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ABSTRACT
The estimation of soil moisture (SM) utilizing the data from the Cyclone Global Navigation Satellite 
System (CYGNSS) has attracted significant interest in recent times. However, CYGNSS’ inherent 
capability of variable resolution has not been fully exploited, often resulting in a loss of detailed 
spatial information in the raw data. In this paper, a novel downscaling scheme tailored for CYGNSS 
data is introduced to yield a “self-adjusting adaptive resolution” SM product, which dynamically 
varies the resolution of SM estimates based on the available CYGNSS data resolution at different 
geographic locations. Initially, a direct quantitative relationship is established between the key 
CYGNSS parameters reflecting SM variations and the reference SM from the Soil Moisture Active 
Passive (SMAP) mission with a coarse resolution of 36 km. This model is then applied to CYGNSS 
observations with resolutions down to 3 km to generate high-resolution, self-adjusting SM esti
mates that better conserve the fine-scale information linked to the original CYGNSS data. Extensive 
experimental results with error ratio diagrams show that the advanced geographically weighted 
regression (GWR)-based SM estimation method outperforms other competing estimation models 
and better retains localized spatial relationships and patterns. This study underscores the potential 
of CYGNSS as a novel and robust independent data source capable of delivering fine-resolution SM 
estimations by harnessing its unique multiresolution observational capability.
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1. Introduction

Soil moisture (SM) is one of the most important para
meters for maintaining ecosystem health, agricultural 
productivity, and water resources. The traditional 
ground-based SM monitoring method has difficulty 
obtaining the large-scale spatial distribution of SM. 
The evolution of modern satellite remote sensing 
technology has provided technical support for the 
monitoring of SM. Such technology is widely used in 
the observation and estimation of SM, with the 
advantages of continuity, periodicity, and full cover
age. At present, most SM products are mainly 
acquired from passive microwave platforms (Finn 
et al. 2011; Shibata Imaoka and Koike 2003; X. Wang 
et al. 2016; Djamai et al. 2016), such as that of the Soil 
Moisture Active Passive (SMAP) mission (Colliander 
et al. 2017). However, the spatial resolution of these 
passive microwave SM products ranges from thou
sands of meters to tens of kilometers, thus greatly 
limiting their application (Jiang and Weng 2017; 

Mardan and Ahmadi 2021; Z. Wang et al. 2021). 
Therefore, obtaining high-spatial-resolution SM has 
become particularly important.

Recently, there has been growing interest in using 
spaceborne global navigation satellite system reflec
tometry (GNSS-R) data for monitoring SM at high 
temporal resolutions (Jin 2012; Jin Feng and Gleason  
2011). In 2016, NASA launched and began successfully 
operating the CYGNSS constellation, which has pro
vided a significant amount of data for GNSS-R SM 
research (Padhee et al. 2017; Rodriguez-Alvarez et al.  
2019; Zribi et al. 2019). C. C. Chew and Small (2018;  
2020) reported a simple linear model to construct the 
relationship between CYGNSS surface reflectivity and 
SM. Based on this linear model, the CYGNSS official L3 
SM product was released with an unbiased root-mean 
-square error (ubRMSE) of 0.049 cm3/cm3, but the 
correlation coefficient (R) between this product and 
SMAP SM was only 0.4. Carreno-Luengo et al. (2019) 
reported that the type of surface cover has 
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a considerable impact on CYGNSS SM estimation. 
Clarizia et al. (2019) introduced vegetation and sur
face roughness factors into the linear model of 
CYGNSS surface reflectivity and surface SM to 
improve the estimation accuracy, with a root-mean- 
square error (RMSE) of 0.07 cm3/cm3. Yan et al. (2020) 
used an approach to calculate the observation vari
ables of CYGNSS, resolve surface roughness effects, 
and reduced dependence on auxiliary data for the 
retrieval of SM at a resolution of 36 km. Wan et al. 
(2020) reported a “two-step” method to improve 
retrieval accuracy by correcting for systematic errors 
and vegetation attenuation. In contrast, Kim and 
Venkat (2018) utilized relative signal-to-noise ratio 
variables to retrieve SM, and Al-Khaldi et al. (2019) 
established a model based on the incoherent scatter
ing component of the CYGNSS-reflected signal to 
estimate SM changes. Furthermore, Calabia et al. 
(2020) used traditional bistatic radar equations and 
relevant theory to obtain regional SM estimates.

Over the years, machine learning (ML) has emerged 
as a promising approach for CYGNSS-based SM estima
tion, achieving remarkable success. In contrast to con
ventional methods, ML approaches can automatically 
learn discriminative features and fulfill the need for 
improved accuracy and efficiency. The geosystem 
research group at Mississippi State University has 
been actively working on developing ML-based SM 
estimation models based on CYGNSS reflectivity and 
abundant auxiliary data. Their research has been pub
lished in several papers, including those of (Senyurk 
et al. 2020a; Nabi et al. 2022; Eroglu et al. 2019; Lei et al.  
2022). The results have demonstrated that the derived 
CYGNSS SM estimates serve as a valuable supplement 
to global datasets at a high spatial resolution of 9 km. 
Yang et al. (2020) used a neural network for SM mod
eling and compared the estimation accuracy of 
CYGNSS and TDS-1 data in China. Yan et al. (2022) 
applied regression trees to consider the effect of cli
mate type on SM and compared the results with SM 
data from automatic observation stations in China. To 
eliminate spatial heterogeneity among data, Jia et al. 
(2021) employed the extreme gradient boosting 
(XGBoost) algorithm to model CYGNSS data separately 
for different land cover types. Tang and Yan (2022) 
evaluated the impact of different data quality control 
strategies on the retrieval results based on support 
vector regression. Lei et al. (2022) generated 9 km 
daily SM estimates by deriving a range of land type 

characteristics. The accuracy of SM estimation is influ
enced by several factors, such as the period, spatial 
coverage, use of ancillary data, adopted algorithms, 
and spatial resolution.

CYGNSS offers a significant advantage over SMAP 
and other satellites because it provides surface mea
surements at a higher temporal resolution C. C. Chew 
and Small (2018; 2020). The spatial resolution of 
CYGNSS data changes depending on the proportions 
of the incoherent and coherent components when 
traveling from one region to another, which means 
that the spatial resolution is not fixed (Eroglu et al.  
2019). Typically, CYGNSS observations are trans
formed into equal-area scalable Earth (EASE) grid 
cells with a constant resolution, and daily SM esti
mates are obtained by averaging these grid cells 
(Nabi et al. 2022). Therefore, this approach fails to 
leverage the variable-resolution feature of CYGNSS, 
and it also results in the loss of detailed information 
from individual CYGNSS observations due to spatial 
gridding and temporal averaging.

To address this issue, we develop a scheme that 
incorporates the idea of downscaling to allow for the 
self-setting of an arbitrary resolution. Furthermore, the 
geographically weighted regression (GWR) algorithm is 
modified and enhanced to adapt to the imbalanced 
distribution of CYGNSS reflection points. The down
scaled SM products are independently validated 
based on a comparison with data from the nearest 
in situ SM stations at a fine resolution (3 km for calcula
tion convenience). Hence, multiscale accurate SM esti
mation results are obtained at resolutions of 3 km, 9  
km, and 36 km. This study fully explores the variable- 
resolution feature of CYGNSS data, with SM estimates 
obtained for each individual CYGNSS observation. By 
leveraging the inherent properties of CYGNSS data, the 
proposed algorithm displays the potential for provid
ing high-resolution SM estimates at subdaily intervals.

The primary objectives of this work are as follows:

(1) A spatially adaptive scheme that can fully 
exploit the variable-spatial-resolution features 
of CYGNSS to achieve the self-setting of arbi
trary resolution products is proposed.

(2) The concept of spatial heterogeneity is applied 
in CYGNSS-based SM estimation using an 
improved GWR, which effectively addresses 
the imbalanced distribution of reflection points 
and improves the estimation accuracy.
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(3) Extensive and multiscale data experiments are 
carried out, and different competitive ML meth
ods that consider distance impacts are com
pared to demonstrate the effectiveness of the 
proposed GWR-based method.

2. Dataset and data processing

2.1. Main input variables from the CYGNSS dataset

The CYGNSS constellation is composed of eight small 
satellites that were launched by the National Aeronautics 
and Space Administration (NASA) into a 580 km, 35° 
inclined equatorial orbit in December 2016. The 
CYGNSS mission provides quasiglobal coverage within 
±38° in latitude (Figure 1) (C. C. Chew and Small 2018), 
with a median revisit period of only 3 hours (Ruf et al.  
2016). Each satellite with a GNSS-R receiver is qualified to 
track and process four L-band GPS signals simulta
neously. Considering this point, CYGNSS works as 
a multistatic radar (a system in which signals from multi
ple far-distance transmitters to the receiver can be 
detected simultaneously). In this way, 32 distinct obser
vations of the Earth’s surface, forming the so-called delay 
Doppler map (DDM), can be obtained at a certain point 
in time based on all eight satellites. The applied CYGNSS 
data (Level 1 version 3.0), including DDMs, bistatic radar 

cross-sections (BRCSs) (Figure 1), and other geographic 
measurement information, can be obtained freely online 
(Jia et al. 2021). Data spanning the year 2018 and cover
ing the entire region observed by CYGNSS were ana
lyzed. The spatial resolution of this mission varies from 
0.5 km to 25 km for specular (Fresnel zone size) and 
diffuse reflections (glistening zone size), respectively 
(Eroglu et al. 2019), which is a significant feature of 
CYGNSS data that is utilized in this study.

The resolution of a single CYGNSS measurement is 
influenced by the incidence angle as well as the 
correlation between the diffuse scattering and spec
ular reflection of the signal. The resolution changes 
with variations in the surface conditions and inci
dence angles. It is hypothesized that the signal 
received from the ground surface is mainly domi
nated by the coherent component, eventually 
reduced by roughness, and attenuated by vegeta
tion. The CYGNSS BRCS σ can be used to obtain the 
reflectivity Γlr θð Þat a local incidence angle θ, which 
has been demonstrated to be optimal for SM estima
tion (Eroglu et al. 2019): 

Γlr θð Þ ¼ σ RtþRrð Þ
2

4� Rt Rrð Þ
2 (1) 

where σ is the bistatic radar cross section in m2 

and the subscript lr denotes the left-hand circularly 

Figure 1. CYGNSS BRCSs of all eight satellites from 2018.1.1–2018.1.3.
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polarized (LHCP) downward-looking GNSS-R 
antenna. The symbols Rt and Rrare the distances 
from the transmitter and receiver to the SP, 
respectively.

The reflectivity obtained after surface reflection is 
used to indicate changes in SM, but it is attenuated by 
vegetation and reduced by roughness. Here, attenua
tion by vegetation cover is adjusted based on land 
types (LTs), and the surface roughness is resolved 
based on the CYGNSS trailing edge slope (TES) in SM 
estimation (Eroglu et al. 2019; Jia et al. 2022; Senyurek 
et al. 2020b).

2.2. SMAP dataset

NASA launched the SMAP satellite in 2015, primarily for 
the purpose of monitoring SM and freeze – thaw cycles 
across the Earth using a radiometer (L-band) that pene
trates up to 5 cm below the surface. The data and 
processed products are released through the official 
website and can be downloaded freely (Jia et al. 2021). 
In this study, the SMAP radiometer (Level 3) SM pro
duct, which provides SM data at resolutions of 9 km 
and 36 km in EASE grid form, was utilized. The land 
types (LTs) provided by the SMAP SM product were 
utilized as supplementary variables for both model 
training and prediction (Jia et al. 2022).

LTs refer to the different classifications or cate
gories of land surfaces based on their characteristics 
and usage. The LT information was relatively stable 
and obtained from various data sources, making it 
more reliable than other ancillary data types that 
were adopted in previous studies (Eroglu et al.  
2019). The IGBP (International Geosphere-Biosphere 
Programme) classifies land into 17 distinct types. An 
overview of the whole study area and the land classi
fication process that is performed based on the most 
dominant LT with more than 50% coverage within 
each grid is provided in Figure 2.

2.3. Independent in situ data

Independent validation was performed using 
ground-truth data obtained at China’s ground- 
based SM observation stations (Yan et al. 2022). 
The distribution of stations used in this study and 
their corresponding coverage areas are shown in 
Figure 2. Each observation station provides SM 
measurements at 10-cm intervals, starting from 
the soil surface and extending to a depth of 100  
cm, on an hourly basis. Taking the penetration 
depth of the L-band into consideration, only top
soil moisture measurements (0 ~ 10 cm) were 
selected (Ma et al. 2023; Yan et al. 2022). The 

Figure 2. Overview of the study area and IGBP LT provided by SMAP in 2018.
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daily SM data also include geographic location 
information for each sampling site, such as latitude 
(La) and longitude (Lo).

2.4. Data quality control

The employed input data were filtered using several 
criteria as follows. (1) Only CYGNSS reflectivity values 
that were positive and below 0.1 were retained (Yan 
et al. 2022). (2) The data obtained at elevation angles 
smaller than 30° were excluded to effectively remove 
very weak signals (which may have resulted in the inclu
sion of noisy DDMs and errors in the SM estimations) 
from the sidelobe of the circular polarization antenna 
(Al-Khaldi et al. 2019; Yang, et al. 2020). (3) The antenna 
gain must be positive to ensure that only high-quality 
data obtained from left-hand circularly polarized (LHCP) 
signals are used (Yang, et al. 2020; C. Chew et al. 2016; 
Eroglu et al. 2019; Senyurek et al. 2020a). (4) 
Observations with DDM peak values in the range of 5 
to 11 delay bins were retained from the dataset to avoid 
the inclusion of high-altitude measurements (Senyurek 
et al. 2020b; Rodriguez-Alvarez et al. 2019). (5) The SMAP 
“retrieval recommended” quality flag was used to filter 
the SMAP data (Senyurek et al. 2020a). Table 1 shows the 
total numbers of one-week CYGNSS samples remaining 
at the 36 km, 9 km, and 3 km resolutions after the appli
cation of several quality control steps.

3. Theory and methods

3.1. Overall flowchart

In this study, we introduce a novel approach for utiliz
ing the GWR algorithm to derive a CYGNSS-based 

high-resolution SM product. The proposed framework 
includes three stages: a preprocessing stage, an SM 
modeling stage, and a validation stage (Figure 3).

3.1.1. Data preprocessing stage
The primary data sources utilized for estimating SM 
are the CYGNSS and SMAP datasets. These two data
sets are preprocessed with a quality control proce
dure to extract the useful observations and 
reference SM.

3.1.2. SM modeling stage
In this stage, the objective is to establish an SM pre
diction model between the features extracted from 
the CYGNSS data and the reference SMAP SM without 
using other ancillary data. The enhanced GWR model 
is applied to establish the model relationship, which is 
effective for detecting the heterogeneity of spatial 
data and achieves high accuracy. The SM prediction 
model is built, and the overall performance matrix of 
different modeling methods is compared to that of 
SMAP SM using the 10-fold cross-validation (CV) 
method.

Cross-validation is a critical evaluation technique in 
ML and statistical modeling that aims to prevent over
fitting and improve model generalization (Eroglu et al.  
2019; Jia et al. 2021). In 10-fold cross-validation, the 
dataset is divided into 10 equal parts or “folds.” An 
iterative procedure is then conducted 10 times. The 
model is trained based on nine training folds and 
evaluated based on the remaining validation fold. 
This process is repeated for each distinct validation 
fold, ensuring that every example in the dataset is 
used for validation exactly once. The 10-fold CV pro
cess is commonly used to verify the accuracy and 
generalizability of models, including in cases with 
unseen data.

3.1.3. SM validation stage
After the SM modeling stage, the generated CYGNSS- 
based multiscale and SMAP SM products are obtained 
and validated. First, the input CYGNSS observations 
are gridded to 9 km and 3 km to apply the established 
SM prediction model. Then, the outputs of the 3 km 
and 9 km fine-scale SM products are compared with 
the SMAP 9 km and 36 km products for evaluation. 
Moreover, an additional validation process based on 
an independent data source, namely, data from an 
in situ SM network, is added. The outputs of the 9 km 

Table 1. The numbers of one-week samples used for CYGNSS SM 
estimation corresponding to different land types (LTs).

Land type (IGBP)
CYGNSSS 

(3 km)
CYGNSSS 

(9 km)
CYGNSSS 
(36 km)

All LTs 647937 422364 89975
Evergreen Needleleaf Forest 55 33 5
Deciduous Broadleaf Forest 40 26 8
Mixed Forests 135 88 17
Closed Shrublands 963 644 132
Open Shrublands 180103 115465 22716
Woody Savannas 46619 31822 8187
Savannas 58132 40158 10394
Grasslands 70529 45642 8958
Permanent Wetlands 132 87 29
Croplands 76905 48625 9495
Cropland/Natural Vegetation 

Mosaic
21417 14795 4018

Barren or Sparsely Vegetated 188889 122307 26015
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and 3 km fine-scale SM products are projected onto 
the same grid as the ground-truth SM data. If multiple 
sites are present in one grid, the average value of 
these sites represents the true observed value for 
that grid. The overall performance of this method is 
assessed based on several evaluation metrics.

3.2. Constructing an enhanced GWR algorithm with 
a variable data window

Remote sensing data often exhibit spatial heteroge
neity, meaning that the data can vary significantly in 
space. A general linear regression model may not 
adequately capture complex spatial patterns and 
may not fully reflect the true characteristics of remote 
spatial data. In this study, the GWR model was 
adopted, as it is simple and effective and can learn 

local features as weighted references. Different spatial 
relationships and regression coefficients may be con
sidered, thus enabling the description of the hetero
geneity of spatial data. By establishing a local 
regression model for each point in the spatial range, 
it is possible to investigate the spatial variations and 
associated driving factors at a specific scale. The GWR 
calculation can be expressed as follows (Brunsdon 
Fotheringham and Charlton 1998; Fotheringham 
Brunsdon and Charlton 2002): 

yi ¼ β0 mi; nið Þ þ
Pk

j¼1
βj mi; nið Þxij þ εi (2) 

where yi is the dependent variable at the ith observa
tion, xij is the jth explanatory variable for each point 
iði ¼ 1, 2, . . . , k), and k is the number of available 
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Figure 3. The flowchart of the preprocessing, SM modeling, and validation stages of the proposed model.
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ancillary variables. The symbols miandniare the pro
jected spatial coordinates. The intercept value is 
denoted by β0 mi; nið Þ, and βj mi; nið Þ represents the 
regression coefficient, which reflects the effect of the 
jth explanatory variable xij on dependent variable yi. 
Additionally, εi is the error associated with the ith 
observation.

The symbol βj mi; nið Þ can be evaluated using the 
local weighted least squares method, as shown in the 
following equation (Fotheringham, Brunsdon, and 
Charlton 2002; Huang Wu and Barrv 2010): 

β mi; nið Þ ¼ XT W mi; nið ÞX
� �� 1XT W mi; nið ÞY (3) 

Here, X is the matrix of explanatory variables, and Y is 
the dependent variable vector. 
W mi; nið Þ ¼ diag wi1;wi2; . . . ;win

� �
represents a spatial 

weight matrix, with the diagonal element 
wij 1 � j � Nð Þ indicating the weight assigned to 
point j that is adjacent to point i, such that data points 
closer to point i are assigned higher weights than 
those located farther away from point i (Huang Wu 
and Barrv 2010). Popularly used weighting functions 
include the Gaussian, exponential, and tricube kernel 
functions (Chen et al. 2021).

The bandwidth determines which nearby observa
tions are considered when calibrating coefficients for 
a local point. Changing the spatial kernel function or 
bandwidth may change the coefficient estimates (Cho 
et al. 2009). Most bandwidth is fixed, especially in 
cases with homogeneous and dense distributions of 
selected grids or standard geographic scales. Here, it 
should be noted that the optimal bandwidth (e.g. the 
optimal number of neighbors) for our study was 
determined through an adaptive statistical optimiza
tion process. Since the surface reflection points of 
CYGNSS are randomly distributed, multiple points 
may exist within a single grid. Therefore, using 
a fixed window size to select the training data is not 
suitable for CYGNSS estimation. To account for the 
optimal neighbor points, the size of the neighbor 
window (N) and the number of reflection points in 
one grid (Nthreshold) can be calculated and optimized 
iteratively as follows: 

N ¼ M � Nthreshold (4) 

The symbol Nthreshold is a critical factor that provides 
the numbers of points in the local grid that is first 
used in calculations for each prediction. The neighbor 

window size N should be at least larger than the local 
grid scale Nthreshold and can be optimized iteratively by 
adjusting the hyperparameter M (generally above 1). 
This procedure often includes trial-and-error itera
tions and uses a specific technique, such as a brute 
force search or a random search (optimized to 3 in this 
study). The goal is to find the optimal parameters that 
minimize the error or maximize the accuracy of the 
model.

In this case, fewer neighbor points are selected in 
areas where data points in one grid are sparse, and 
more neighbors are selected in areas where data 
points in one grid are dense. This strategy can greatly 
mitigate the tendency to only consider the reflection 
points within the local grid and neglect the features of 
the surrounding grids.

Notably, the optimal window size N is a variable 
that is adjusted based on the density of sample data 
in each regression grid. It refers to the process of 
continuously refining and improving a solution 
through repeated iterations. This strategy, called the 
“spatially adaptive window” technique, addresses the 
issue of unevenly distributed reflection points in 
CYGNSS data, resulting in significant time savings 
and contributing to self-adjusting CYGNSS SM 
estimation.

3.3. Generating CYGNSS-based multiscale SM 
products

Until now, high-resolution SM estimation with 
CYGNSS data has been limited to simple gridding or 
averaging, and the resolution is fixed during the esti
mation process. However, CYGNSS data are asso
ciated with reflectivity changes due to variations 
over land. In this investigation, the proposed multi
scale scheme enables us to fully exploit the variable- 
spatial-resolution features of CYGNSS observations 
and simultaneously obtain multiscale high- 
resolution SM products.

The established functional relationship between 
CYGNSS observations and SM at a coarse resolution 
can be defined as follows: 

SMsmap;36km ¼ fgwr Rcygnss; TES; LT
� �

36km (5) 

where SMsmap;36km is the reference SMAP SM at 36 km. 
Rcygnss; TES; andLT denote the CYGNSS reflectivity, 
CYGNSS trailing edge slope and LT based on SMAP 
data. The enhanced GWR model was applied to 
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describe the spatially nonstationary relationships 
between variables. After the GWR-based SM predic
tion model was built, these functional relationships 
were preserved and transferred to obtain a high- 
resolution SM product (Figure 4). The self-adjusting 
adaptative resolution process for obtaining 
a downscaled SM product at a fine scale, such as 3  
km CYGNSS observations, is expressed as follows:

SMcygnss;adaptive ¼ fgwr Rcygnss; TES; LT
� �

adaptive (6) 

where SMcygnss;adaptive is the estimated SM with a self- 
adaptive resolution. Rcygnss; TES; andLT denote the cor
responding CYGNSS reflectivity, CYGNSS trailing edge 
slope and LT based on SMAP data, respectively.

The diagram of the proposed approach applied to 
generate the multiscale SM product (Figure 4) is pre
sented. First, we established a model between key SM 
and CYGNSS observations at a coarse resolution (36  
km). The model was designed to simulate the rela
tionship between the CYGNSS parameters and SM 
and was subsequently applied at a fine scale to pre
dict the corresponding SM. The CYGNSS data provide 
users with the opportunity to freely set the desired 

resolution for the grids of SM products as needed (e.g. 
36 km, 9 km or 3 km). A fine resolution of 3 km was 
adopted to investigate the capability of using CYGNSS 
observations to produce high-resolution SM products 
since most 3 km grid cells have only one CYGNSS 
reflection point and thus may represent the highest 
resolution of the CYGNSS system. Concurrently, the 
downscaled SM product was validated with an inde
pendent SM source (e.g. data from an in situ SM 
network).

As shown in detail (Figure 4), the proposed 
enhanced GWR model was built for each image coor
dinate in the SMAP and CYGNSS image sets (36 km 
spatial resolution). For each local GWR model, the 
SMAP and CYGNSS EASE grids for data from adjacent 
grid coordinates collected with an adaptive window 
were reserved as the observation pairs for the depen
dent and independent variables, respectively. The 
regression weight for each observation pair was 
then assigned according to the distance from the 
grid center coordinate of the selected grid pair to 
the center grid coordinate used in the current GWR 
model. A dedicated GWR model was created for each 
grid coordinate observed at the 36 km spatial 

Figure 4. Diagram of the generation of the proposed multiresolution SM product.
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resolution. Once the regression coefficients (36 km) 
were estimated, the predicted values (9 km or 3 km) 
were computed for each location in space by substi
tuting the nearest local estimates of the regression 
coefficients (36 km) into the regression equation. It 
was assumed that the regression coefficients for the 
grid cells at 36 kilometers and the closest 9 kilometers 
were the same.

The input explanatory variables were CYGNSS 
reflectivity, CYGNSS TES, and LT. The output of the 
model was the referenced SMAP SM. The regression 
equation in GWR was calibrated using known expla
natory variables and dependent variables, and new 
output estimates were obtained from fine-scale expla
natory variables. The regression coefficients were 
saved, and coarse CYGNSS images were replaced 
with the corresponding fine-scale images to train 
the model and acquire fine-scale SM estimates.

Overall, the unique feature of the variable resolu
tion of CYGNSS data was exploited to create a fine- 
resolution SM, and this approach is “self-adaptive” for 
modifying the SM scale as needed. Unlike traditional 
downscaling SM estimation, few parameters are 
needed in this approach. There is no external data 
source and only one ancillary source from SMAP. It 
circumvents the need for external high-resolution 
auxiliary data, which helps achieve multiscale 
CYGNSS-based SM estimation and supports a wealth 
of possibilities for implementing independent estima
tion based on CYGNSS satellites.

4. Results and analysis

4.1. Feature optimization

The input variables include reflectivity (R) derived 
from BRCS, TES (S) calculated from DDM, the inci
dence angle (I), and LT labels (T). To find the optimal 
subset of features that maximizes the performance of 
the model, the selection of input variable combina
tions was first analyzed by comparing the results of 
three variants: (1) R+I+S, (2) R+T+S, and (3) R+T+I+S. 
Table 2 reports the results of SM feature optimization 
tests based on global CYGNSS 36 km data over three 
days.

As mentioned before, an enhanced GWR model 
with a spatially adaptive window was adopted. The 
key variable window Nwas tested and optimized 
(M = 3). We observed that all the variants exhibited 

good performance in terms of the statistical metrics. 
The R+T+I+S combination exhibited superior perfor
mance in terms of both the ubRMSE and correlation 
coefficient compared to the other variants. These 
results confirmed that these variables all play positive 
roles in our model. Notably, for the deciduous broad
leaf forest and mixed forestland types, setting the 
appropriate incident angle can reduce the occurrence 
of scattering phenomena. Hence, the R+S+I+T variant 
was selected as the optimal variant for the following 
analyses.

4.2. Comparison with other advanced methods 
considering spatial location

In this study, we assessed the effectiveness of our 
suggested approach (advanced GWR) by comparing 
it with three other competing methods: the random 
forest (RF) algorithm, XGBoost, and an artificial neural 
network (ANN). These methods have demonstrated 
promising results in CYGNSS SM estimation (Eroglu 
et al. 2019; Jia et al. 2022; Senyurek et al. 2020b). To 
achieve a fair comparison with the proposed GWR 
model, which accounts for spatial variations in the 
relationships between variables, the ML and neural 
network models were applied with the same settings 
as the GWR model, including using latitude (La) and 
longitude (Lo) as the explanatory variables. Table 3 
reports the SM estimation accuracy of all competing 
models. Among these models, the advanced GWR 
model performed best, followed by RF and XGBoost. 
The SM estimation results were obtained using all 
competing methods based on 10-fold cross- 
validation (CV), and the results are reported for differ
ent LTs (Table 3).

Different methods display slightly different beha
viors for each LT, which is consistent with the find
ing that using different methods for each LT can aid 
in verifying the overall prediction results. Moreover, 
we observe that GWR achieves the lowest ubRMSE 
and highest correlation coefficient (R = 0.93) for 

Table 2. Feature optimization comparison (tricube kernel) for 
CYGNSS SM estimation at 36 km (three days).

GWR Variant
ubRMSE 

(cm3/cm3) R
RMSE 

(cm3/cm3)
abs (Bias) 
(cm3/cm3)

All  
types

R+T+I+S 0.0298 0.9423 0.0298 0.0002
R+T+S 0.0301 0.9413 0.0301 0.0001
R+I+S 0.0300 0.9416 0.0300 0.0002
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most LTs compared with the other methods. For 
illustration, the density plots (3 days) displaying the 
SM estimation performance are presented in 
Figure 5. The clear consistency and generalizability 
between the reference and estimated SM products 
indicate the effectiveness of the proposed GWR 
model.

Normally, SM is highly related to the location of 
an observation point, that is, its longitude and 

latitude. GWR provides the possibility to incorpo
rate these considerations into the model and can 
be used to calculate spatially varying relationships 
when predicting SM values, which could efficiently 
improve its accuracy. This could be the reason why 
compared to the other models, GWR yields 
a pronounced improvement in the results.

4.3. Evaluation of the proposed GWR-Based SM 
estimation of CYGNSS

After the feature selection and method comparison 
stages, the proposed GWR-based CYGNSS SM 
model with several weighting functions, namely, 
Gaussian, exponential, and tricube kernel functions, 
is investigated, and the results are reported in 
Table 4.

The tricube function (R = 0.93) performs significantly 
better than the other two competing kernel functions. 
The exponential (ubRMSE = 0.0369 cm3/cm3) and 
Gaussian kernels (ubRMSE = 0.0347 cm3/cm3) are effec
tive for LTs that rarely appear in small datasets (one 
week), such as evergreen needleleaf forests. Different 
functions display different performance levels for the 
same LT. Nevertheless, the tricube band was chosen as 
the optimal kernel band in this case. One should note 
that the tricube function displays stable performance 
even when the dataset is relatively small.

To investigate the estimation performance in terms 
of the obtained SM distribution, the SM values for 
each cell from SMAP and the GWR-based SM predic
tions were plotted, as shown in Figure 6. The values of 
RMSE, ubRMSE, and correlation distributions between 
the SMAP and CYGNSS-based estimates are also 
shown. The SM values based on CYGNSS agree with 
the reference SMAP SM. The findings reveal that the 
suggested GWR-based approach yields a mean 
ubRMSE of 0.0253 cm3/cm3, a mean RMSE of 0.0291  
cm3/cm3. The color legend was generated using 
a natural breaks model. The SM estimates are highly 
correlated with the SMAP SM, with a mean R of 0.843. 
Since the estimation result of GWR is based on the 
calculations at surrounding points, one of the features 
of these results is that the predicted SM values tend to 
display an obvious patch structure, as indicated by 
the red box in Figure 6(a,b); that is, in a small region, 
the SM value changes little, which is consistent with 
the “First Law of Geography:” everything is related to 
everything else, but closer things are more related to 

Table 3. SM estimation accuracy comparison of different meth
ods considering spatial location at 36 km (one year).

LT

Methods 
(R+S+I+T, La 

+Lo)

ubRMSE 
(cm3/ 
cm3) abs(R)

RMSE 
(cm3/ 
cm3)

abs 
(Bias) 
(cm3/ 
cm3)

All types GWR 0.0329 0.9311 0.0329 0.0003
RF 0.0413 0.8879 0.0414 0.0011
XGBoost 0.0428 0.8792 0.0428 0.0005
ANN 0.0635 0.7095 0.0635 0.0006

Evergreen 
Needleleaf 
Forest

GWR 0.0481 0.4974 0.0491 0.0100
RF 0.0399 0.9169 0.0399 0.0013
XGBoost 0.0405 0.9141 0.0407 0.0035
ANN 0.0596 0.8025 0.0596 0.0009

Deciduous 
Broadleaf 
Forest

GWR 0.2038 0.5272 0.2103 0.0516
RF 0.0395 0.8808 0.0395 0.0007
XGBoost 0.0423 0.8627 0.0423 0.0011
ANN 0.0596 0.7036 0.0600 0.0065

Mixed Forests GWR 0.0448 0.7898 0.0465 0.0127
RF 0.0442 0.8909 0.0444 0.0036
XGBoost 0.0517 0.8473 0.0518 0.0030
ANN 0.0699 0.6951 0.0708 0.0113

Closed 
Shrublands

GWR 0.0239 0.9088 0.0246 0.0060
RF 0.0405 0.8883 0.0405 0.0005
XGBoost 0.0411 0.8840 0.0411 0.0006
ANN 0.0607 0.7253 0.0607 0.0016

Open 
Shrublands

GWR 0.0244 0.8766 0.0244 0.0001
RF 0.0411 0.8902 0.0411 0.0008
XGBoost 0.0426 0.8811 0.0426 0.0003
ANN 0.0639 0.7086 0.0639 0.0002

Woody 
Savannas

GWR 0.0449 0.8816 0.0449 0.0017
RF 0.0417 0.8855 0.0417 0.0008
XGBoost 0.0430 0.8772 0.0430 0.0003
ANN 0.0635 0.7095 0.0635 0.0008

Savannas GWR 0.0390 0.9003 0.0390 0.0007
RF 0.0414 0.8864 0.0415 0.0010
XGBoost 0.0429 0.8772 0.0429 0.0004
ANN 0.0637 0.7056 0.0637 0.0009

Grasslands GWR 0.0357 0.9289 0.0357 0.0005
RF 0.0412 0.8900 0.0412 0.0009
XGBoost 0.0427 0.8811 0.0427 0.0003
ANN 0.0640 0.7083 0.0640 0.0000

Permanent 
Wetlands

GWR 0.1020 0.4992 0.1083 0.0365
RF 0.0438 0.8980 0.0439 0.0040
XGBoost 0.0448 0.8935 0.0452 0.0059
ANN 0.0771 0.6266 0.0783 0.0140

Croplands GWR 0.0428 0.9013 0.0428 0.0017
RF 0.0411 0.8897 0.0411 0.0014
XGBoost 0.0425 0.8810 0.0425 0.0008
ANN 0.0629 0.7154 0.0629 0.0007

Cropland/ 
Natural 
Vegetation 
Mosaic

GWR 0.0656 0.8130 0.0656 0.0010
RF 0.0415 0.8848 0.0416 0.0015
XGBoost 0.0429 0.8764 0.0429 0.0009
ANN 0.0635 0.7059 0.0636 0.0019

Barren or 
Sparsely 
Vegetated

GWR 0.0185 0.8889 0.0185 0.0000
RF 0.0416 0.8861 0.0416 0.0012
XGBoost 0.0429 0.8779 0.0429 0.0006
ANN 0.0633 0.7106 0.0633 0.0008
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each other (Tobler 1970). It also shows that in most 
regions, high SM values correspond to high values of 
both the RMSE and ubRMSE, which is consistent with 
previous studies (Clarizia et al. 2019; Jia et al. 2022). 
Additionally, the ubRMSE indicates improved perfor
mance compared to the RMSE since the ubRMSE is an 
unbiased version of the RMSE, as shown in Figure 6(d). 
The ubRMSE removes any systematic bias that may be 
present in the prediction or model, allowing for 
a fairer comparison of different models or prediction 
methods.

4.4. Multiresolution GWR-based SM products of 
CYGNSS

In the previous sections, the GWR-based SM esti
mation method and the performance comparison 

analysis were described in detail at a large scale 
(36 km). In this section, the multi-scale SM products 
(9 km and 3 km) obtained with the proposed GWR- 
based approach are explored. Additionally, 
a comparison of accuracy and spatial distributions 
is performed.

To visualize a complete multi-scale SM spatial dis
tribution at the global scale, the one-year downscaled 
SM results were averaged to obtain the daily spatial 
distribution of SM (Figure 7). Figure 7(a) shows the SM 
distributions of the SMAP product at 9 km (SMsmap9), 
the downscaled GWR-based CYGNSS SM product at 9  
km (SMgwr9), and the downscaled GWR-based CYGNSS 
SM product at 3 km (SMgwr3). The spatial distribution 
patterns of the downscaled SM products (9 km and 3  
km) are similar to those of the SMAP product and 
CYGNSS SM at 36 km, as indicated by a comparison 

(a) proposed GWR (b) RF considering distance

(c) XGBoost considering distance (d) ANN considering distance

Figure 5. Density plot of SM estimations using different methods considering spatial location: (a) Proposed advanced GWR method, 
(b) RF, (c) XGBoost, and (d) ANN.
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of Figures 7(b,c) and 6(a,b). In more densely vegetated 
areas, the SM content is relatively high, and the pre
diction accuracy is poor. This pattern is consistent 
with the phenomenon observed previously (Clarizia 
et al. 2019), which may be caused by an increase in 
noncoherent components due to the presence of 
dense vegetation. The outcomes reveal that the pro
posed scheme effectively transforms the spatial reso
lution of the CYGNSS-based SM product from 36 km 
to 3 km while maintaining the spatial distribution of 
SM, thus conforming to that of the SMAP SM data 
(e.g. SMsmap9).

Additionally, the estimation errors were evaluated 
and are shown in Figure 8 as the ratio of the ratio of 
SMgwr9 to SMsmap9, SMgwr3 to SMsmap9, and the ratio of 

SMgwr3 to SMgwr9. To further analyze the error distribu
tion, the ratio values were split into two cases: below 
and above one. Notably, the errors in the “above one” 
case are higher than those in the “below one” case. As 
indicated by the error ratio diagrams (Figure 8) of the 
multiresolution SM products, the 9 km and 3 km SM 
products agree well in most regions with the SMAP 9  
km product, and the regions with large errors are 
mainly in central Africa and other regions with abun
dant vegetation. This phenomenon once again 
reveals that surface vegetation is the major error 
source for SM estimation based on CYGNSS. Notably, 
the error ratio diagrams of the two downscaled pro
ducts (9 km/3 km) indicate that the error distribution 
is relatively uniform, which indicates that the pro
posed method provides good generalizability in 
terms of prediction performance in different regions, 
thus providing a new solution for future high- 
resolution SM estimation.

To further illustrate the SM estimation performance 
of the CYGNSS-based SM products with the reference 
SMAP data. The mean values of the error matrix for 
comparing different satellite-based SMs at different 
resolutions are displayed in Table 5. As mentioned 
before, for the convenience of demonstration, 
SMsmap9 and SMsmap36 refer to the SMAP SM at 9 km 
and 36 km, respectively.

Both downscaled products, SMgwr3 and SMgwr9, exhi
bit excellent performance for all metrics. Notably, they 
exhibit a higher degree of similarity with SMsmap36 than 
with SMsmap9. Compared to SMgwr3; SMgwr9 displays 
greater with SMsmap36. However, this advantage is less 
pronounced in the comparisons based on SMsmap9. The 
difference could be attributable to the distinct spatial 
patterns of the SMAP 9 km and 36 km products since 
the SMAP 36 km product was adopted to build the SM 
estimation model, while the SMAP 9 km product was 
used only for validation purposes. Therefore, compar
isons of these two downscaled products (SMgwr3 and 
SMgwr9) with the SMsmap36product yield better results in 
terms of the relevant metrics than comparisons with 
SMsmap9. Nevertheless, both downscaled products exhi
bit good results, with mean R values above 0.9 and 
mean ubRMSE values of approximately 0.03 cm3/cm3. 
This also further shows that the multiresolution SM 
products retain the numerical information of the SM 

Table 4. GWR-based SM estimation accuracy with different 
weighting functions at 36 km (one year).

LT

Methods, 
GWR (R+S+I 

+T)

ubRMSE 
(cm3/ 
cm3) abs(R)

RMSE 
(cm3/ 
cm3)

abs(Bias) 
(cm3/ 
cm3)

All types Tricube 0.0329 0.9311 0.0329 0.0003
Exponential 0.0563 0.8220 0.0563 0.0003
Gaussian 0.0627 0.7913 0.0627 0.0003

Evergreen 
Needleleaf 
Forest

Tricube 0.0481 0.4974 0.0491 0.0100
Exponential 0.0369 0.5882 0.0408 0.0175
Gaussian 0.0347 0.5864 0.0465 0.0310

Deciduous 
Broadleaf 
Forest

Tricube 0.2038 0.5272 0.2103 0.0516
Exponential 0.2052 0.5212 0.2108 0.0481
Gaussian 0.2052 0.5155 0.2109 0.0487

Mixed Forests Tricube 0.0448 0.7898 0.0465 0.0127
Exponential 0.0828 0.5846 0.0842 0.0157
Gaussian 0.0748 0.6184 0.0763 0.0149

Closed 
Shrublands

Tricube 0.0239 0.9088 0.0246 0.0060
Exponential 0.0223 0.9201 0.0246 0.0103
Gaussian 0.0235 0.9106 0.0259 0.0108

Open Shrublands Tricube 0.0244 0.8766 0.0244 0.0001
Exponential 0.0238 0.8805 0.0238 0.0003
Gaussian 0.0244 0.8737 0.0244 0.0003

Woody Savannas Tricube 0.0449 0.8816 0.0449 0.0017
Exponential 0.0669 0.7746 0.0669 0.0018
Gaussian 0.0657 0.7827 0.0657 0.0018

Savannas Tricube 0.0390 0.9003 0.0390 0.0007
Exponential 0.0481 0.8532 0.0481 0.0003
Gaussian 0.0840 0.6782 0.0840 0.0006

Grasslands Tricube 0.0357 0.9289 0.0357 0.0005
Exponential 0.0376 0.9204 0.0376 0.0009
Gaussian 0.0381 0.9181 0.0381 0.0007

Permanent 
Wetlands

Tricube 0.1020 0.4992 0.1083 0.0365
Exponential 0.1272 0.4724 0.1314 0.0329
Gaussian 0.1310 0.4545 0.1341 0.0288

Croplands Tricube 0.0428 0.9013 0.0428 0.0017
Exponential 0.0454 0.8880 0.0454 0.0017
Gaussian 0.0459 0.8855 0.0460 0.0015

Cropland/Natural 
Vegetation 
Mosaic

Tricube 0.0656 0.8130 0.0656 0.0010
Exponential 0.2198 0.3756 0.2198 0.0034
Gaussian 0.2361 0.3580 0.2361 0.0026

Barren or 
Sparsely 
Vegetated

Tricube 0.0185 0.8889 0.0185 0.0000
Exponential 0.0184 0.8886 0.0184 0.0001
Gaussian 0.0181 0.8923 0.0181 0.0000
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Figure 6. Annual mean values obtained with the natural breaks model (36 km): (a) SMAP SM, (b) GWR-based CYGNSS-predicted SM, (c) 
RMSE, (d) ubRMSE and (e) Correlation metrics.
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data well, thus demonstrating the numerical consis
tency of the SM downscaling method proposed in 
this paper.

4.5. Independent downscaling validation using 
in situ networks

In situ SM networks (Figure 9) were used to evalu
ate the performance of the proposed approach. 
First, we examined the overall performance of the 
observed and estimated SM during the entire per
iod. In the evaluation process, when there was only 
one site within a grid, the in situ value was directly 
used as the true observed value of the grid for 
evaluation along with the satellite products. When 
there were multiple sites within a grid, the average 
value of the multiple sites was used as the true 

observed value of the grid. Table 6 shows the error 
metrics obtained based on the entire dataset from 
over 1000 sites.

Table 6 shows the values of each metric based on 
the entire dataset from approximately 1000 sites 
throughout the year. A performance comparison of 
the GWR-based SM products (SMgwr9, SMgwr3) and 
SMAP SM 9 km product (SMsmap9) with respect to the 
in situ values is shown. The ubRMSE of the CYGNSS- 
based product SMgwr3 is 0.0525 cm3/cm3, which is 
slightly higher than the ubRMSE of the SMgwr9 

(0.0503 cm3/cm3).
Accordingly, using the correlation coefficient 

instead of the absolute error metrics may be more 
reasonable to evaluate the performance of satellite- 
based soil moisture products in such cases (Zeng et al.  
2015). In most regions, the CYGNSS-based SM 

Figure 7. Annual mean values of multiscale SM products: (a) SMAP SM 9 km, (b) Downscaled CYGNSS 9 km SM product, and (c) 
Downscaled CYGNSS 3 km SM product.
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products (SMgwr3 and SMgwr9) are comparable to the 
SMsmap9product. Both CYGNSS-based products effec
tively capture the temporal variation in ground soil 
moisture, with a reasonable correlation coefficient 
above 0.8, demonstrating the effectiveness of captur
ing the SM dynamics with the CYGNSS data. The 
accuracy of the CYGNSS-based SMgwr9 is slightly bet
ter than that for SMgwr3, which agrees with the results 
in Table 5.

Moreover, to assess the contributions of differ
ent LTs, scatter plots with error statistics were 
added to show the deviation between in situ mea
surements and satellite-based products at 9 km, as 

illustrated in Figure 10. When the scatter points are 
above the 1:1 line, the SM is overestimated com
pared to the in situ data, and vice versa for scatter 
points below the 1:1 line. The SMAP and CYGNSS 
products are generally very close to the 1:1 line 
but exhibit different behaviors for various land sur
face types.

For most LT classifications, the CYGNSS and SMAP 
products display similar performance. However, for the 
classification of mixed forests, CYGNSS displays poorer 
performance, with a higher ubRMSE of 0.0508 cm3/cm3, 
which is approximately 0.03 higher than that of SMAP. 
For the classification of croplands, CYGNSS SM estimates 

Figure 8. Annual mean values of error ratio diagram: (a) The ratio of SMgwr9 to SMsmap9, (b)The ratio of SMgwr3 to SMsmap9, and (c) The 
ratio of SMgwr3 toSMgwr9:.
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are slightly better than the SMAP product values, with 
an unRMSE of 0.0327 cm3/cm3. The reason for the for
mer phenomenon in mixed forests is likely due to 
unstable GPS signal reception, which may be caused 
by the obstruction and scattering of signals by dense 
trees and vegetation. The latter phenomenon in crop
lands could be attributed to CYGNSS having a higher 
temporal resolution, allowing for land use change due 
to cultivation activities to be accurately and quickly 
captured, thus resulting in more accurate SM values.

To illustrate this phenomenon more clearly, the 
number of estimated points below the 1:1 line and 
the proportion of such points with respect to the total 
number of points were determined. In Table 7, the 
percentages of CYGNSS points below the 1:1 line 
corresponding to different LTs were 0.30, 0.71, 0.57, 
0.63, 0.58, 0.57 and 0.47. For SMAP data, these values 
were 0.53, 0.71, 0.50, 0.60, 0.57, 0.57 and 0.40. The 
CYGNSS and SMAP products exhibit similar behaviors, 
with general underestimation of SM for most LTs. 
However, for the classification of mixed forest, the 
CYGNSS approach overestimates SM (30.77%), but 
SMAP underestimates SM (50.85%). The deviation of 

the CYGNSS-based estimates is larger than that for 
the SMAP data. This phenomenon can be explained 
by the fact that dense trees lead to more diffuse 
scattering and weaken the signal reception of 
CYGNSS reflectivity (Jia et al. 2022), as mentioned 
before. The findings demonstrate that the estimation 
accuracy of the CYGNSS SM product differs from that 
of the SMAP product due to differences in land sur
face characteristics, thus providing theoretical sup
port for future hybrid applications and the 
development of both SM products.

Additionally, due to differences in both spatial 
resolution and vertical resolution between satellite 
and in situ data, it makes more sense to compare 
time series trends than specific values (Owe de Jeu 
and Holmes 2008). A detailed time series comparison 
conducted during this study is presented in 
Figure 11, which shows the temporal variations in 
SM estimated based on CYGNSS data, the SMAP 
product, and the in situ average SM from January 1 
to 31 December 2008. The average SM measure
ments at all sites were compared with the SM pro
ducts, which were also averaged over all grids. The 
same technique has been used in many previous 
studies for validation purposes (Jackson et al. 2010,  
2012; Leroux et al. 2014; Su de Rosnay et al. 2013; Su 
et al. 2011).

Generally, all SM data fit well with in situ SM to 
a certain degree. The overall trend of the temporal 
dynamics of SM can be well captured by the SMAP 
and CYGNSS datasets. However, the SMAP SM and 
CYGNSS SM exhibit significant deviations 

Table 5. Mean indicator spatial evaluation for multiresolution 
products compared to SMAP 36 km and 9 km SM during annual 
cycles.

Mean 
(cm3/cm3) SMgwr9 vs. SMsmap36

SMgwr3 vs. 
SMsmap36

SMgwr9vs. 
SMsmap9

SMgwr3vs. 
SMsmap9

R 0.9536 0.9456 0.9435 0.9357
ubRMSE 0.026 0.0281 0.0288 0.0307
RMSE 0.026 0.0281 0.0290 0.0309
abs (Bias) 0.0001 0.0001 0.0038 0.0038

Figure 9. Annually averaged SM at each ground site.
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(underestimation or overestimation) in some periods, 
such as March to April and September. Specifically, 
the temporal variation results obtained using the pro
posed algorithm display a good fit to the in situ data, 
with R = 0.74. The satellite SM products appear to 
underestimate SM throughout the period. This con
clusion is consistent with that of Zhao et al. (2011b), 
who also found that the NASA-derived SM levels were 
obviously lower than the actual SM levels. As a result, 
the overall evaluation results not only validate the 
capability and performance of the proposed method 
but also verify that the CYGNSS-based downscaled 
SM is an excellent complement to the SMAP product 
in terms of its high spatial resolution.

5. Discussion

5.1. Possible uncertainties related to the modeling 
data

The possible uncertainties for CYGNSS-based SM esti
mation are associated with several factors. The first is 
the uncertainty of the datasets. The estimation of SM 
from GNSS-R data is an intrinsically ill-posed problem 
since the behavior of the reflected signal depends on 
many other parameters in addition to SM. In particu
lar, soil roughness, in addition spectral scattering, 
scatters the electromagnetic energy in many direc
tions, and vegetation attenuates the direct signal 
and further contributes to signal diffusion. The 
CYGNSS reflectivity has a high weight among the 
variables used in the prediction, and this weight is 
positive, as an increase in SM increases the soil per
mittivity and thus the Fresnel coefficient (Clarizia et al.  
2019). Roughness and vegetation are associated with 
smaller weights, as expected, but the compensation 
of them can still produce contribute to improvements 
in SM estimation performance.

Ancillary data are needed in the current stage since 
complete independent SM estimation relying solely on 
CYGNSS data has not been realized. In state-of-the-art 

studies, ancillary data from several different data 
sources are generally used. Table 8 provides 
a summary of several typical schemes for high-spatial 
resolution CYGNSS SM estimation. These large ancillary 
feature sets can increase costs and cross-correlated 
features, potentially resulting in marginal or reduced 
performance. Additionally, uncertainties and internal 
errors may be present in the ancillary data from differ
ent sources. Hence, minimizing the number of ancillary 
features while ensuring accuracy is one of the concerns 
of CYGNSS-based SM estimation. In this study, there is 
no external data source and only one ancillary feature 
(LT) from the SMAP product. The SMAP LT may contain 
some uncertainties caused by the complicated physical 
retrieval process. In addition, the accuracy of the SM 
ground-truth station measurements can influence SM 
estimation.

The second is the concern about the phenology of 
vegetation. The phenology of vegetation refers to the 
study and observation of the timing and seasonal pat
terns of plant life cycle events, such as leaf emergence, 
flowering, fruiting, and senescence. Considering the 
phenological stage of vegetation is crucial for accu
rately analyzing sensor signals and effectively interpret
ing remote sensing data for different applications. 
Variations in phenological stages across different 
plant species or ecosystems can lead to differences in 
the timing and magnitude of changes observed in 
sensor signals. To mitigate the uncertainty from the 
phenology of vegetation, one-year data covering all 
four seasons from spring to winter were employed to 
build and test the SM estimation model. The results 
indicated that the model performed well within a one- 
year time range. The good performance may be attrib
uted to the strong penetration capabilities of the 
L-band signals employed by CYGNSS satellites. This is 
also one of the advantages of GNSS-R remote sensing 
technology.

The findings presented previously suggested that 
remotely sensed SM products can effectively reflect 
the seasonal variations in ground SM, but some of 
them do not consistently meet the expected precision 
requirements. The deviation between the satellite- 
based and in situ SM might originate from discrepan
cies in spatial observation scales, as values associated 
with in situ data points and satellite pixels are com
pared. Moreover, bias may be caused by the incon
sistencies between the depth of in situ SM 
measurements and the penetration depth of 

Table 6. The accuracy of the overall evaluation of the 3 km and 9  
km SM products during annual cycles (over 1000 SM sites).

Overall 
(cm3/cm3) SMgwr3 vs. in situ SMgwr9 vs. in situ SMsmap9 vs. in situ

R 0.8113 0.8201 0.8906
ubRMSE 0.0525 0.0503 0.0391
RMSE 0.0525 0.0503 0.0393
abs (Bias) 0.0004 0.0009 0.0034
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Figure 10. Scatter plots for accuracy evaluations of different land types at the annual scale: (a) All samples, (b) Mixed forests, (c) Open 
Shrublands, (d) Woody Savannas, (e) Grasslands, (f) Croplands, (g) Cropland/Natural vegetation mosaic and (h) barren or sparsely Vegetated.
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Figure 10. (Continued).

Table 7. Statistics for the points located below the 1:1 line in the scatter plot.

Type

CYGNSS SMAP

Number of 
points

Above the 1:1 
line

Below the 1:1 
line

Below-line 
percentage (%)

Above the 1:1 
line

Below the 1:1 
line

Below-line 
percentage (%)

All types 5333 2188 3145 58.97% 2263 3070 57.57%
Mixed Forests 13 9 4 30.77% 6 7 53.85%
Open Shrublands 7 2 5 71.43% 2 5 71.43%
Woody Savannas 141 60 81 57.45% 70 71 50.35%
Grasslands 771 281 490 63.55% 301 470 60.96%
Croplands 4095 1697 2398 58.56% 1737 2358 57.58%
Cropland/Natural  

Vegetation Mosaic
214 91 123 57.48% 92 122 57.01%

Barren or Sparsely 
Vegetated

92 48 44 47.83% 55 37 40.22%

SM Temporal Variation

Figure 11. Temporal variation comparisons of the station-averaged SM estimates and satellite SM products: SM estimated by the 
proposed CYGNSS-based algorithm and SMAP SM product with in situ SM at Chinese network sites.
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microwaves. The penetration depth of the electro
magnetic wave in soils can vary from several centi
meters (Li et al. 2018; Yan et al. 2022), depending on 
the SM level and soil type (e.g. approximately 0–5 cm 
for the L band and 0–10 cm for in situ topsoil adopted 
in this study). The soil depth inconsistency also par
tially contributes to some uncertainties in our results 
(Ma et al. 2023; Zeng et al. 2015; 2016).

Several factors that contribute to uncertainty were 
considered in this study. First, a temporal evaluation 
was carried out to reduce the inherent uncertainties in 
the scale differences between in situ points and satel
lite pixels (Ma et al. 2019). Due to the lack of ground SM 
observations that accurately represent the same scale 
as that of the satellite observations, we utilized the 
average point-based measurements as the “ground 
truth” (Zeng et al. 2015). Second, some studies have 
noted that the correlation coefficient and ubRMSE are 
less sensitive to spatial mismatch than RMSE or bias 
and thus (Zeng et al. 2015). Thus, this article has 
strengthened the analysis of R and ubRMSE, and wea
kened the evaluation of bias and RMSE. Moreover, we 
focus more on developing effective algorithms and 
mitigating the possible errors of the parameters in 
the SM algorithms (Zeng et al. 2016), potentially con
tributing to further improvements in the current 
CYGNSS-based estimation methods.

5.2. Effect of the amount of data in the GWR model

In this paper, an enhanced GWR-based model is pro
posed to estimate fine-resolution SM by considering 

nonlinearity and spatial heterogeneities. Compared 
with the traditional ML and neural network models, 
which also consider spatial distance, the location- 
space-specific GWR model yields better results. Two 
essential issues need to be addressed.

One is the number of samples, and the other is the 
computational cost. For the first issue, it should be noted 
that the CYGNSS reflection points are randomly distrib
uted, which means that there may be multiple CYGNSS 
observations that fall into one grid, while no observa
tions are in a neighboring grid. The CYGNSS observa
tions and SMAP SM from 1 day and 3 days are shown in 
Figure 12. SMAP can provide intensive spatial global 
coverage over a three-day period. In typical cases, the 
average value of the SM reference from SMAP over 
a three-day period is commonly used as the daily refer
ence for CYGNSS explanatory features. They are ideally 
treated as daily representatives by neglecting data var
iations within the three-day interval.

To establish a precise model, it is common to utilize 
data spanning at least an entire year while simulta
neously accounting for the impact of phenology. 
Global modeling methods such as ML or ordinary 
linear regression assume a uniform relationship 
between explanatory variables and the dependent 
variable across the entire dataset. Long time series 
data can be directly applied as matrixes by ignoring 
the time stamp attributes. Actually, this operation is 
not problematic since a large sample size generally 
improves model learning performance, reduces over
fitting, and enhances stability when establishing ML 
and neural network models.

Table 8. Typical retrieval schemes and performance for high-resolution CYGNSS SM estimation.

Source Scale SM for validation
Num. of ancillary 

records
Adopted 

algorithms Overall performance
Spatial 

resolutions

Kim and Venkat 
(2018)

Regional SMAP 1 regression R = 0.68–0.77 9 × 9 (km)

Eroglu et al. (2019) Regional In situ (ISMN) 5 ANN ubRMSE=0.054 cm3/cm3, R=0.90 9 × 9 (km)
Senyurek et al. 

(2020a)
Regional In situ (ISMN) 5–7 RF/ANN/SVM RMSE=0.052/0.061/0.065 (cm3/cm3), 

R = 0.64–0.89 (RF)
9 × 9 (km)

Senyurek et al. 
(2020b)

Global In situ (ISMN) 5–7 RF mean ubRMSD=0.044 cm3/cm3, 
RMSD=0.066 cm3/cm3, R = 0.66

9 × 9 (km)

Yan et al. (2022) Regional In situ networks 1 Regression tree RMSE=0.05 cm3/cm3, R = 0. 86 7 × 7 (km)
Tang and Yan 

(2022)
Regional In situ networks 6 SVR R = 0.87 10 × 10 (km)

Lei et al. (2022) Global SMAP and in situ 
networks

3 Random forest ubRMSE=0.0543 cm3/cm3, R=0.4–0.8 
(vs. in situ)

9 × 9 (km)

Nabi et al. (2022) Regional SMAP and in situ 
networks

8 CNNs mean ubRMSE=0.0366 cm3/cm3, R=0.93 
(vs. SMAP)

9 × 9 (km)

Proposed  
method

Global SMAP and in situ 
networks

1 GWR mean RMSE=0.0291 cm3/cm3, 
ubRMSE = 0.0329 cm3/cm3, R = 0.93 

(vs. SMAP) 
ubRMSE = 0.0525 cm3/cm3, R = 0.81 

(vs. in situ)

3 ×3 (km)
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GWR supports a more fine-scale spatial analysis by 
considering spatial heterogeneity and location 
effects. The local regression coefficients are consid
ered at each individual point based on the data at 
neighboring points. In this case, the long time series 
data cannot be regarded as a matrix without consid
ering the time stamp. Local regression was performed 
to identify which point is the closest to the estimation 
point on the same day. Hence, the CYGNSS panel data 
were separated into individual time units (3-day data) 
to perform modeling to greatly avoid null grids in this 
work. The GWR model, which was specifically 
designed for regression problems, is inherently effec
tive in cases with relatively limited samples. Moreover, 
if long-time-series CYGNSS-based SM estimation is 
needed, GTWR (geographically and temporally 
weighted regression), as an extension of GWR that 
incorporates both spatial and temporal heterogene
ity, can be applied.

Notably, to obtain a fair comparison with the GWR 
model, the ML and neural network models were 
applied with the same settings as those in GWR, 
including using the distance as the explanatory vari
able. The estimation performance of the ML and 
neural network models was improved by considering 
the distance factor. In future work, long-time-series 
CYGNSS data may be applied to the GTWR model and 
compared with the results of ML algorithms by con
sidering both temporal and spatial effects.

For the second issue, as the GWR model was 
applied at every location, the computational cost 
was notably higher that of the global ML and neural 
network models. This challenge was addressed in two 

aspects in our work. On the one hand, the samples 
with weights that were below a certain threshold 
were excluded in the establishment of the GWR 
model. On the other hand, as mentioned before, long- 
time-series CYGNSS data were separated into model
ing units, and the designed spatially adaptive window 
was applied to accommodate the CYGNSS data 
volume.

5.3. Role of the GWR-based model in the 
framework

The proposed GWR model was compared with popular 
ML and neural network-based CYGNSS SM estimation 
models, e.g. XGBoost, RF, and ANN (Eroglu et al. 2019). 
Moreover, the downscaling framework was used to 
integrate CYGNSS data and multiple biogeophysical 
factors (e.g. land cover and TES) to downscale SM. 
The GWR model estimates the local optimal spatial 
weights with an adaptive statistical optimization pro
cess and quantifies the spatial distribution of local 
regression coefficients, yielding fine-resolution SM esti
mates at different scales. The regression coefficients 
vary spatially with the land cover and terrain. Despite 
this spatial variability, the spatial patterns of SM can be 
adequately modeled with the GWR approach.

Emerging AI methods such as ML and advanced 
neural approaches are strong data-driven tools for 
data analysis, mining, and forecasting (Xu et al.  
2021). AI models have become very popular in recent 
years, with considerable theoretical and technical pro
gress in CYGNSS-based fields. A key issue in ML mod
els is the lack of interpretability in the structures and 

Figure 12. Comparison of data coverage: (a) SMAP 1-day SM, (b) SMAP 3-day SM, (c) CYGNSS 1-day BRCS, and (d) CYGNSS 3-day BRCS.
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outputs; consequently, these models are known as 
black box models. The promising performance of AI 
models lies in nonlinear high-dimensional feature 
extraction from a data-driven perspective. This is 
also the reason why the different time stamps of 
CYGNSS data can be regarded as inputs for CYGNSS- 
based SM estimation.

Statistical methods have limitations in high-level 
feature extraction and long-term memory modeling. 
The GWR model, which was specifically designed for 
regression problems, is inherently effective at working 
with relatively limited samples. The GWR accuracy 
varies with the applications, methods and models, 
lead times, and parameters considered.

In summary, there is no unique best model for 
simulating spatial dependences. The estimation accu
racy varies with specific problems, parameters, meth
ods, and datasets and is not influenced solely by the 
model itself. It is ineffective to conclude that one 
model is unequivocally better than another; notably, 
the four models in this study produced similar fore
casting accuracy when the inputs, model structures 
and parameters were well designed and properly 
calibrated. However, GWR can capture the spatial 
patterns and relationships in data, leading to the 
enhanced consideration of local dynamics. On this 
basis, we believe that the proposed GWR model is 
an effective tool for global ground-level SM estima
tion from CYGNSS satellite observations.

5.4. Prospects of the proposed framework

In this paper, the model coefficient values 
obtained with GWR can be used to evaluate regio
nal variations in the explanatory variables of the 
model. The spatially consistent (stationary) rela
tionships between the dependent variable and 
each explanatory variable and how they change 
across the study area can be evaluated by estab
lishing the coefficient distribution, which indicates 
where and how much variation is present.

Based on the findings of this study, further work 
could be carried out. First, in this study, 36 km LT 
data were adopted to produce the 9 km and 3 km 
downscaled SM products. The LT data were rela
tively stable and easy to manipulate, effectively 
matching other feature sets. All feature sets can 
be projected using the EASE-Grid projection and 
could thus yield reasonable results. Then, high- 

resolution LTs from external sources could be 
obtained and tested in future work. In addition, 
ML and deep learning methods have been 
reported to have excellent potential for effectively 
fitting the nonlinear relationships between SM and 
influencing factors (Eroglu et al. 2019). It may be of 
great interest to consider spatiotemporal hetero
geneities in ML-based CYGNSS SM estimation, and 
this topic merits further investigation.

Furthermore, the proposed framework for SM 
downscaling can be applied to several fields for the 
following reasons: 1) The high compatibility of other 
datasets: Although only the CYGNSS and SMAP data 
were investigated in the context of this framework, 
other remote sensing products with different spatial 
scales and texture structures can potentially be 
adapted for the framework; 2) Precise estimation of 
SM at local scales: The framework allows CYGNSS 
observations to be applied for SM monitoring at 
local scales. The framework can be applied to disag
gregate SM at high resolutions; 3) Availability of extra 
information: In GWR, each downscaled SM unit can be 
obtained with a set of coefficients related to scaling as 
byproducts so that the downscaled SM is easily 
applicable in environmental analyses; and 4) Support 
for many applications: The downscaled SM can pro
vide spatial continuity in large-scale areas. Our frame
work can effectively provide SM for analyses related 
to evapotranspiration, the heat island effect, drought, 
precipitation, etc., and can be used in parameter opti
mization in different scenarios.

6. Conclusion

In this study, we introduced an advanced GWR-based 
model, which is the first to encompass various spatial 
weights for CYGNSS-based SM estimation. 
Furthermore, a self-adaptive-resolution approach 
was proposed to obtain a variable fine-scale SM pro
duct. The proposed model was cross-validated using 
SM data at various SMAP scales and independent 
ground-truth data, and a mean RMSE of approxi
mately 0.03 cm3/cm3 was obtained when comparing 
the 3 km downscaling product to the SMAP SM pro
ducts. Extensive experiments and corresponding error 
ratio diagrams showed that the enhanced GWR-based 
approach outperformed other competing estimation 
models and offers a significant improvement over 
these models.
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The GWR-based approach can be used to extract 
high-quality geographical features, thereby achieving 
good performance. Due to the influence of natural 
trees and plants, the bias of CYGNSS estimates is 
higher than that of SMAP products. Specifically, it 
should be highlighted that CYGNSS-based SM esti
mates were similar to the SMAP SM values in cropland 
areas. The reason for this phenomenon is likely that 
a high temporal resolution is needed for cropland 
analyses since they may be subjected to frequent 
cultivation and harvesting activities for various 
crops. Thus, the CYGNSS-based estimates can effec
tively reflect the resulting land surface changes. The 
experimental findings confirm that CYGNSS data have 
a higher temporal resolution than SMAP data and 
reveal that the accuracy of SM estimation using 
CYGNSS and SMAP differs across different LTs. These 
findings provide valuable theoretical support for 
future developments and applications that involve 
combining these two SM products.

Several advantages can be attributed to the pro
posed approach, as follows. First, the proposed 
downscaling scheme can be easily implemented 
and scaled to various datasets. In addition, the 
enhanced GWR-based approach is effective for 
obtaining high-accuracy SM estimates without exter
nal data inputs. Furthermore, this study provides an 
approach to utilize unique variable-resolution fea
tures from CYGNSS data. This method is particularly 
useful for studying multiscale CYGNSS data, for 
which effects at a broad range of spatiotemporal 
scales are important.
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