25 July 2025 
0034-4257/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:sgjin@shao.ac.cn
mailto:sgjin@hpu.edu.cn
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2025.114927
https://doi.org/10.1016/j.rse.2025.114927


meet the demands of modern, large-scale, real-time monitoring, exhibit 
the reduced reliability in harsh environments, and entail high mainte-
nance costs.

Satellite remote sensing (RS) has proven to be an essential tool for 
inland hydrological monitoring and study worldwide (Koblinsky et al., 
1993; Alsdorf et al., 2007; Calmant et al., 2008; Crétaux et al., 2011). 
These observations measure a range of hydrological variables such as 
wetland areas (Papa et al., 2010), streamflow in major rivers (Birkett, 
1998; Birkett et al., 2002; Frappart et al., 2005; Frappart et al., 2008; 
Papa et al., 2006), and water levels in floodplains, lakes, wetlands, and 
rivers as observed by different satellite missions (Calmant et al., 2008; 
Pandey et al., 2014; Tarpanelli et al., 2018).

Various types of images captured by satellite optical sensors, 
including the Moderate Resolution Imaging Spectroradiometer (MODIS) 
with resolutions of 250 m and 500 m, Landsat with a 30-m resolution, 
and Sentinel− 2 with a 10-m resolution, have been utilized to monitor 
changes in lake water bodies (Lu et al., 2013; Xu et al., 2020; Wu et al., 
2023). The Modified Normalized Difference Water Index (MNDWI) and 
Normalized Difference Water Index (NDWI) (McFeeters, 1996; Li et al., 
2021) are the two most utilized multispectral indices for monitoring 
changes in water surfaces. Water bodies are usually extracted using 
higher values of NDWI and MNDWI (Pham-Duc et al., 2017). However, 
optical imagery is sensitive to cloud occlusion, which significantly im-
pacts the usability and accessibility of optical image data 
(Kleinherenbrink et al., 2020; Kushwaha et al., 2022). In comparison 
with optical RS, radar RS offers the benefit of penetrating clouds, rain, 
and fog, thus enabling all-day, all-weather observation without being 
affected by weather conditions (Zhang et al., 2011; Ferrentino et al., 
2020; Hamunyela et al., 2022). The category includes radar altimetry 
(RA) and synthetic aperture radar (SAR), among others.

RA approaches have been used to monitor changes in water levels of 
terrestrial water bodies, utilizing platforms such as ICESat-1/2, Sentinel- 
3, Jason-1/2/3, and CryoSat, along with digital elevation models 
(DEMs) (Birkett et al., 2002; Huang et al., 2018; Li et al., 2019b; Ryan 
et al., 2020; Cooley et al., 2021; Garkoti and Kundapura, 2021; Parajuli 
et al., 2022; Yue et al., 2022; Song et al., 2023). Data from multiple 
altimetry missions have been used in many studies to compile global 
water level datasets. For instance, the Database for Hydrological Time 
Series of Inland Waters (DAHITI) integrates altimetry data from SARAL/ 
AltiKa, Envisat, Jason-1/2, TOPEX/Poseidon, and ERS-2, comprising 
thousands of time series of water levels for wetlands, lakes, reservoirs, 
and rivers (Schwatke et al., 2015). DEM data are frequently used to 
supplement and calculate water level values in cases where altimetry 
information is limited (Vanthof and Kelly, 2019; Weekley and Li, 2021). 
However, aside from a few exceptions, altimeter methods presently face 
limitations in spatial resolution. They are primarily suitable for large 
lakes and water bodies beneath orbital paths, and thus cannot cover 
many small lakes and rivers globally (Alsdorf et al., 2007; Hostache 
et al., 2009; Sulistioadi et al., 2015; Mohammadimanesh et al., 2018).

SAR is broadly utilized for monitoring surface water owing to its 
insensitivity to clouds and sunlight. The C-band SAR, including Envisat, 
Radarsat, ERS-1, and ERS-2, builds on the legacy of traditional SAR 
systems developed by ESA and Canada (Santoro et al., 2015). Sentinel-1 
data have been widely adopted worldwide, showcasing significant po-
tential for monitoring surface water with high resolution (Ferrentino 
et al., 2020; Palomino-Ángel et al., 2022). However, the establishment 
of water level estimation solely from SAR data is significantly limited 
due to insufficient observational data and challenges in temporal reso-
lution (e.g., a 6-day observation cycle in northern regions) (Iervolino 
et al., 2014; Pham-Duc et al., 2017; Xing et al., 2018). Unlike traditional 
SAR satellites, the Surface Water and Ocean Topography (SWOT) sat-
ellite, successfully launched in December 2022, is the first satellite 
specifically designed to measure surface water changes (Fu et al., 2012). 
It uses dual-frequency (Ka and Ku bands) near-nadir SAR interferometry, 
combining the advantages of radar altimetry (for water level detection) 
and high-resolution SAR imagery, enabling the acquisition of key 

parameters such as river width and water level. SWOT’s observation 
range is extensive, covering rivers wider than 100 m and lakes or res-
ervoirs with a surface area of at least 250 m × 250 m, spanning a 
geographical range from 78◦S to 78◦N. With a 21-day revisit period, 
SWOT offers new opportunities for monitoring wider rivers and larger 
lakes, as well as supporting long-term hydrological studies. (Durand 
et al., 2010; Altenau et al., 2021; Pavelsky et al., 2014).

Global Navigation Satellite System Reflectometry (GNSS-R) lever-
ages satellite signals bounced back from Earth’s surface to evaluate 
surface parameters, which is a passive bistatic radar method (Wang 
et al., 2018; Yan et al., 2020; Jia et al., 2024a; Jia et al., 2024b; Jin et al., 
2024; 5aJin et al., 2025a; Jin et al., 2025b). Martin-Neira (1993)
initially proposed the GNSS-R altimetry, utilizing the time delay of re-
flected signals along with the predetermined geographical points of the 
transmitter and receiver to estimate the reflecting surface height. Sub-
sequent research has demonstrated its value in altimetry studies based 
on space, airborne, and ground platforms (Treuhaft et al., 2001; Lowe 
et al., 2002a; Clarizia et al., 2016; Li et al., 2019a; Wang et al., 2021; Ye 
et al., 2022; Roesler et al., 2023), leading to rapid development. Early 
GNSS-R altimetry studies utilized only limited surface reflection data 
(Lowe et al., 2002b). However, the Cyclone Global Navigation Satellite 
System (CYGNSS) Earth Explorer project, established by the National 
Aeronautics and Space Administration (NASA) in 2016 (Ruf et al., 
2018), provides a substantial amount of long-term observational data 
for GNSS-R altimetry research (Zhang and Morton, 2023).

The CYGNSS satellites were originally intended to study ocean sur-
face winds during tropical cyclones, which generate delay-Doppler maps 
(DDMs) by measuring Doppler shifts along with delay in the returned 
signal through cross-correlation between local reference signals and the 
received reflected signals. Based on the derived DDMs along with sur-
face reflection measurements, three common observables can be esti-
mated for GNSS-R altimetry applications: a blend of pseudorange and 
carrier phase measurements, a combination of carrier phase observa-
tions, and the signal-to-noise ratio (SNR).

In comparison with traditional RA, several benefits, such as reduced 
instrument power requirements, the capability to simultaneously gather 
measurement data from various GNSS satellites for wider coverage, and 
higher temporal resolution, are provided by spaceborne GNSS-R altim-
etry (Xi et al., 2022). Larson et al. (2013) carried out a pioneering water 
level retrieval experiment to infer sea level fluctuations using GPS data 
collected at a site from the EarthScope Plate Boundary Observatory 
(PBO). This method removed direct signal interference from raw SNR 
measurements using low-order polynomial fitting and reduced noise 
using wavelet decomposition (Santamaría-Gómez et al., 2015; Santa-
maría-Gómez and Watson, 2017; Wang et al., 2019b). Other SNR-based 
research has shown the applicability of multi-constellation and multi- 
frequency GNSS signal SNR data in GNSS-R, showing that multi-GNSS 
signal combinations yield better retrieval results than single-GNSS sig-
nals (Löfgren et al., 2011; Wang et al., 2019a).

Whilst the technologies described above have allowed major prog-
ress in the area of hydrological remote sensing, several issues remain, 
including low spatial resolution (e.g., Jason series, GRACE), long revisit 
cycles (e.g., SWOT), and limited applicability to complex terrains such as 
dense water networks. Furthermore, certain satellites (e.g., Landsat, 
MODIS) can only infer water levels indirectly through water body extent 
analysis, lacking the capability for direct water level measurement. 
These shortcomings directly restrict their effectiveness in key applica-
tions such as small watershed hydrological monitoring, flood fore-
casting, eco-hydrological research, and disaster emergency response. 
Data fusion technology offers a promising solution by integrating the 
strengths of multiple data sources, thereby overcoming the constraints 
of individual systems. Unlike our previous work and that of others, here 
we present a novel framework that unifies the representations of SAR 
images and CYGNSS data, leveraging their complementary strengths. 
The approach explicitly addresses the challenges of high spatiotemporal 
resolution, cost efficiency, and broad coverage, enabling direct and 
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dynamic water level monitoring. This technology fills the gaps in 
existing water level satellites in terms of high-frequency and high- 
precision monitoring, particularly suitable for small-scale water body 
monitoring, flood warning, and emergency response applications. It 
provides a more powerful tool for hydrological research and disaster 
management.

From a technical perspective, our primary objective aims to deter-
mine whether fused SAR and CYGNSS data features are sensitive to 
water level changes and can improve the accuracy of water level esti-
mation. Our framework offers two key potential advantages: (1) Stable 
and consistent features can be extracted from heterogeneous data. (2) It 
is possible to bridge the differences between datasets and generate high 
spatial-temporal resolution data series, thereby improving the model’s 
robustness and its capacity to withstand interference.

Our primary contributions are summarized as follows:
(1) A novel spatiotemporal fusion method was proposed for river 

water level estimation by combining SAR images and CYGNSS data, 
which produces daily high spatial-resolution features and achieves 
higher accuracy.

(2) Different ML algorithms and feature combinations were eval-
uated to measure the effectiveness of the suggested approach.

2. Study area and datasets

2.1. Study area

The Lixiahe region (latitude 32◦ to 34◦ 30′ N, longitude 119◦ to 121◦

30′ E) is located in central Jiangsu Province, China, covering approxi-
mately 22,000 km2 (see Fig. 1). The terrain is low and relatively flat, 
with elevations below 3 m accounting for 80.2 % of the area, referred to 
as the “pot bottom depression.” As a typical low-lying and coastal area, 
Lixiahe is particularly vulnerable to both flooding and drought disasters 
due to its unique geographical and climatic characteristics. The region 
experiences frequent and intense rainfall during the Meiyu season in 
spring and summer, as well as heavy rains induced by typhoons in 
summer and autumn, which ranks it among the regions that are most 
susceptible to disasters worldwide (Jiang et al., 2024). As a represen-
tative floodplain river system region, Lixiahe exhibits geographical 
characteristics common to many areas worldwide, such as slow water 
flow, dense river networks, and numerous lakes, making water level 
monitoring studies in this region highly valuable for other plain areas 

globally. Additionally, the region’s subtropical monsoon climate, with 
its seasonal rainfall patterns and water level fluctuations, is represen-
tative of many mid- to low-latitude regions. The study of Lixiahe’s 
distinct hydrological and topographical features provides valuable in-
sights for global water resource management and flood disaster pre-
vention in other densely river-networked plains.

Fig. 1 shows the location of the study area and marks the distribution 
of the key stations within the scope of this study, including the eight 
stations selected for spatially and temporally independent testing.

2.2. CYGNSS dataset

The CYGNSS constellation is composed of eight microsatellites (Ruf 
et al., 2018; Li et al., 2023b). Each microsatellite is equipped with a 
bistatic radar receiver with four channels designed to capture GPS sig-
nals that bounce off the Earth’s surface. The microsatellites primarily 
operate in equatorial regions, spanning from 38◦ N to 38◦ S. In contrast 
to sun-synchronous satellites with revisit times ranging from one to 
three days, such as SMAP and SMOS, CYGNSS offers a significantly 
higher temporal resolution, achieving an overall revisit time of just a few 
hours (Ruf et al., 2016). The reflection points and the surface roughness 
in its vicinity influence the spatial resolution of the CYGNSS signals. For 
active scattering from smooth surfaces, the spatial resolution can reach 
0.5 km (Comite et al., 2019).

The GPS signals that bounce off the Earth’s surface are recorded to 
produce delay-Doppler maps (DDMs). These DDMs are processed to 
derive the bistatic radar cross section (BRCS) along with the effective 
scattering area corresponding to each specular point by inverting the 
forward scattering model of CYGNSS. The BRCS from CYGNSS is ar-
ranged in a 17-delay by 11-Doppler grid, providing a representation of 
the radar reflectivity.

This study utilizes the CYGNSS level 1 version 3.1 data product, 
which is freely available (https://podaac.jpl.nasa.gov/CYGNSS) from 
January 1, 2021 to October 31, 2023. The BRCS is represented as Pbrcs. 
Γx,y, surface reflectivity, can be derived from the calibrated DDM peak 
with these level 1 observations (Rodriguez-Alvarez et al., 2019) as 
follows: 

Γx,y =
(rst + rsr)

2

4π(rstrsr)
2 Pbrcs (1) 

where rst represents the distance between the specular reflection point 

Fig. 1. Location of the study area and sampling locations. The map on the left shows the distribution of rivers and stations in the study area (Black text: names of 
rivers), and the map on the right shows the geographical location of the study area, the eight inset maps display the geographic extent and specific sampling points of 
the eight hydrological sites used for spatially and temporally independent testing.
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and the satellite system transmitter, and rsr denotes the distance from the 
receiver to the specular reflection point. Due to the variable positions of 
CYGNSS data sampling points, the calculated surface reflectivity data 
are typically projected onto a specific resolution (e.g. 36 km) EASE 2.0 
grid, as shown in Fig. 2. To ensure the accuracy and reliability of the 
data, multiple quality control measures were performed on the data (Jia 
et al., 2021). For example, the reflectivity data obtained from CYGNSS 
were filtered using the incident angle and DDM characteristics to 
remove outliers. Meanwhile, we employed a three-day time sliding 
window strategy and Kriging interpolation method to fill and smooth the 
gaps in the CYGNSS data caused by the relatively random sampling 
points and discontinuous spatial coverage (Shepard, 1968; Luo et al., 
2023; Senyurek et al., 2021; Senyurek et al., 2022).

2.3. Sentinel-1 SAR dataset

Sentinel-1 is the essential element within the Copernicus program. It 
primarily consists of two satellites, Sentinel-1 A and Sentinel-1B, both 
equipped with advanced SAR systems that provide all-weather, all-time 
radar imagery. Each satellite completes an orbit every 12 days, and 
together, the two-satellite constellation achieves a global revisit period 
of 6 days. The Sentinel-1 sensor functions in four distinct modes: wave 
(WV) mode, stripmap (SM) mode, interferometric wide swath (IW) 
mode, and extra-wide swath (EW) mode. The default mode for Earth 
observations is the IW mode, providing both single-band polarizations 
(VV, VH) and dual-band polarizations (VV + VH, HH + HV).

This study employed the VV + VH dual polarization combination 
with a spatial resolution of 5 × 20 m. A total of 657 Sentinel-1 A SAR 
images in IW mode with dual-band polarizations (VV + VH) were 
collected. These level-1 ground range detected (GRD) images, covering 

Fig. 2. Sample map of surface reflectivity data extracted from CYGNSS (2022.1.1).

Table 1 
Stations utilized for validating the proposed method.

Name River Longitude 
(◦)

Latitude 
(◦)

Elevation (m) Slope (◦) Water level range (m) Average water level (m)

Banjing Jiaogang River 120.41 32.31 5 2.18 2.08–4.01 2.48
Baoying Li Canal 119.31 33.24 4 3.62 6.02–7.77 6.75
Baoyingbao Baoshe River 119.52 33.26 1 2.18 0.62–2.40 1.07
Chuandong Port Chuandong Port 120.8 33.05 1 0 0.40–1.50 1.00
Dingnian Tongyang Canal 120.7 32.36 4 2.9 2.08–3.28 2.45
Dongtai Taidong River 120.34 32.83 4 4.41 0.92–2.50 1.20
Doulong Port Doulong Port 120.59 33.46 2 3.9 0.85–1.87 1.26
Fanchuan Xiefeng River 119.69 32.67 3 1.62 1.07–2.02 1.40
Funing Sheyang River 119.78 33.78 1 2.05 0.41–1.60 0.89
Gaogang Yinjiang River 119.84 32.32 0 2.05 0.69–2.52 1.44
Gaoyou Li Canal 119.42 32.79 4 3.62 5.85–7.76 6.81
Huangqiao Laolong River 120.22 32.26 5 2.99 2.14–4.68 3.10
Jiangdu New Tongyang Canal 119.57 32.42 1 0.73 0.11–3.16 1.52
Jianhu Xitang River 119.8 33.47 3 1.62 0.17–2.40 0.94
Jinghe Li Canal 119.23 33.35 13 3.62 6.03–7.80 6.74
Mangdao Mangdao River 119.55 32.42 1 3.9 5.78–8.20 6.88
Sanduo Beichengzi River 119.65 32.82 2 1.62 1.01–2.12 1.35
Sheyang Town Sheyang Lake 119.61 33.3 3 3.62 0.41–2.37 1.06
Taizhou Tongyang Canal 119.92 32.48 1 2.29 2.06–2.92 2.52
Xinghua Nanguan River 119.83 32.93 3 0 1.03–2.26 1.32
Yancheng Chuanchang River 120.12 33.4 9 2.18 0.61–1.86 1.01
Yiling New Tongyang Canal 119.68 32.49 1 4.58 0.62–2.74 1.43
Zhongbao Wugong River 119.84 33.09 -2 0 0.86–2.75 1.16

Y. Jia et al.                                                                                                                                                                                                                                       Remote Sensing of Environment 329 (2025) 114927 

4 



the period from January 1, 2021, to October 31, 2023, were obtained 
from the Google Earth Engine (GEE).

The dataset underwent a series of preprocessing steps to derive the 
backscatter coefficient for each pixel (Dastour et al., 2022). The ob-
tained radar backscatter coefficient data include the central coordinates 
of the observation location (longitude and latitude {X, Y}) and the radar 
backscatter coefficient at the observation point σ0

x,y. The radar back-
scatter coefficient can be calculated with the following equation: 

σ0
x,y = f(λ, θ, P)⋅g

(
εγ, sr, sc

)
(2) 

where include wavelength λ, incidence angle θ, and polarization mode P. 
The target parameters include complex dielectric constant εγ, surface 
roughness sr, and volume scattering coefficient sc in heterogeneous 
media.

Additionally, to minimize the impact of coherent speckle noise and 
terrain variations, this study adopted the Lee filter method and a volume 
scattering-based terrain correction model (Lee, 1980). All available data 
were processed on the GEE platform to leverage its powerful computa-
tional resources and advanced processing tools.

2.4. GPM dataset

Led by the Japan Aerospace Exploration Agency along with NASA, 
the Global Precipitation Measurement (GPM) project builds upon the 
Tropical Rainfall Measuring Mission through a collaborative effort. 
Since March 2014, the GPM project has been delivering the Level 3 

Integrated Multi-satellite Retrievals for GPM (IMERG) product, which 
provides advanced rainfall observation data with a spatial resolution of 
0.1◦ and a temporal resolution of 30 min (Hou et al., 2014). The data is 
available through NASA’s Goddard Space Flight Center data center (htt 
ps://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDE_06/summary). Here, 
GPM data were selected as an auxiliary input for the water level esti-
mation modeling, given the relationship between rainfall and water 
levels. We applied nearest-neighbor interpolation to align the data with 
the other datasets.

2.5. In situ water levels

The observational data for this study included daily in situ water level 
data collected between January 2021 and October 2023, which are 
freely available from the National Water and Rainfall Information 
website (http://xxfb.mwr.cn/sq_dtcx.html?v=1.0). Twenty-three 
representative stations with high data integrity were chosen for this 
study. The morphological attributes and topographic properties of these 
stations are presented in Table 1 and Figure 1with the diverse 
morphological characteristics of the region’s rivers.

Despite the daily recordings, some data gaps existed due to incom-
plete records and potential issues with network transmission. Never-
theless, this dataset was valuable for developing and validating the 
accuracy of the model employed for water level estimation.

In situ

CV : 
GEE: 
HSR : 
HSTR: 
HTR : 
KI :
ML : 
RBC : 
RW : 
SDWI :
STW : 
S-T :
WL :

Dotted line : 
Solid line : 

Water Level Estimation

Data Fusion

Fig. 3. Study flowchart.
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3. Methodology and procedures

This study proposed a new framework that unifies SAR images and 
CYGNSS data representations, leveraging ML techniques to improve the 
sensitivity and complementary effects of water level monitoring. Addi-
tionally, our approach ensured stable feature extraction from diverse 
data sources and bridged differences between datasets to generate high- 
spatiotemporal water level estimations.

3.1. Overall framework

We developed a high spatiotemporal resolution water level estima-
tion model (~1 day) using Sentinel-1, CYGNSS, and ancillary data 
during 2021–2023 (see Fig. 3). First, Sentinel-1 imagery, CYGNSS, and 
other ancillary data were acquired and preprocessed. CYGNSS data were 
cleaned and spatially augmented using a three-day time sliding window 
and Kriging interpolation to provide high coverage. The SDWI (Sentinel- 
1 Dual-polarized Water Index) algorithm was used to detect water 
bodies in the Sentinel-1 backscatter coefficient images and to calculate 
geometric parameters such as river width.

A critical aspect of the methodology was the feature fusion of 
Sentinel-1 and CYGNSS data, combining CYGNSS’s high temporal res-
olution with Sentinel-1’s high spatial resolution. Specifically, high 
temporal resolution statistical features from CYGNSS were extracted and 
applied to Sentinel-1 data using ML algorithms to obtain continuous 
fusion features with high spatiotemporal resolution (see details in Sec-
tion 3.3).

The fused features from CYGNSS and Sentinel-1 data, including GPM 
data, were employed to develop an ML-based water level model using in 
situ measurements from 15 uniformly distributed gauge sites. Multiple 
ML algorithms were used to train the model, ensuring robustness 
through a 10-fold cross-validation (CV) method. Additionally, in situ 
data from eight spatiotemporally independent stations were used to 
evaluate the model’s accuracy. Thus, by integrating Sentinel-1 SAR 
imagery and CYGNSS data, a high spatiotemporal resolution water level 
monitoring model was developed, resulting in accurate water level 
estimation.

3.2. Extracting high-spatial resolution features from Sentinel-1 images

The low backscatter characteristics of water bodies in the microwave 
range, due to the specular scattering effects, provide the basis for water 
extraction in Sentinel-1 images (Grimaldi et al., 2020; Martinis et al., 
2022; Chen et al., 2024). Specifically, the surface roughness due to water 
level changes can further influence SAR backscatter coefficients over 
water surfaces. Increased water surface roughness complicates the 
scattering phenomenon, as the irregular surface causes electromagnetic 
waves to scatter in a broader range of directions and angles. This affects 
the intensity and distribution of the scattering. VH and VV polarized 
radar backscatter coefficients are responsive to changes in water levels, 
with each type exhibiting a different degree of sensitivity. Different 
polarizations carry distinct information, enhancing the correlation for 
water estimation. Consequently, the variation of the Sentinel-1 back-
scatter coefficients can be used to reflect water level changes. The spatial 
variations in backscatter coefficients can provide valuable information 
and assist in disentangling the effects of additional surface factors 
(Santoro et al., 2015).

In addition to the key feature of the backscatter coefficient, river 
width can also visually demonstrate changes in river water levels. The 
river water spreads to a broader area when the water level rises, causing 
the river width to increase; conversely, the river width decreases when 
the water level falls. This phenomenon is especially significant in natural 
river channels where the terrain on either side of the river is fairly flat. 
Therefore, monitoring changes in river width can indirectly infer 
changes in river water level.

To accurately obtain the river width and backscatter coefficient from 
Sentinel-1 images, the following key steps were used (See Fig. 4): First, 
we calculated the SDWI derived from grayscale attributes associated 
with water bodies in different polarization SAR images using Sentinel-1 
dual-polarization VV and VH bands (Guo et al., 2021; Li et al., 2023c; 
Xue et al., 2021). Then, this study employed Otsu’s method, a classic and 
widely used approach for image segmentation, to segment the SDWI 
images and accurately extract water body information (Cordeiro et al., 
2021; Garg et al., 2024; Yang et al., 2018; Young et al., 2024).

The imagery dataset used in this study was extensive, making manual 
extraction of features such as river width and backscatter coefficient 
from individual images both time-consuming and impractical. To 

SDWI

Water
Non-water
Riverside

Water
Non-water
Riverside
River Centerline
River Width

RivWidthCloud

River Width
Extraction

Image collection of river water body Image collection of river width calculation

Otsu

Image collection of water index

Low: -40 High: 10
Radar Backscatter Coefficient (dB)

Image collection of sentinel-1 SAR

Low: -7 High: 1
Sentinel-1 Dual-Polarized Water Index

algorithm

VH
Sampling Points

VV 
Sampling Points

Fig. 4. Process for extracting Sentinel-1 imagery features (river width and backscattering coefficient) implemented based on the Google Earth Engine.
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address this, we employed batch-processing techniques and developed 
automated algorithms on the Google Earth Engine platform to enable 
rapid image analysis and feature extraction (Yang et al., 2020).

The precise river width calculation employed the RivWidthCloud 
algorithm after extracting water body masks (Yang et al., 2020). The 
core steps are summarized as follows:

(1) River Centerline Extraction: The centerline was generated by 
applying distance transformation, gradient calculation, and skeletoni-
zation techniques to the river mask, and false branches were removed to 
ensure accuracy.

(2) River Width Measurement: The local orthogonal direction for 
each pixel on the centerline was calculated and the river width along 
these directions was measured for comprehensive coverage.

The backscattering coefficient and river width are averaged within a 
250-m radius buffer zone. Specifically, for each sampling point, we 
calculate the average values of the backscattering coefficient and river 
width within a 250-m radius buffer zone (considering only water bodies) 
centered at that point. This approach takes into account the diverse river 
morphology in the target area, ensuring coverage of the widest river 
sections while maintaining sampling consistency. By smoothing the data 

Sentinel-1 and CYGNSS data fusion process

Time-series fused data

Fig. 5. General framework of the implemented temporal-spatial feature fusion modeling from CYGNSS and Sentinel-1 data for water level estimation.
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within the buffer zone, we reduce the impact of outliers, thereby 
enhancing the stability and reliability of the data.

3.3. Fusing Sentinel-1 images and CYGNSS data

In this study, we considered two main aspects when designing the 
fusion framework. First, it was important for the framework to be 
mathematically simple, robust, and computationally efficient. Given 
that the fusion process utilizes ancillary data and was executed for each 
pixel sequentially, simplicity and efficiency were crucial. Fig. 5 provides 
an overview of our proposed data fusion framework. Our approach 
assumed that key features obtained from different RS platforms should 
exhibit high consistency or linear correlation when observing the same 
region simultaneously.

First, high temporal statistical features from CYGNSS data with 
complete spatial distribution and continuous temporal sequences, spe-
cifically the daily change of reflectivity, were extracted to capture time- 
series variations. Simultaneously, spatial features from Sentinel-1 data, 
including the backscattering coefficients and river width data, were 
extracted to provide high spatial resolution imagery. Next, the temporal 
variation characteristics from CYGNSS were applied to the Sentinel-1 
data, effectively supplementing the backscattering coefficients and 
integrating the temporal features with the spatial features of Sentinel-1. 
This integration involved establishing a pixel-level relationship between 
the two temporally overlapping datasets and using the XGBoost algo-
rithm to solve the corresponding relationship. Finally, the solved and 
established model was applied to the discontinuous Sentinel-1 data, 

creating a synthetic data product that integrated the CYGNSS’s high 
temporal resolution with the Sentinel-1’s high spatial resolution. This 
synthetic product was then used for precise water level estimation 
modeling based on ML methods, utilizing in situ water level data for 
training and validation. The comprehensive experiments in Section 4
validated the effectiveness of the proposed method, demonstrating sig-
nificant improvements in both temporal resolution and estimation 
accuracy.

3.4. ML framework for river water level estimation

Three machine learning (ML) algorithms, the support vector 
regression (SVR), extreme gradient boosting (XGBoost), and random 
forest (RF) algorithms, were selected for modeling and evaluating the 
proposed approach. The RF algorithm is widely used for its strong 
regression capabilities. XGBoost was chosen for its superior perfor-
mance, speed, and robustness. SVR, known for its strong generalization 
ability, was also included to ensure a comprehensive comparison (Jia 
et al., 2024a; Li et al., 2023a).

Fig. 6 represents the process involved in the fusion and modeling of 
data using ML algorithms. First, we fused the extracted key features, 
including reflectivity from CYGNSS, backscatter coefficients and river 
width from Sentinel-1. The XGBoost algorithm was utilized to establish 
pixel-level correlations between the datasets. Specifically, the model 
was trained to express the relationship between temporally overlapping 
CYGNSS and Sentinel-1 data. Through this model, missing Sentinel-1 
data could be supplemented, thereby forming a continuous and 

Comparisons of ML Models

Fusion Model

R

In situ

Fig. 6. Flowchart showing the training and validation of the proposed ML-based water level estimation method.

Table 2 
Hyper-parameters of ML learning algorithms.

XGBoost RF SVR

parameter value parameter value parameter value

booster gbtree n_estimators 200 kernel rbf
objective reg:squarederror max_depth 15 C 100
n_estimators 150 max_features sqrt gamma 0.01
learning_rate 0.1 min_samples_split 5 epsilon 0.1
max_depth 6 min_samples_leaf 3
gamma 0 random_state 42
min_child_weight 3
subsample 0.85
colsample_bytree 0.8
reg_alpha 0.01
reg_lambda 0.1
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complete fused dataset that combined the high temporal resolution of 
CYGNSS with the high spatial resolution of Sentinel-1.

Subsequently, the fused data and other optimized auxiliary features 
were selected to construct the water level estimation model. To evaluate 
the impact of various input features on the water level estimation, we 
conducted feature selection and optimization for the model inputs. 
Based on parameters such as date and geographical coordinates, we 

selected river width, backscatter coefficients (VV and VH), precipitation, 
and daily average reflectivity as the primary feature variables. These 
variables, along with observed water level data, were used to establish a 
river water level estimation model. The optimized features were eval-
uated based on three ML models, XGBoost, RF, and SVR algorithms. 
Finally, through comprehensive analysis of accuracy metrics, the 
optimal XGBoost-based model for water level prediction was 

Fig. 7. Temporal variations of water level estimation with and without CYGNSS fusion at 15 stations based on 10-CV results.
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determined, providing effective support for the dynamic monitoring of 
river water levels. Hyperparameters define the training and usage of a 
model, significantly influencing its complexity and fitting ability 
(Putatunda and Rama, 2018). The final selected hyper-parameters are 
shown in Table 2.

3.5. Validation strategy

In this paper, four ML-based methods were selected for comparison. 
ML models tend to use a standard framework of 1) training data used to 
train the model; 2) validation data used to tune the model; and 3) test 
data. This is required to keep some generalization capabilities and to 
avoid the so-called overfitting that is reserved from training and vali-
dation, and is only used to assess the test accuracy of the final model. 
The expected standard is that the test data have some independence 
from the training data (i.e., different site and/or different time period) to 
reduce the impacts of spatial and temporal autocorrelation on assessed 
test accuracy.

For general validation, we adopted 10-fold CV on the dataset (from 
2021 to 01-01 to 2023-03-31) to randomly access the overall model 
performance, which randomly selects 90 % of the samples for modeling 
and uses the remaining 10 % for validation (Senyurek et al., 2020; Bao 
et al., 2024). This process is repeated 10 times to ensure that all samples 
are tested. The final evaluation result is the average result of each fold. 
This approach inherently includes validation set partitioning, as each 
fold serves as validation data in turn, guaranteeing the separation of 
training and validation data while testing every fold. Different metrics 
are computed across all folds to evaluate the model performance, and 
the optimal model was selected based on its validation performance.

For a final test to rule out bias from the hyperparameter tuning, we 
tested the performance using an independent dataset not used for model 
design/tuning. This test was performed across different spatial and 
temporal dimensions to thoroughly evaluate the performance of the 
fused water level estimation model. As detailed in Section 4.3, we per-
formed a spatiotemporally independent validation using data (from 
2023 to 04-01 to 2023-10-31) to rigorously examine the model’s 
generalization capability (Senyurek et al., 2020). Our evaluation 
framework incorporated both 10-fold CV and independent testing to 
systematically compare the performance of models with and without 
CYGNSS data fusion. Specifically, CV was used solely for hyper-
parameter tuning and to demonstrate the overall performance on the 
training set, while the independent test set was reserved for the final 
evaluation. Furthermore, we examined the fusion methods under 
diverse experimental conditions, including varying durations of training 
data (3–27 months) and different data reconstruction approaches (e.g., 
linear interpolation), to thoroughly validate the proposed method’s 
robustness. For quantitative evaluation, three metrics were selected: the 
Pearson correlation coefficient (R), Nash-Sutcliffe efficiency (NSE), and 
root mean square error (RMSE) (Nash and Sutcliffe, 1970).

4. Results and analysis

4.1. Overall performance of the fused data model

To evaluate the general performance of the proposed method, we 
selected 15 hydrological stations distributed across different regions 
(data from January 1, 2021 to March 31, 2023) to show the temporal 
variation of estimated water levels (Fig. 7). To demonstrate the superi-
ority of the method, comparative experimental results without CYGNSS 
data fusion were also presented. For a fair and direct comparison, both 
methods adopted 10-fold CV to randomly assess the overall model 
performance.

Fig. 7 shows the temporal variations of water level estimates at the 
15 stations. The proposed fusion model, which incorporates CYGNSS 
data, performs well by aligning closely with observed measurements and 
significantly enhancing estimation accuracy and temporal resolution 

compared to the model without data fusion.
At Jiangdu Station, the fusion model effectively captures water level 

trends across different conditions, maintaining a strong correlation with 
observations, while the model without data fusion shows noticeable 
biases, especially during periods of change. At Mangdao Station, located 
near a sluice gate and heavily influenced by human activity, the fusion 
model excels in capturing real-time fluctuations, unlike the model 
without data fusion, which struggles with substantial errors. During the 
July 2021 flood event at Sanduo Station, the fusion model successfully 
detected an abnormal rise in water levels, demonstrating higher sensi-
tivity and validation accuracy, whereas the model without data fusion 
failed to recognize this anomaly, resulting in significant prediction 
errors.

The quantitative evaluation results across all stations were shown in 
Table 3, providing a more precise and intuitive method for evaluating 
the results. For example, the Yancheng station demonstrated the best 
RMSE performance without CYGNSS (RMSE of 0.114 m). After data 
fusion, the RMSE decreased to 0.092 m, and the R value improved to 
0.777. Furthermore, for stations where the initial error was larger and 
correlation was lower without data fusion, the improvement after data 
fusion was even more significant. For instance, due to the low-lying 
terrain, complex topography, and rapidly changing water flows, the 
estimation results for the Mangdao station were poorer compared to 
other stations under both conditions. This might be because greater 
environmental variability resulted in higher data noise, impacting the 
model’s estimation capability. Nevertheless, after data fusion, the RMSE 
significantly decreased to 0.232 m (a 50 % reduction), and the R value 
reached 0.935 (an 46 % improvement).

Fig. 8 also features a scatter plot illustrating the data distribution. In 
the model incorporating data fusion, points in the scatter plot were more 
concentrated around the fitting line, highlighting a clear improvement 
in estimation accuracy. Conversely, the predictions from the model 
without data fusion appeared more dispersed. As demonstrated in 
Fig. 8a, the CV results show that the fusion of CYGNSS data significantly 
enhanced the model’s performance. Across all stations, the RMSE was 
decreased from 0.341 m to 0.168 m, the NSE was improved from 0.766 
to 0.876, and the correlation coefficient R was increased from 0.876 to 
0.936, indicating a 50 % reduction in RMSE.

The improvement in water level estimation after data fusion can be 
attributed to several factors. First, the complementarity of diverse data 
sources allowed the model to utilize the physical characteristics of 
different data sources, compensating for the shortcomings of individual 
data sources. Second, data fusion reduced the impact of noise and errors 

Table 3 
Comparative evaluation of validation accuracy for data fusion with/without 
CYGNSS.

Fusion with CYGNSS Without CYGNSS

RMSE 
(m)

NSE R RMSE 
(m)

NSE R

All stations 0.1680 0.8764 0.9363 0.3411 0.7668 0.8765
Baoyingbao 0.1160 0.6430 0.8249 0.2070 0.5230 0.7678
Chuandong 

Port
0.1153 0.4389 0.7176 0.1243 0.2194 0.6702

Dingnian 0.0952 0.2644 0.5784 0.1012 0.0251 0.2304
Fanchuan 0.1216 0.6601 0.8209 0.1242 0.4555 0.6830
Funing 0.0994 0.6081 0.7857 0.1170 0.2458 0.6223
Gaogang 0.1403 0.6381 0.8040 0.2348 0.1413 0.6752
Gaoyou 0.1805 0.8371 0.9168 0.3083 0.1501 0.6167
Huangqiao 0.1743 0.9491 0.9754 0.3274 0.7859 0.9126
Jiangdu 0.2456 0.7836 0.8865 0.3898 0.1608 0.5488
Mangdao 0.2327 0.8731 0.9358 0.4706 0.1756 0.6402
Sanduo 0.1070 0.6456 0.8162 0.2384 0.1278 0.4062
Sheyang 

Town
0.1192 0.6590 0.8433 0.1620 0.1159 0.6299

Taizhou 0.1382 0.1421 0.9952 0.1679 0.2029 0.4595
Xinghua 0.0938 0.6644 0.8241 0.1718 0.3114 0.6231
Yancheng 0.0925 0.5888 0.7778 0.1149 0.3059 0.5847
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from each data source on the model, thereby enhancing the accuracy of 
the estimations. Third, data fusion enhanced the model’s robustness and 
feature extraction capabilities, improving its adaptability and fit across 
different environments. The fusion of Sentinel imagery and CYGNSS 
data significantly improved the estimation accuracy and resolution of 
water level estimation, providing reliable data for further research and 
practical applications.

4.2. Comparison with other ML methods for water level estimation

To further assess the water level estimation performance, we selected 
three different ML algorithms: RF, SVR, and XGBoost. All three algo-
rithms used the same spatiotemporal fusion scheme and primary input 
features. The results were compared to identify the optimal ML 

modeling approach (Table 4).
In Table 4, the comparative evaluation of model performance metrics 

indicates that the XGBoost model performed the best overall, exhibiting 
high validation accuracy and stability. The RF model followed in vali-
dation accuracy, while the SVR model performed significantly worse, 
with lower NSE and R values indicating poorer estimation capabilities.

Due to the varying characteristics of station data, different estima-
tion algorithms may perform optimally at different sites (see Fig. 9). The 
XGBoost approach consistently demonstrated the best result at various 
stations, with the highest NSE and R values along with the lowest RMSE 
values. Although the RF model demonstrated overall better validation 
accuracy than the SVR model, its performance was slightly lower than 
that of the SVR model at several stations. This suggests that the SVR 
model, while less effective on large datasets, can better capture local 

Fig. 8. Scatterplot analysis and temporal variations of water level estimation (fused with/without CYGNSS), (a) Scatterplot analysis, (b) Temporal variations of water 
level estimation.
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data variations when dealing with single-station data due to its suit-
ability for small datasets and its reliance on kernel functions and 
parameter selection for handling nonlinear problems. In contrast, the 
XGBoost and RF models can manage complex nonlinear relationships 
more effectively and exhibit strong robustness and generalization abil-
ity, which allows them to outperform SVR models in many scenarios.

The most stable and robust results across various stations were 
achieved by the XGBoost model. As shown in Table 4 and Fig. 9, even at 
the Jiangdu station, which frequently experienced flooding and gener-
ally had poor estimation results, the XGBoost model still produced 
acceptable results, outperforming other algorithms. Compared to the RF 
model, the RMSE decreased by 0.036 m, and the R value increased by 
0.026. All algorithms performed well at the Yancheng station. The 
reason may be that minimal water level changes reduce the impact of 
noise on the model, making the learning task relatively simple. This 
allowed the model to more easily capture the simple relationship be-
tween features and output during the training process, providing 
favorable conditions for water level predictions.

Thus, it can be concluded that the model’s efficacy to generalize is 
governed by the characteristics of the observation stations, allowing for 
model selection or parameter optimization specific to different stations. 
Additionally, distinct models demonstrate unique strengths across 
various evaluation metrics. When estimating water levels in different 
regions, selecting the optimal model based on specific requirements can 
enhance the precision and dependability of the estimation results.

4.3. Independent testing results at different spatial and temporal scales

In addition to the presented 10-fold CV results for overall perfor-
mance, it is important to assess the performance of the proposed method 
under spatially and temporally independent scenarios. The validation 
was exhibited across various spatial and temporal dimensions to thor-
oughly assess the XGBoost-based fusion model’s performance. Apart 
from the commonly used 10-fold CV achieved by randomizing all sam-
ples (from 2021 to 01-01 to 2023-03-31), additional independent sites 
across different time periods (from 2023 to 04-01 to 2023-10-31) were 
shown to test model’s robustness and generalization ability.

Eight stations of temporal variations comparisons in different loca-
tions were shown to demonstrate the robustness and generalization 
performance of the fused models. The clear consistency between the in 
situ measurements and the estimated water levels confirms the effec-
tiveness of the proposed XGBoost-based fusion model. Without CYGNSS 
data fusion, the model fails to provide continuous daily water level es-
timations and exhibits notably lower estimation accuracy.

In the flood season of July 2023 (Fig. 10), we observed abrupt water 

level fluctuations at the Banjing, Dongtai, Yiling, and Zhongbao stations. 
The XGBoost-based fusion model effectively captured these abnormal 
fluctuations, but the model without data fusion was unable to address 
these significant extreme water level changes. Furthermore, at the 
Baoying, Jinghe, Jianhu, and Doulong Port stations, although there were 
frequent fluctuations in the observed water levels, the fusion model 
maintained robust estimation capabilities. By effectively capturing sus-
tained and diverse water level fluctuations, it further validates its 
effectiveness in improving estimation accuracy and optimizing 
performance.

In the case of test samples, it is evident that the model without 
CYGNSS data fusion fails to accurately predict daily water levels and 
struggles to capture abrupt water level fluctuations. In contrast, the 
XGBoost-based fusion approach not only provides reliable daily water 
level observations but also significantly improves estimation accuracy 
and effectively monitors abrupt water level fluctuations, thereby 
demonstrating its superiority.

The test accuracy evaluation results, as detailed in Table 5, indicate 
that the XGBoost-based fusion model achieves an RMSE of 0.202 m, an 
NSE of 0.858, and an R of 0.927. These metrics demonstrate the model’s 
strong performance in spatiotemporal water level estimation and its 
capability to predict water levels in regions without training samples. 
Compared to the sample-based 10-fold CV results (RMSE = 0.168 m, 
NSE = 0.876, R = 0.936), the fusion model shows slightly lower per-
formance but still maintains high test accuracy, which is comparable 
and expected. This suggests that the proposed approach has good spatial 
generalization and robustness, making it a promising tool for water level 
estimation tasks under various regional and temporal conditions. In 
contrast, the model without CYGNSS fusion performs slightly worse at 
independent test sites, indicating weaker generalization capability and 
more difficulty adapting to new spatial or temporal domains.

Fig. 11 presents scatter plots of water level estimates from the 
XGBoost-based model on an independent test set. In Fig. 11a, the esti-
mated values and the observed values are highly clustered along the 
fitted line, showing a distinct high-density linear band distribution. This 
indicates that the fusion model maintains a good fitting trend even at 
independent sites. However, in Fig. 11b, the scatter points demonstrate 
noticeable separation and clustering, deviating from the ideal fitted line 
with significant systematic biases, particularly underestimating at 
higher water levels. This suggests a reduced capacity of the model 
without CYGNSS fusion to adapt to spatiotemporal data.

4.4. Validation under different proportions of data modeling

In this section, we evaluate the changes in the model’s estimation 

Table 4 
Evaluation metrics of river water level estimation performance based on data fusion at different stations.

XGBoost RF SVR

RMSE (m) NSE R RMSE (m) NSE R RMSE (m) NSE R

All stations 0.1680 0.8764 0.9363 0.1989 0.8407 0.9254 0.6279 0.7964 0.8970
Baoying 

bao
0.1160 0.6430 0.8249 0.1310 0.5629 0.7652 0.1187 0.6193 0.8152

Chuandong Port 0.1153 0.4389 0.7176 0.1214 0.3814 0.6314 0.1601 0.0930 0.4646
Dingnian 0.0952 0.2644 0.5784 0.1069 0.2123 0.4974 0.1304 0.1008 0.3386
Fanchuan 0.1216 0.6601 0.8209 0.1413 0.5577 0.7603 0.1958 0.0843 0.6243
Funing 0.0994 0.6081 0.7857 0.1174 0.4561 0.6902 0.1215 0.4077 0.6509
Gaogang 0.1403 0.6381 0.8040 0.1692 0.4873 0.7266 0.1637 0.4684 0.7306
Gaoyou 0.1805 0.8371 0.9168 0.2406 0.7112 0.8548 0.2308 0.7350 0.8651
Huangqiao 0.1743 0.9491 0.9754 0.2614 0.8897 0.9540 0.2035 0.9314 0.9667
Jiangdu 0.2456 0.7836 0.8865 0.2822 0.7177 0.8605 0.3366 0.5789 0.8028
Mangdao 0.2327 0.8731 0.9358 0.3085 0.7767 0.8874 0.2456 0.8511 0.9257
Sanduo 0.1070 0.6456 0.8162 0.1192 0.5651 0.7678 0.1288 0.3980 0.7306
Sheyang Town 0.1192 0.6590 0.8433 0.1307 0.6089 0.7994 0.1214 0.6154 0.8327
Taizhou 0.1382 0.1421 0.9952 0.1419 0.1277 0.3802 0.1486 0.1051 0.3654
Xinghua 0.0938 0.6644 0.8241 0.1167 0.4964 0.7218 0.1097 0.4830 0.7725
Yancheng 0.0925 0.5888 0.7778 0.1029 0.5196 0.7294 0.1016 0.5093 0.7324
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performance by adjusting the length of the training data under different 
proportions of modeling data. In Fig. 12, we analyze the trends in water 
level estimates at test set from both the XGBoost-based fusion model and 
the model without CYGNSS fusion as the training period extends 
(varying time lengths). Fig. 13 presents the corresponding overall test 
accuracy metrics, including RMSE, NSE, and the correlation coefficient 
R.

It can be observed that as the training data extends from 3 months to 
27 months, the model exhibits noticeable stage-wise changes in esti-
mation performance. During the short-term data phase (3–12 months), 
the model finds it challenging to capture comprehensive water level 
variation patterns, such as seasonal and interannual changes, due to 

insufficient data. This results in high and fluctuating RMSE, with all 
three evaluation metrics performing poorly. As the modeling progresses 
to the mid-term data phase (12–21 months), the model’s performance 
improves significantly with the data covering a complete hydrological 
cycle. RMSE gradually decreases and stabilizes, indicating that the 
model is increasingly capable of capturing the main patterns of water 
level changes. For long-term data (21–27 months), the model perfor-
mance improvements enter a plateau, with the RMSE essentially 
converging, and further increases in data offering limited enhancements 
in test accuracy.

The overall performance trends of both the fused and without fusion 
models are largely consistent. During the initial stages, when data is 

Fig. 9. Distribution of validation accuracy and correlation coefficients, (a) Root mean square error, (b) Nash–Sutcliffe efficiency and (c) Pearson correla-
tion coefficient.
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limited, the estimation capabilities of both models are constrained, but 
as data accumulates, their generalization performance improves. Once 
the modeling duration reaches 15 months, the performance of both 
models stabilizes, suggesting that the data volume is adequate to support 
effective learning of the underlying patterns. Notably, the XGBoost- 
based fusion model consistently outperforms the model without 
CYGNSS across all modeling periods, with this advantage being partic-
ularly pronounced during periods of limited data (3–12 months). This 
finding indicates that CYGNSS data provides crucial supplementary 
hydrological information during the early stages of modeling, effectively 
enhancing the model’s ability to detect water level variation patterns 
and mitigating the decline in model performance caused by insufficient 
training samples.

4.5. Daily water level estimation of Sheyang River using the proposed 
scheme

The daily river water level estimation model combining the XGBoost 
algorithm with fused Sentinel-1 imagery and CYGNSS data exhibited 
strong performance and stability across various datasets, demonstrating 
its reliability under different geographical and climatic conditions. The 
estimation results indicated high accuracy and practicality. Therefore, 
we applied this model to a specific case study, the Sheyang River, to 
further test its effectiveness in diverse scenarios. This case study aimed 
to validate the model’s estimation accuracy and offer valuable insights 
and data support for future large-scale applications. Detailed monitoring 
results for the Sheyang River from June 1st to July 31st are displayed in 
Fig. 14.

The Sheyang River is an important outlet channel in the Lixiahe re-
gion, serving as a key part of the water cycle between the land and sea. 
The river water flows from inland areas and ultimately discharges into 
the Yellow Sea. Analysis of slope maps and digital elevation model 
(DEM) maps indicated that the Sheyang River generally flows from west 
to east. In Fig. 14b - Fig. 14d, the water level estimation results showed 
that the water levels on the west side were higher than those on the east 
side, with a dense distribution of estimation points indicating the river’s 
flow direction. This indirectly confirmed the river’s flow direction, 
preliminarily verifying the objectivity and accuracy of the proposed data 
model.

Water level data from in situ measurements were recorded simulta-
neously at the upstream Sheyang Town station and the downstream 
Sheyang River station (see Fig. 14e). On June 1, 2023, the upstream 
station recorded a water level of 1.08 m, while the downstream station 
recorded 1.37 m. The data from these two hydrological stations incor-
rectly indicated that the river flows from east to west. However, the 
middle section of the Sheyang River contains several significant mean-
ders, creating complex hydrodynamic conditions. This complexity 
highlights the limitations of relying solely on data from a few specific 
points.

By June 13, the in situ water levels at the upstream and downstream 
stations were 0.87 m and 1.21 m, respectively. Although overall water 
levels had risen since June 1, the increase was consistent upstream and 
downstream, indicating stable flow within the observed river section 
during this period. The predicted water level showed minimal deviation 
from actual levels (within 0.01 m), demonstrating the model’s excellent 
performance under stable conditions. Compared to in situ monitoring, 
the high-resolution characteristics of the estimation model captured 
subtle water level fluctuations more precisely.

In mid-July 2023, the Lixiahe region experienced several days of 
heavy rainfall. By July 31, the measured upstream and downstream 
water levels of the Sheyang River were 1.24 m and 0.91 m, respectively. 
The significant increase upstream, combined with a decrease down-
stream, led to an unusual situation where the upstream level was sud-
denly higher than the downstream level. The estimated water levels on 
July 31 confirmed the in situ water level changes, further validating the 
precision and effectiveness of the proposed model.

It can be concluded that during the heavy rainfall event, rainwater 
accumulated upstream, as evidenced by the measured and estimated 
water level changes. The low-lying terrain in the western upstream area 
(“pot bottom” terrain) impeded the smooth flow of rainwater down-
stream, leading to water accumulation upstream. Therefore, enhancing 
drainage measures through artificial intervention in specific areas is 
crucial for preventing potential flood disasters. This case study confirms 
the importance of continuous and accurate monitoring of regional hy-
drological changes for flood prevention and demonstrates the capability 
of the proposed model to accurately capture water level changes over a 
wide spatial range, providing new means and methods for monitoring 
river stability.

Fig. 9. (continued).
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5. Discussion

5.1. Advantages and prospectives

This study successfully achieved high spatiotemporal resolution 
water level estimates by integrating CYGNSS data and Sentinel-1 im-
agery, significantly improving the accuracy and real-time performance 
of river water level monitoring. The high-frequency observation 

capability of CYGNSS makes it particularly suitable for capturing rapidly 
changing hydrological processes. The high spatial resolution of Sentinel- 
1 data provides detailed surface information, which helps to accurately 
identify water level changes and related geographic features. The 
effective integration of active and passive technologies not only ensures 
high spatial precision but also provides more frequent temporal data, 
thus offering crucial support for flood control and water resource 
management.

Fig. 10. Temporal variations comparison of water level estimation based on spatiotemporally independent station (fused with/without CYGNSS), (a) Test results for 
individual independent stations, (b) Aggregated results across all independent stations.

Y. Jia et al.                                                                                                                                                                                                                                       Remote Sensing of Environment 329 (2025) 114927 

15 



This study was based on the practical needs of flood and drought 
management. Through extensive collaboration and long-term in-depth 
exploration, we employed advanced scientific methods, reflecting a 
problem-driven research approach. Our proposed SAR and CYGNSS data 
fusion model could be applied to an integrated information platform for 
flood control and drought prevention, contributing significantly to 
water resource allocation, management, and scheduling. The model can 
be used to monitor water level changes in real-time, providing rapid and 
accurate data and predictions, optimizing resource allocation, 
enhancing early warning capabilities, and reducing disaster losses. This 
not only promotes the development of smart water management but also 
provides robust data support for water engineering construction and 
management, especially in regions with scarce hydrological data, 
showcasing substantial application potential.

Furthermore, the results of this study are also applicable to multiple 
fields such as agricultural monitoring, environmental monitoring, urban 
planning, and management. In the future, through technological inte-
gration and innovation, fusion models are expected to achieve broader 
interdisciplinary applications, such as precision agriculture decision 
support, wetland ecosystem protection, urban expansion monitoring, 
and disaster risk assessment, further driving intelligent and refined 
management in various sectors and enhancing society’s ability to effi-
ciently utilize natural resources and protect the environment.

5.2. Effects of suitable algorithms and methods selection

5.2.1. Alternative algorithms for river width extraction
River width is a hydromorphological metric defined as the lateral 

distance between the water edges on either side of the river surface, 
measured perpendicular to the river’s flow direction (Pavelsky and 
Smith, 2008). In this study, the RivWidthCloud algorithm (Yang et al., 
2020) was used to extract river widths. This algorithm, based on the GEE 
platform, creates a water mask and measures widths along the river 

centerline, enabling rapid and efficient river width calculation. Riv-
WidthCloud significantly enhances processing efficiency and reduces 
the need for manual intervention, making it particularly suitable for 
large watersheds with clearly defined river morphology. Its performance 
is especially notable when processing large-scale remote sensing data-
sets (Scherelis et al., 2023).

Despite its advantages in automated river width extraction, the al-
gorithm has certain limitations. First, its accuracy depends heavily on 
the precision of water mask generation. Low-resolution RS imagery or 
inaccuracies in water extraction methods can lead to missing or erro-
neous water masks, affecting the accuracy of river width calculations. 
Second, the algorithm was originally designed for relatively wide rivers, 
and its performance is suboptimal for narrow or morphologically com-
plex rivers (Yang et al., 2020). In such cases, it may fail to accurately 
identify river boundaries, resulting in inaccurate width measurements. 
Additionally, the presence of bridges and dams poses challenges. Real- 
world rivers often include artificial structures like bridges or dams, 
which can disrupt the water mask, causing abnormal segmentation and 
disconnected river skeletons, leading to inaccurate river width 
calculations.

Nevertheless, RivWidthCloud remains a mainstream solution for 
river width extraction due to its cost-effective, efficient, and automated 
characteristics. Future research could focus on optimizing the algorithm 
to improve its applicability and accuracy. For example, enhancing water 
mask extraction methods to minimize noise and errors or incorporating 
higher-resolution remote sensing data could significantly improve per-
formance in complex terrains. Additionally, integrating advanced image 
processing techniques may further enhance the accuracy of river width 
extraction (Verma et al., 2021; Li et al., 2024; Xue et al., 2022).

5.2.2. ML-based spatiotemporal fusion methods
Spatiotemporal fusion approaches aim to predict fine-resolution data 

by integrating both time series and neighborhood information from at 
least two satellite sensors. Current data modeling methods can generally 
be classified into mathematical and learning-based approaches. Math-
ematical methods are typically based on mathematical models and al-
gorithms, and they establish relationships between data by processing 
and analyzing small amounts of data. The advantage of these methods is 
their high computational efficiency, which allows for relatively accurate 
fusion results even with small datasets (Zhu et al., 2010; Emelyanova 
et al., 2013). However, when dealing with large datasets, it can lead to 
the construction of overly complex mathematical models, thereby 
limiting the flexibility of the model. Therefore, ML methods are pro-
posed to address this issue and leverage the strengths of data integration 
(Zhao et al., 2020; Wang et al., 2024).

ML methods are entirely data-driven techniques that can automati-
cally uncover complex relationships between different data sources by 
learning patterns and features from large datasets. When sufficient data 

Table 5 
Comparative evaluation of test accuracy for data fusion with/without CYGNSS.

Fusion with CYGNSS Without CYGNSS

RMSE 
(m)

NSE R RMSE 
(m)

NSE R

All Stations 0.2026 0.8589 0.9274 0.4799 0.7178 0.8488
Banjing 0.1001 0.7549 0.8830 0.1264 0.1536 0.4198
Baoying 0.1194 0.8732 0.9360 0.1741 0.7511 0.8736
Dongtai 0.1026 0.6851 0.8856 0.0873 0.2490 0.5204
Doulong 

Port
0.0820 0.6157 0.8085 0.0881 0.3906 0.6582

Jianhu 0.0808 0.6209 0.8203 0.0518 0.4819 0.7202
Jinghe 0.1101 0.9052 0.9526 0.3218 0.3166 0.6683
Yiling 0.1565 0.6302 0.8421 0.1231 0.4105 0.7750
Zhongbao 0.0833 0.7364 0.9111 0.1176 0.1433 0.4363

Fig. 11. Scatterplot analysis of water level estimation based on spatiotemporally independent stations, (a) fused with CYGNSS, (b) without CYGNSS.
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is available, ML can significantly enhance model accuracy and gener-
alization ability, making it especially suitable for complex and nonlinear 
tasks. This study employed several popular ML algorithms to build 
fusion and water level estimation models. These algorithms have 
different architectures, resulting in variations in accuracy and effi-
ciency. Tree-based ensemble algorithms generally outperform other ML 
algorithms, but their performance varies depending on data character-
istics and parameter tuning (Kang et al., 2021; Xiao et al., 2017; Papa-
dopoulos et al., 2018).

Unlike traditional ML methods, deep learning (DL), an important 
branch of ML, primarily uses multi-layer neural networks (such as 
convolutional neural networks and recurrent neural networks) for data 
learning and processing (LeCun et al., 2015). DL automatically extracts 
features from data without the need for manual feature selection, 
making it particularly effective in handling high-dimensional, 

nonlinear, and complex data (such as image and time series data). As 
a result, DL often exhibits stronger learning capabilities and higher 
prediction accuracy. However, the high computational demands and 
longer training times of ML may impact real-time applications and 
processing efficiency (Philippus et al., 2024). Future research could 
explore diverse AI modeling approaches, focusing on the dynamic fea-
tures of time series data, and apply DL algorithms, like long short-term 
memory (LSTM) networks to capture temporal dependencies (Shi et al., 
2015), to more accurately characterize hydrological processes and 
improve model performance while ensuring processing efficiency.

5.3. Limitation of CYGNSS data

Due to the continual movement of the eight CYGNSS satellites and 
the thirty-two Global Positioning System (GPS) satellites that act as the 

Fig. 12. Temporal variations comparison of water level predictions at spatiotemporally independent stations using models fused with and without CYGNSS data 
under different training data lengths (3, 15, and 27 months).
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transmitters, the point of reflection on the Earth’s surface is constantly 
changing, which means that the surface is sampled pseudo-randomly. 
The CYGNSS satellites are each able to record up to four independent 
reflections at one time, and the mean repeat time is ~4 h (Ruf et al., 
2012). Although the eight CYGNSS satellites sample both the ocean and 
land surface at all hours of the day, the quasi-randomly distributed na-
ture of CYGNSS sampling, as well as the limited number of satellites (or 

insufficient receive channels on each instrument), leads to data gaps in 
daily observations (Chew and Small, 2020; Chew et al., 2023; Lei et al., 
2022; Nguyen et al., 2025; Zeiger et al., 2022; Downs et al., 2023; Ma 
et al., 2024; Bu and Yu, 2022; Yueh et al., 2022; Zhang et al., 2022; Wei 
et al., 2024).

In contrast to typical remote sensing techniques that have repeatable 
swaths and the same local acquisition time, CYGNSS observables 
generally need to be transformed (using a time window) daily or 
monthly in consistent with other remote sensing and modeling data 
(Chew et al., 2023; Lei et al., 2022; Zeiger et al., 2022; Ma et al., 2024; 
Yueh et al., 2022; Zhang et al., 2022; Llamas et al., 2020). The filling of 
data gaps in this process led to enhanced data completeness and 
improved model robustness. This study employs a commonly used three- 
day sliding window and the Kriging interpolation method to address this 
well-known problem, this process may introduce some acceptable errors 
into the reflectivity used in this study and all other related works (Chew 
and Small, 2020; Lei et al., 2022; Zeiger et al., 2022; Ma et al., 2024; 
Yueh et al., 2022; Zhang et al., 2022; Wei et al., 2024; Chew and Small, 
2018; Kim and Lakshmi, 2018; Al-Khaldi et al., 2019; Clarizia et al., 
2019; Calabia et al., 2020; Yan et al., 2020; Jia et al., 2021).

Limited by the working mechanisms of CYGNSS satellites, their 
observational strategy focuses on tropical and subtropical regions (38◦N 
to 38◦S) where cyclonic activity is prevalent, making full global spatial 
coverage currently unattainable. Nevertheless, the methods and results 
we propose perform exceptionally well within the covered region, 
holding significant scientific and practical value, while also providing 
important insights for future improvements. In the future, increasing the 
number of GNSS-R satellites, developing GNSS-R receivers capable of 
recording more than four reflections simultaneously (technologies 
already in development), and expanding data sampling coverage (e.g., 
missions such as HydroGNSS (Unwin et al., 2021) and CYGNSS- 
FOLLOWON (Norris et al., 2018; Moller et al., 2021)) will be key to 
addressing this issue. With greater data availability, the applicability of 
this method will be further enhanced. We look forward to further vali-
dating and refining these methods in future studies to address broader 
geographical ranges and application scenarios.

Fig. 13. Accuracy variation of water level predictions at independent valida-
tion stations under different proportions of training data. (a) Root mean square 
error, (b) Nash–Sutcliffe efficiency and (c) Pearson correlation coefficient.

Fig. 14. Water levels estimation of Sheyang River and precipitation distribution in the Lixiahe region, (a) Locations of upstream and downstream hydrological 
stations, (b-d) Predicted continuous water level distribution on June 1, June 13, and July 31, (e) Upstream and downstream temporal variations in water level 
estimation compared to in situ measurements.
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6. Conclusion

In this study, we developed an innovative model for estimating daily 
water levels using fused data and ML methods. This model leverages the 
benefits of CYGNSS and Sentinel-1 SAR data, combined with the 
XGBoost algorithm, using the fused high-resolution temporal-spatial 
inputs such as CYGNSS-derived reflectivity, Sentinel-1 SAR-derived 
backscattering coefficient (VV and VH), and river width. Comprehensive 
experiments were conducted using various ML algorithms and feature 
optimization to validate the proposed method’s effectiveness. The 
effectiveness of the model was evaluated based on over 15 uniformly 
distributed gauge stations in the Lixiahe region. The 10-fold CV method 
was employed, with additional validation conducted across different 
spatial and temporal scales to ensure independence between the training 
and test datasets.

Water level estimation was improved significantly after data fusion, 
as evidenced by enhanced RMSE, Nash-Sutcliffe efficiency, and Pearson 
correlation coefficient. The fused data with the XGBoost algorithm 
provided the highest estimation accuracy, achieving the lowest RMSE 
(0.168 m), the highest NSE value (0.876) and the highest R value 
(0.936). Specifically, integrating Sentinel-1 imagery and CYGNSS data 
significantly enhanced river water level estimation and showed a 
notable 50.74 % increase in validation accuracy. To further evaluate the 
model’s generalizability, we conducted testing on eight spatially and 
temporally independent hydrological stations. Results showed that the 
fusion method reduced RMSE from 0.479 to 0.202 and increased R from 
0.848 to 0.927. These findings confirm that this data fusion approach 
enhanced the model’s temporal resolution and estimation accuracy, 
demonstrating substantial improvements regardless of the specific al-
gorithm or data amount used.

The complementarity of CYGNSS and Sentinel-1 SAR data allowed 
the model to utilize the benefits derived from high temporal and spatial 
data variation characteristics, offsetting the limitations of single data 
sources. Importantly, our proposed method, using backscattering co-
efficients as the main feature variable, effectively captured and reflected 
river water level fluctuations through Sentinel-1 SAR and CYGNSS 
fusion data. Our fusion method demonstrates consistent effectiveness, 
which stems from its inherent mechanism rather than dependence on 
data density. This approach is not constrained by river morphology and 
is particularly suitable for artificial rivers with approximately vertical 
profiles, enabling accurate monitoring of changes in river water levels. 
Once validated, this methodology will eliminate the need for existing in 
situ measurement data, allowing for dynamic monitoring of river water 
levels with high spatiotemporal resolution.
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