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ABSTRACT
Removing noise photons from Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) data is crucial for 
various applications of the photon-counting LiDAR system. Existing methods for noise photon 
removal often struggle with parameter tuning, lack robustness, and may compromise accuracy 
across different datasets. To address these issues, this study proposes an innovative progressive 
noise removal method. Unlike conventional approaches that treat all noise photons uniformly, our 
method first categorizes noise photons into isolated, low-density clustered, and outer clustered 
types based on their unique spatial distribution characteristics. Each type is then targeted with 
specific denoising techniques, resulting in higher denoising efficiency and better signal photon 
preservation. Specifically, isolated noise photons are automatically identified using a multi- 
thresholding strategy based on the maximum between-clustering variance algorithm without 
requiring parameter tuning. Low-density clustered noise photons are removed using the ellipse- 
based photon counting method, where the Douglas-Peucker algorithm is utilized to align the 
ellipse’s major axis with the locally calculated terrain slope. Outer clustered noise photons are also 
automatically detected through a box plots analysis technique based on local elevation distribu
tions. The efficacy of the proposed method was evaluated using diverse datasets containing strong 
and weak signals, as well as various land covers. Experimental results demonstrate that the 
proposed method outperformed five traditional denoising methods in terms of both denoising 
effectiveness and signal photon fidelity. Furthermore, testing on datasets with diverse land covers 
showcased the robustness of the proposed method.
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1. Introduction

The Spaceborne LiDAR, as a key tool for innovative earth 
observation, offers unique benefits in gathering 3D surface 
information over large areas and inverting forest heights 
due to its high orbit and wide observational range (Li et al.  
2021; Xu et al. 2023). On 15 September 2018, NASA 
launched the Ice, Cloud, and Land Elevation Satellite-2 
(ICESat-2), equipped with the Advanced Topographic 
Laser Altimeter System (ATLAS). ATLAS utilizes micro- 
pulse, multi-beam photon-counting LiDAR technology for 
the first time (Abdalati et al. 2010). The ATLAS system is 
known for its low energy consumption, high detection 
sensitivity, and high repetition frequency, which reduces 
the need for laser power and increases sampling frequency 
(Cao et al. 2020a; Neuenschwander and Pitts 2019). 
Consequently, ATLAS data is widely used in tasks such as 
elevation control points extraction (Lian et al. 2022), mon
itoring glacier elevation changes (He et al. 2024), inversing 

shallow water bathymetry (Ye et al. 2024), extracting forest 
canopy heights (Mansouri, Jafari, and Dehkordi 2024; Wang 
et al. 2024), and estimating biomass carbon storage 
(Neuenschwander et al. 2024; Varvia et al. 2024).

However, photon-counting LiDAR emits weak signals 
that are easily interfered with by atmospheric scattering, 
solar radiation, and instrument artifacts during target 
detection (Neuenschwander et al. 2020). This interfer
ence results in a significant amount of randomly distrib
uted background noise in the recorded point cloud, 
which hampers the accurate extraction of signal photons 
(Jiao et al. 2021). Therefore, effective removal of noise 
photons has become a crucial step in processing 
photon-counting LiDAR data (Huang et al. 2019; Kui 
et al. 2023; Zhu et al. 2020).

Various methods for noise photons removal have 
been proposed recently. These methods can be categor
ized into three categories (Liu et al. 2023; Pan et al. 2024;
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Qin et al. 2024): 2D image processing-based methods, 
local statistical parameter-based methods, and density 
spatial clustering-based methods.

In methods based on 2D image processing, the pro
filed photons are converted into a 2D image and then 
processed using image processing techniques to elim
inate noise photons (Chen and Pang 2015; Magruder 
and Kevin 2012; Pan et al. 2024). Magruder and Kevin 
(2012) organized the profile photons into 2D raster 
images and utilized image processing technologies, spe
cifically the Canny operator detection boundary algo
rithm, to identify and remove noise photons effectively. 
Chen and Pang (2015) on the other hand, employed the 
classic active contours method and applied the Chan- 
Vese segmentation model to detect potential signal 
photons. However, there is a need to enhance the stabi
lity and broad applicability of this approach across 
extensive areas and diverse ground surfaces. While this 
kind of method can reduce noise photons to some 
extent, the rasterization process results in the loss of 
geometric information from the photons, decreasing 
algorithm accuracy (Jiao et al. 2021; Xia et al. 2014; Zhu 
et al. 2020).

The second category relies on local statistical para
meters, which are widely utilized. This involves calculat
ing various parameters such as distance, elevation, point 
density, eigenvectors, etc., for each photon locally. 
Subsequently, by utilizing distribution characteristics 
like histograms to establish global thresholds based on 
these parameters, noise and signal classification 
becomes feasible (R. Liu et al. 2024; Nie et al. 2018; Xia 
et al. 2014; F. Xie et al. 2017; Zhu et al. 2018; Cao et al.  
2020a). Xia et al. (2014) introduced a denoising algo
rithm based on local distance statistics and applied 
least squares fitting to determine local curve parameters, 
achieving satisfied overall accuracy. Xie et al. (2017) 
tackled terrain influences by defining adjustable filtering 
kernels that effectively eliminated near-ground noise 
photons in steep terrain areas. Zhu et al. (2018) devised 
an enhanced noise photons filtering algorithm based on 
local statistics with adaptive threshold determination 
capabilities. Nie et al. (2018) used an automatic approach 
for noise photon removal, successfully reducing edge 
effects and addressing inconsistent noise photon den
sity challenges; however, algorithm accuracy may 
decrease in areas with very dense or sparse vegetation 
cover. Cao et al. (2020b) implemented and evaluated the 
Differential Regression and Gaussian Adaptive Nearest 
Neighbor (DRAGANN) algorithm in ATL08, achieving 
denoising accuracy above 88%, though slightly lower 
accuracy was observed in vegetation scenes due to 
additional empirical parameters required.

In the third category of density spatial clustering- 
based methods, denoising is achieved by characterizing 
the dense spatial distribution of signal photons and the 
relatively sparse distribution of noise photons (Zhang 
and Kerekes 2015; He et al. 2023; Wang, Pan, and 
Glennie 2016, Chen et al. 2019; Zhang et al. 2024; Zhu 
et al. 2021). In consideration of the horizontal aggrega
tion of signal photons, Zhang et al. (2014) enhanced the 
Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) algorithm by transitioning from 
a circular search shape to an elliptical one. Through 
experimentation, B. W. Chen, Pang, Li, Lu, et al. (2019) 
and B. W. Chen, Pang, Li, North, et al. (2019) demon
strated that horizontal elliptical search shapes outper
form circular and vertical ones. X. Wang, Pan, and 
Glennie (2016) introduced a denoising algorithm based 
on Bayesian decision theory, assuming a uniform photon 
distribution in space. Ma et al. (2019) proposed a novel 
adaptive signal photon detection method that matches 
geographic coordinates with a land cover database to 
obtain surface type information. The method employs 
an improved DBSCAN algorithm and JONSWAP wave 
spectrum algorithm, combined with adaptive thresh
olds, to detect signal photons. This approach enables 
adaptive adjustment based on different land cover 
types, enhancing the accuracy and efficiency of signal 
photon detection. Z. Zhang et al. (2020) introduced 
a novel land/snow classification technique utilizing the 
background noise from photon-counting LiDAR. This 
method involves analyzing the noise photon distribution 
patterns of various land cover types by developing 
a noise model that considers factors such as solar inci
dence angle, terrain slope, and surface reflectance prop
erties. Experimental results from the Karakoram Plateau 
demonstrate that this approach can achieve 
a classification accuracy exceeding 93% without the 
need for optical images. Zhang et al. (2021) established 
for the first time a correlation model of signal-to-noise 
ratio (SNR) between strong and weak beams of ICESat-2 
in mountainous areas. By deriving the geometric rela
tionship of photon propagation paths, this paper 
revealed the auxiliary mechanism of strong beam data 
for weak beam signal extraction.

To address parameter sensitivity, Zhu et al. (2021) 
revised the search area shape in the Ordering Points to 
Identify the Clustering Structure (OPTICS) algorithm to 
an ellipse for photon denoising. They also implemented 
adaptive detection of signal and noise photons in 
photon data using a distance threshold determined by 
the Otsu method, effectively extracting signal photons in 
complex terrain while reducing input parameter sensi
tivity. However, this algorithm is computationally
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intensive and time-consuming. Furthermore, G. H. He 
et al. (2023) adapted a density clustering algorithm 
with an adaptive mountain slope, achieving better adap
tation in forested areas with complex topography. 
Zhang et al. (2021) proposed a parameter-free noise 
removal algorithm based on quadtree isolation for 
photon-counting LiDAR data, achieving adaptive signal- 
noise separation through spatial partitioning and tree 
depth analysis. The algorithm demonstrates improved 
efficiency and accuracy compared to traditional meth
ods such as DBSCAN, especially in complex terrains and 
low signal-to-noise scenarios. Building on the success of 
the quadtree isolation method, Zhang, Xing, Xu, Li, et al. 
(2023) and Zhang, Xing, Xu, Zhang, et al. (2023) further 
refined the approach into the Pre-Pruning Quadtree 
Isolation (PQI) method for extracting bathymetric 
photons. For instance, Zhang, Xing, Xu, Li, et al. (2023) 
introduced a PQI method with dynamic threshold 
adjustment for bathymetric photon extraction from 
ICESat-2 data. By integrating spatial pruning and depth- 
adaptive thresholds derived from photon elevation his
tograms, PQI effectively suppresses noise and enhances 
photon extraction accuracy, surpassing traditional meth
ods with an F1-score of 92.71%. In a similar vein, Zhang, 
Xing, Xu, Zhang, et al. (2023) applied the PQI method to 
automatically extract nearshore bathymetric photons 
from ICESat-2 data. Through a pruning step to prevent 
over-segmentation of noise photons and leveraging 
Otsu’s method for dynamic threshold adjustment, PQI 
achieves high extraction accuracy (F1-score: 93.96%) and 
versatility across different underwater terrains and data 
acquisition times.

Tian and Shan (2023) presented an innovative gravity- 
based photon density model and directional region 
growing algorithm for detecting signal photons from 
ICESat-2 data. Their approach enhances accuracy and 
robustness in challenging terrains when compared to 
the ATL03 and ATL08 algorithms. Liu et al. (2024) intro
duced a denoising technique that relies on adaptive 
parameter density clustering. This method utilized 
numerical simulations to adjust the key parameters 
(such as neighborhood radius Eps and minimum num
ber of points MinPts) to address the issue of denoising 
spaceborne photon-counting laser altimeter point 
clouds with varying noise densities.

Moreover, the growing utilization of machine learn
ing and deep learning has introduced new approaches 
to photons processing (Agca et al. 2024; Chen et al.  
2020; Kong and Pang 2024; Lu et al. 2021). Chen et al. 
(2020) proposed a machine learning-based method for 
detecting potential signal photons from photon- 
counting LiDAR data. Lu et al. (2021) developed 

a denoising and classification algorithm based on con
volutional neural networks. In terms of deep learning 
methods, Lin and Knudby (2023) introduced the 
PointNet++ deep neural network model into ICESat-2 
laser altimetry data for bathymetric photon extraction 
for the first time. Compared with supervised classifica
tion methods based on Random Forest or SVM, 
PointNet++ demonstrated an improvement in F1- 
score on the test set, with the false detection rate 
reduced. Z. Leng et al. (2023) implemented the Long 
Short-Term Memory (LSTM) deep learning model for 
the reconstruction of ICESat-2 bathymetric signals. By 
integrating active-passive data fusion, this approach 
enhances the accuracy and reliability of signal recon
struction. Qin et al. (2024) integrated the GoogLeNet 
model with the Convolutional Block Attention Module 
(CBAM) for signal photons extraction. The GoogLeNet 
model expands the network width through Inception 
modules, enhancing its ability to capture features. 
CBAM strengthens the network’s ability to learn key 
features by utilizing both channel and spatial attention 
mechanisms, thereby improving the accuracy and 
robustness of photon extraction. Liu et al. (2024) pro
posed an end-to-end deep neural network based on 
VOJA-Net, which utilizes semantic information from 
a multilevel decoder to learn multilevel feature repre
sentations to improve denoising performance. Testing 
on the ICESat-PC dataset demonstrated that VOJA-Net 
outperformed traditional methods such as DBSCAN 
and advanced deep learning models like PointNet++ 
and Point Transformer, achieving remarkable F1 scores 
of 93.34% and a mean Intersection-over-Union (mIoU) 
of 73.40%.

Nevertheless, these algorithms heavily rely on train
ing samples, and the variability in training samples due 
to diverse terrains and surface coverages can negatively 
impact denoising performance.

While numerous photon point denoising methods 
have been proposed, two main challenges remain unre
solved. Firstly, most denoising methods require complex 
parameters tuning, with these parameters significantly 
influencing the denoising results. For example, the clas
sical DBSCAN-based denoising method requires defining 
the neighboring distance and the minimum number of 
points, both of which have a substantial impact on the 
denoising outcomes (Leng et al. 2022; Liu et al. 2024). 
Similarly, the Local Outlier Factor (LOF) denoising 
method also necessitates parameter adjustment, with 
the k nearest neighbors directly affecting its denoising 
performance (Chen et al. 2019). Secondly, existing 
denoising methods typically apply a uniform strategy 
to all noisy points without considering their different
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characteristics. In this study, noisy points are categorized 
into isolated, low-density clustered, and outer clustered 
noise photons based on their distinct attributes.

Isolated noise photons are typically identified by lar
ger spacing distances between photons. While low- 
density clustered noise photons may have spacing dis
tances similar to signal points, their neighboring 
photons usually have fewer neighbors compared to sig
nal photons. The outer clustered noise photons have 
a similar number of neighbors as signal photons, but 
they show sudden increases in elevation compared to 
their neighboring signal photons. Managing these var
ious types of noise photons presents a significant chal
lenge. It is evident from these descriptions that each 
type of noise photon has distinct characteristics. 
Employing a single denoising approach with uniform 
thresholds for all types of noisy points may lead to 
suboptimal denoising results.

To tackle these challenges, this study introduces 
a progressive method for removing noise photons in 
ICESAT-2 data based on different noise characteristics. 
The study categorizes the noise photons into three 
groups and gradually removes them based on their 
unique characteristics, primarily by introducing an auto
matic multi-thresholding technique, an ellipse-based 
photon counting method, and a box plots analysis 
approach. The effectiveness of the proposed method 
was assessed using diverse datasets with diverse 
features.

2. Methodology

In this paper, the noise photons are classified into three 
categories: isolated noise photons, low-density clustered 
noise photons, and outer clustered noise photons. Each 
type possesses distinct characteristics. To effectively fil
ter out the noise photons, this study detects and elim
inates them gradually based on their unique attributes. 
The flowchart of the proposed method is illustrated in 
Figure 1. Initially, isolated noise photons are identified 
by comparing their point spacing distance with that of 
signal photons. Thresholds for detecting isolated noise 
photons are determined using an automatic multi- 
thresholding strategy. Subsequently, the Douglas- 
Peucker algorithm is utilized to merge data segments 
with similar terrain slopes to adaptively calculate terrain 
slopes in local regions, followed by the utilization of an 
ellipse-based photon counting method along the pri
mary terrain slope direction to remove low-density clus
tered noise photons. While the terrain slope-based 
ellipse clustering method effectively removes a portion 
of noise photons, some clustered noise photons still 
remain. These noise photons have a higher point density

but are spatially distant from the signal photons, termed 
as outer clustered noise photons. To address this issue, 
these outer clustered noise photons are eliminated 
based on their local elevation distributions using 
a proposed box plots analysis technique. In summary, 
this paper consists of three main steps: I. Isolated noise 
photons removal based on a multi-thresholding strat
egy, II. Adaptive calculation of terrain slopes and 
removal of low-density clustered noise photons, and III. 
Outer clustered noise photons removal based on the 
box plots analysis.

2.1. Removal of isolated noise photons based on a 
multi-thresholding strategy

In Figure 2a, the raw photons are segmented into multi
ple sections using filtering windows with a window size 
set to 50 m (Lian et al. 2022). From Figure 2a, it is evident 
that the point spacing distances (the distance between 
a point and the nearest neighboring point) of signal 
photons are considerably smaller than those of noise 
photons. Within each window section, the average 
neighboring distance for each photon can be computed, 
and its distribution is depicted in Figure 2b. Note that 
the average neighboring distance is defined as the mean 
distance between a photon and its N closest neighbor
ing points. In this study, we have set N as a constant 
value of 55. The subsequent Discussion section will 
further explore the impact of this parameter setting.

The distribution of average neighboring distances 
appears as a combination of two Gaussian distributions. 
The left Gaussian distribution corresponds to signal 
photons, while the right one represents noise photons. 
This distinction arises from the fact that the point spa
cing distances of signal photons are significantly smaller 
than those of noise photons. To eliminate these isolated 
noise photons, a threshold for each window section 
must be determined as shown in Figure 2b.

To establish the threshold within each filtering win
dow, the maximum between-clustering variance algo
rithm is employed, which is a commonly used adaptive 
threshold segmentation technique in computer vision 
and image processing fields (Li et al. 2014; Xie et al.  
2023). This method aims to convert a grayscale image 
into a binary image by computing an optimal threshold 
that maximizes the variance between two classes of 
pixels – foreground pixels and background pixels. In 
this study, the two classes that require segmentation 
are signal and noise photons. Thus, the between-class 
variance g for this case is defined as Eq (1). 
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where w0 and w1 the proportions of signal and noise 
photons, respectively, and u0 and u1 are the mean aver
age neighboring distance values of signal and noise 
photons. u is the total mean average neighboring dis
tance value of all the raw photons within the filtering 
window. Through the application of the maximum 
between-clustering variance method, the threshold for 
distinguishing signal and isolated photons can be deter
mined, and those photons with an average neighboring 
distance exceeding the calculated threshold are identified 
as isolated noise photons and subsequently removed.

2.2. Adaptive calculation of terrain slopes and 
removal of low-density clustered noise photons

After determining the threshold within each filtering win
dow, most of the isolated noise photons can be success
fully removed, as demonstrated in Figure 3a. Nonetheless, 
a few noise photons remain mixed with the signal 
photons because their average point spacing distances 
are smaller than the self-adaptive calculated threshold. 
Consequently, although these noise photons are also 
clustered, their neighboring points generally less than

Figure 1. The flowchart of the proposed method.
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those of the signal photons, indicating that they are low- 
density clustered. This distinction is evident from 
Figure 3b. To address these low-density clustered noise 
photons, this study proposes an ellipse-based photon 
counting method. The rationale behind this method is 
that the neighboring photons of signal photons typically 
outnumber those of noise photons.

To implement the ellipse-based photon counting 
method, terrain slope calculation is essential. This 
calculation allows for the automatic determination 
of the major axis direction of the ellipse, facilitating 
the preservation of signal photons across varying 
terrain slopes. Initially, the elevation frequency 

histogram for photons within each filtering window 
is constructed to select the core photon with the 
highest elevation frequency, depicted as a black tri
angle in Figure 3b. Note that the filtering window 
mentioned here is the same with the filtering win
dow shown in Figure 2a. Within each filtering win
dow, the elevations of photons are counted, and the 
point with the highest elevation frequency is selected 
as the core point.

Given that core photons with highest elevation fre
quencies are typically situated on terrain features, they 
effectively reflect terrain fluctuations. Therefore, the core 
photons within each two adjacent filtering windows can

Figure 2. Isolated noise photons removal. (a) Row photons with filtering windows. (b) The average neighboring distance distribution 
within each filtering window.

Figure 3. Coarse signal photons and core photons. (a) Coarse signal photons after isolated noise photons removal. (b) Core photons 
identification based on elevation frequency histogram.
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be used to calculate local terrain slopes. To accurately 
identify the core photons, specifying the resolution of 
the frequency histogram is crucial. Generally, a smaller 
resolution is recommended for gentle terrain, whereas 
a larger resolution is more suitable for steep terrain. In 
this study, we have set the resolution to 1 m for gentle 
terrain and 15 m for steep terrain.

The proposed ellipse-based photon counting method 
aligns the direction of the ellipse’s major axis with the 
local terrain slope; hence, merging adjacent terrain seg
ments with similar slopes is prioritized.

This study employs the Douglas-Peucker algorithm to 
merge segments with similar terrain slopes into distinct 
sections (Vučetić, Petrović, and Strunje 2007). The 
Douglas-Peucker algorithm simplifies a curve repre
sented by a series of points by recursively dividing 
a line segment defined by the first and last points and 
identifying the farthest point from this line. If this dis
tance exceeds a specified tolerance, it is added to the 
simplified curve, and this process is iterated on the 
resulting line segments, as depicted in Figure 4a.

As this study aims to combine segments with similar 
terrain slopes, it requires that the elevation change 
between two consecutive core photons within neighbor
ing terrain segments be minimal. This requirement is akin 
to the Douglas-Peucker algorithm, which retains feature 
points with larger distance residuals while eliminating 
those with smaller residuals. Here, a tolerance of 1.5 m is 
set for the Douglas-Peucker algorithm to eliminate the 
close point, as it is employed in merging terrain segments 
with comparable slope characteristics. If the elevation 
difference between two successive core photons 

surpasses 1.5 m, it signifies differences in slope attributes 
between the corresponding terrain segments.

After implementing the Douglas-Peucker algorithm, it 
is observed that the terrains are segmented into distinct 
sections, as evidenced by the altered filtering window 
sizes shown in Figure 4b. Within each section, the terrain 
slope exhibits similarity, implying that the major axis 
direction of the ellipse for all photons within the section 
can be set as a constant value, equivalent to the terrain 
slope of that specific terrain section.

In this study, the ellipse is defined as E a; b;φð Þ. a and 
b denote the major and minor axes of an ellipse, respec
tively, and φ represents the major axis direction of the 
ellipse, corresponding to the calculated terrain slope. In 
this paper, an empirical ratio of a to b is established at 
6:1 according to the recommendations of Chen, Pang, Li, 
Lu, et al. (2019) and Zhu et al. (2021). The minor axis of 
the ellipse (b) can range from 2 m to 6 m. Generally, 
when the terrain slope is gentle, a smaller value for b can 
be used, whereas for steeper terrain slopes, a larger 
value for b is more appropriate. This parameterization 
does not significantly impact the results, as will be 
further discussed in the Discussion section.

Typically, signal photons exhibit proximity to one 
another compared to noise photons. Additionally, the 
spatial density distribution of signal photons in horizon
tal and vertical directions is uneven. The abundance of 
signal photons in the horizontal direction along the 
terrain exceeds that in the vertical direction. By aligning 
an ellipse with its major axis direction matching the 
terrain slope, a significant proportion of signal photons 
can be encompassed within the ellipse.

Figure 4. Terrain slope adaptive calculation by applying the Douglas-Peucker algorithm. (a) The principle of the Douglas-Peucker 
algorithm. (b) Terrain slope calculation using the Douglas-Peucker algorithm.
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By establishing a minimum number of photons within 
the ellipse, it becomes possible to identify low-density 
clustered noise photons. The minimum number of photons 
within an ellipse is denoted as minpts, which can be auto
matically calculated using a method proposed by (Liu et al.  
2024). Specifically, if a photon has fewer neighboring 
points than minpts, it is classified as a noisy photon; other
wise, it is considered a signal photon and its neighbors are 
added to a point set. Subsequently, each photon in the set 
is examined; if a photon has more neighbors than minpts, 
its neighboring photons are also incorporated into the set. 
This iterative process continues until all photons have been 
visited. The sequential steps of this iterative ellipse-based 
connected growth method are outlined below:

Step 1: Randomly select an unvisited point pk from 
point set pif g and add a corresponding visited flag, that 
is VisitedFlag pkð Þ ¼ 1.

Step 2: Calculate the number of points (Npk ) within 
the ellipse of pk , of which direction of the major axis is 
equal to the terrain slope.

Step 3: If Npk >minpts, pk is labeled as a signal point 
and the neighboring points of pk are added into a point 
set pneighbors
� �

.
Step 4: Traverse the points in pneighbors

� �
, and repeat 

Step 2 and Step 3 until all the points in pneighbors
� �

have 
been visited.

Step 5: If all the points in pif g are visited, stop; other
wise go to Step 1.

2.3. Removal of outer clustered noise photons 
using the box plots analysis technique

After using the ellipse-based method for counting 
photons, most clustered noise photons can be effectively 
eliminated. However, some clustered noise photons with 
higher point densities remain undetected, as seen in 
Figure 5a. These unreleased clustered noise photons are 
typically located far from the signal photons. Therefore, 
this study categorizes these noise photons as outer clus
tered noise photons and proceeds to remove them based 
on their elevation distributions. That is the results of 
removing low-density clustered noise photons are 
divided into sections using a filtering window. The eleva
tion distributions of photons within each filtering window 
are depicted using box plots in Figure 5b. Within each 
filtering window, the first quartile (Q1), third quartile (Q3) 
and interquartile range (ΔQ ¼ Q3 � Q1) of photon eleva
tions can be calculated. Since outer clustered noise 
photons are usually distant from signal photons, upper 
and lower bounds for identifying this type of error are 
defined as (Q3 þ 3ΔQ) and (Q1 � 3ΔQ), respectively. 
Photons falling outside these bounds are classified as 

outer clustered noise photons and removed. By analyzing 
box plots of photons within each filtering window, as 
shown in Figure 5c, outer clustered noise photons are 
successfully eliminated, resulting in the final removal of 
noise photons shown in Figure 5d.

3. Experimental results and analysis

3.1. Study sites

This study utilizes experimental data from eight groups 
located at two distinct geographical sites in the United 
States for testing, as illustrated in Figure 6a. Study Site 1 
(depicted in Figure 6b) is situated in Yellowstone 
National Park (YELL) in Wyoming (44°50′N ~ 45°0′N, 
110°20′W ~ 111°43′W), USA. It experiences an annual 
average temperature of 3.4°C, an annual average preci
pitation of approximately 493 mm, and an elevation 
range of 1847–2244 m. The primary vegetation consists 
of grassland, shrubland, and evergreen forest, with an 
average canopy height of 14 m.

Study Site 2 (Figure 6c) is positioned in Great Smoky 
Mountains National Park (GRSM) in southeastern 
Tennessee(35°30′N ~ 35°50′N, 83°10′W ~ 83°45′W), USA. 
It has a subtropical humid climate, with an annual aver
age precipitation of 1375 mm, an annual average tem
perature of 13.1°C, and an elevation range of 426–1978  
m. The predominant vegetation types include deciduous 
forest and evergreen forest, with an average canopy 
height of 30 m.

The transit area chosen within Study Site 1 is primarily 
characterized by evergreen forest dominated by pine 
trees, featuring gentle terrain and minimal topographic 
relief. Conversely, the transit area within Study Site 2 
comprises mainly coniferous forest dominated by fir 
and hemlock, showcasing rugged terrain and significant 
topographic variability.

Both study sites have collected data during both day
time and nighttime periods, with specifics outlined in 
Table 1. The contrasting terrains and surface cover types 
between the two sites provide valuable insights into the 
denoising impact on ICESat-2 data across various tem
poral, geographical, and topographical settings.

3.2. Data sources

3.2.1. Icesat-2 data
ICESat-2 employs the Advanced Topographic Laser 
Altimeter System (ATLAS), which integrates micro-pulse 
multi-beam photon-counting LiDAR technology. It 
releases six beams of laser pulses with repetition fre
quency at a rate of 10 kHz, organized into three pairs 
along its orbital trajectory. Each pair consists of a strong
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signal (160μJ) and a weak signal (40μJ), maintaining an 
energy ratio of 4:1 between them. The cross-track dis
tance between pairs is approximately 3.3 km, while the 
spacing within each pair is around 90 m. This configura
tion results in overlapping footprints on the Earth’s sur
face with a diameter of about 17 m and an along-track 
spacing of roughly 0.7 m (Zhu et al. 2021). ICESat-2 
provides 22 standard data products designated as 
ATL00-ATL21, categorized into Level 0, Level 1, Level 2, 
and Level 3 groups. This research primarily utilizes the 
Level 2 product ATL03 and the Level 3 product ATL08. 
ATL03 comprises global geolocated photon data con
taining positional information for each photon event 
such as time, latitude, longitude, and elevation. ATL08 
offers terrestrial vegetation height data by classifying 
the geolocated photons from ATL03 into noise, ground, 
canopy, and top-of-canopy categories, particularly in 

vegetated areas (Neuenschwander et al. 2024). The 
National Snow & Ice Data Center (NSIDC) provides var
ious ICESat-2/ATLAS data products free of charge to the 
global community. This study leverages the latest 
release, Version 6, of ICESat-2 data stored in HDF5 file 
format. The relevant data for the study sites is accessible 
for download at no cost from the following link: https:// 
nsidc.org/data/atl03.

3.2.2. Airborne LiDAR data
The National Ecological Observatory Network (NEON), 
established by the National Science Foundation in the 
United States, aims to collect high-quality, standardized 
data on climate change and land-use change from 81 
locations nationwide (47 terrestrial and 34 aquatic). This 
data serves to investigate critical ecological and environ
mental matters, predict environmental change

Figure 5. Outer clustered noise photons removal. (a) The denoising result after low-density clustered noise photons removal. (b) The 
upper and lower bounds for outer clustered noise photons removal. (c) Box plots analysis for the photons within each filtering 
window. (d) The final denoising result after outer clustered noise photons removal.
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trajectories, and propose pertinent strategies. In this 
investigation, NEON’s airborne LiDAR data products – 
encompassing the Digital Terrain Model (DTM) and 
Digital Surface Model (DSM) – are selected as benchmark 
values to validate the accuracy of the proposed algo
rithm. These datasets have a resolution of 1 m and are 
provided in TIFF format. The airborne data for Study Site 
1 and Study Site 2 were acquired in June 2022 and 

September 2022 respectively, closely aligning with the 
ATLAS data collection dates to minimize discrepancies 
resulting from inconsistent data acquisition times. To 
obtain the reference signal photons, this paper utilizes 
multi-value extraction on DTM and DSM points in ArcGIS 
based on the latitude and longitude coordinates of 
ICESat-2 photons, the corresponding DTM and DSM 
values for each photon are determined. This is followed

Table 1. Detailed information of ICESat-2 strong beam data for the study sites.
Study sites Datasets Time Data type Terrain slope

YELL data1 Daytime gt3l/strong gentle
data2 Daytime gt1r/strong gentle
data3 Nighttime gt1l/strong gentle
data4 Nighttime gt1l/strong gentle

GRSM data5 Daytime gt1r/strong steep
data6 Daytime gt3r/strong steep
data7 Nighttime gt1r/strong steep
data8 Nighttime gt1l/strong steep

Figure 6. Geographical locations and terrain features of the study sites. (a) Geographical locations of the study sites. (b) Terrain feature 
for study site 1 (YELL). (c) Terrain feature for study site 2 (GRSM).
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by contour line generation for DTM and DSM through 
interpolation. Finally, based on the spatial distribution 
characteristics of the photon point clouds, points falling 
between the DSM and DTM contour lines in the airborne 
data are classified as signal photons, while those outside 
this range are categorized as noise photons.

The relevant data can be accessed from the follow
ing site: https://www.neonscience.org/data-collection 
/LiDAR. Figure 7 demonstrates the alignment of 
ICESat-2 photons with DTMs and DSMs. In the figure, 
the green lines depict the ICESat-2 beam data as 
depicted in Figure 7a,b. As previously stated, the 
DTMs and DSMs were created using NEON’s airborne 
LiDAR. The alignment of ICESat-2 photons with DTMs 
and DSMs is determined by their specific latitude and 
longitude coordinates. Figure 7c–f displays the over
lapping results of ICESat-2 photons with DTMs and 
DSMs.

3.3. Accuracy metrics

This paper employs four accuracy metrics, namely Recall 
(R), Precision (P), F1 Score (F1) and Accuracy (Acc) to quan
titatively assess the denoising performance of the pro
posed method. These metrics are defined by Eqs (2)-(5). 

Figure 7. Photons aligned with DTMs and DSMs. (a) Raw photons of data 1. (b) Raw photons of data 8. (c) Overlapped photons with 
DTM provided by NEON for data 1. (d) Overlapped photons with DSM provided by NEON for data 1. (e) Overlapped photons with DTM 
provided by NEON for data 8. (f) Overlapped photons provided by NEON with DSM for data 8.
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where TP represents the number of correctly detected 
signal photons, TN denotes the correct identification of 
noise photons, FP indicates the misclassification of noise 
photons as signal photons, and FN refers to the misclas
sification of signal photons as noise photons. The 
research acquires reference outcomes and performs 
accuracy assessments using the DTM and DSM gener
ated from NEON airborne LiDAR data. Specifically, the 
DTM and DSM corresponding to the test region are 
extracted based on the latitude and longitude of the 
signal photons. Contour lines of the DTM and DSM are 
then created through interpolation and extrapolation. 
Photons falling within these boundaries (with the DTM 
representing the ground boundary and the DSM repre
senting the canopy top boundary) are designated as 
reference signal photons, while those outside these 
boundaries are categorized as noise photons (Huang 
et al. 2022). Figure 8 illustrates the alignment between 
the DTM and DSM boundaries with the photons. By 
comparing the signal and noise photon reference out
comes derived from the DTM and DSM with those 
obtained through the proposed method, a confusion 
matrix is established to compute TP, TN, FP, and FN.

3.4. Experimental comparison and analysis

Five traditional denoising techniques have been chosen for 
comparison: the local distance statistics-based approach 
(LDS), the classical DBSCAN-based denoising method 
(DBSCAN), the Differential, Regressive, and Gaussian 
Adaptive Nearest Neighbor filtering method (DRAGANN), 
the Modified DBSCAN method and the Modified Ordering 
Points to Identify the Clustering Structure (OPTICS) method.

The LDS method identifies noise photons based on 
local distance statistical histograms. Initially, this method 
computes distances between each pair of photons. 

Subsequently, it calculates the sum of neighboring dis
tances for n nearest points for each photon to form 
a frequency histogram. Typically, signal photons exhibit 
lower sum values while noisy ones display larger values 
due to signal photons being closely clustered compared 
to noisy ones. By setting a threshold at the mean value 
plus t times the standard deviation based on this fre
quency histogram, noisy photon points can be 
distinguished.

The DBSCAN-based method identifies outliers by pri
marily utilizing density-reachability concepts to group 
closely positioned points and detects outliers as points 
situated in low-density regions. The fundamental con
cept behind DBSCAN revolves around two crucial para
meters: eps (epsilon) and minpts (minimum points). eps 
determines the radius of the neighborhood surrounding 
a point, while minpts specifies the minimum number of 
points necessary within this neighborhood to classify an 
area as dense. Points with a limited number of neighbor
ing points below the minpts threshold are marked as 
outliers.

DRAGANN is a classical denoising method employed 
in generating ATL08 products and serves as an official 
denoising approach for processing ICESat-2 photon 
data. The core principle behind DRAGANN lies in dispa
rities in local point density between noisy and signal 
photons. A bimodal distribution is observed in local 
density distribution histograms due to noise photons 
being sparsely distributed and signal photons densely 
distributed, with noise on one end and signal on 
another. Gaussian curves are utilized to fit histograms 
associated with noise and signal, respectively. The den
sity at the intersection point of these curves serves as 
a threshold; classifying photons with local densities 
below this threshold as noise photons which are subse
quently removed.

Figure 8. Alignment between the DTM and DSM boundaries and the photons.
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As mentioned in our previous review work, the elliptic 
neighborhood may be more suitable for denoising the 
ICESat-2 data. Thus, several researchers have tried to 
modify the traditional DBSCAN method to make it 
more suitable for processing photon data. Zhang and 
Kerekes (2015) and Zhang et al. (2025) have modified the 
traditional circular search area to an elliptical shape, 
catering to the characteristic of higher point density in 
the horizontal direction of photon-counting laser alti
meter point clouds. As a result, this study conducted 
additional testing on the modified DBSCAN approach.

Zhu et al. (2021) modified the circular search area in 
the OPTICS algorithm to an elliptical shape to accom
modate the distribution characteristics of photon data, 
which features a higher photon density in the horizontal 
direction than in the vertical. By employing the 
improved OPTICS algorithm, a distance ordering of all 
photons was generated, and distance thresholds were 
automatically set using the Otsu method, effectively 
distinguishing signal photons from noise photons.

To quantitatively evaluate the performance of the 
proposed method, this study further calculated accuracy 
indicators based on Eqs (2)-(5) for eight selected datasets 
and compared the four accuracy indicators (P, R, F1, and 
Acc) with those of five other methods. The comparison 
results of accuracy indicators are presented in Table 2.

Regarding precision (P), the proposed method 
achieved the highest mean precision value of 0.978, 
outperforming the other three methods. Notably, the 
DRAGANN method had the lowest mean precision 
value of 0.775, significantly lower than that of the 

proposed method as shown in Figure 9. Precision 
measures the proportion of true positive predictions 
among all positive predictions, indicating that the pro
posed method can more accurately identify signal 
photons.

In terms of recall (R), DBSCAN, DRAGANN, and the 
proposed method achieved similar mean recall values 
ranging from 0.925 to 0.930. On the other hand, 
Modified DBSCAN performed the worst with a mean 
recall value of 0.880. This highlights the strong ability 
of the proposed method in detecting more signal 
photons.

The F1 score is a statistical measure used to assess 
binary classification model performance, being the har
monic mean of precision and recall. A higher F1 score 
indicates better overall performance. The proposed 
method demonstrated the best performance with the 
highest mean F1 score of 0.950, signifying a balance 
between precision and recall.

Accuracy (Acc) provides a direct measure of overall 
model performance, with higher accuracy indicating 
fewer prediction errors. The proposed method achieved 
a mean accuracy of 0.969, surpassing the values 
obtained by the other five methods. This suggests that 
the proposed method delivers superior signal and noise 
photon classification results by effectively detecting and 
removing noise photons.

As illustrated in Table 1, the eight datasets can be 
categorized into two main groups: those collected dur
ing the day and those collected at night, as well as 
datasets in gentle and steep terrains. Therefore, this

Table 2. Accuracy indicators comparison for the tested datasets.
data1 data2 data3 data4 data5 data6 data7 data8 mean

LDS P 0.908 0.950 0.997 0.500 0.999 0.979 0.998 0.974 0.913
R 0.983 0.845 0.914 1.000 0.834 0.853 0.843 0.894 0.896
F1 0.944 0.895 0.954 0.667 0.909 0.912 0.914 0.933 0.891
Acc 0.969 0.945 0.960 0.500 0.940 0.954 0.961 0.974 0.900

DBSCAN P 0.873 0.991 0.979 0.998 0.945 0.884 0.909 0.662 0.905
R 0.982 0.837 0.935 0.925 0.891 0.903 0.965 0.980 0.927
F1 0.923 0.907 0.957 0.960 0.917 0.894 0.936 0.789 0.910
Acc 0.958 0.950 0.963 0.938 0.949 0.948 0.974 0.936 0.952

DRAGANN P 0.941 0.988 0.906 0.921 0.522 0.504 0.725 0.693 0.775
R 0.992 0.893 0.953 0.957 0.882 0.887 0.948 0.927 0.930
F1 0.966 0.938 0.929 0.938 0.656 0.643 0.822 0.793 0.836
Acc 0.981 0.968 0.942 0.909 0.835 0.863 0.934 0.934 0.921

Modified DBSCAN P 0.993 0.999 0.997 1.000 1.000 0.998 0.974 0.957 0.990
R 0.972 0.862 0.930 0.927 0.845 0.723 0.897 0.886 0.880
F1 0.982 0.925 0.962 0.962 0.916 0.838 0.934 0.920 0.930
A 0.989 0.960 0.967 0.941 0.945 0.906 0.971 0.970 0.956

Modified OPTICS P 0.976 0.997 0.995 1.000 0.996 0.916 0.955 0.951 0.973
R 0.980 0.867 0.928 0.918 0.857 0.848 0.932 0.880 0.901
F1 0.978 0.927 0.960 0.957 0.921 0.881 0.944 0.914 0.935
A 0.987 0.961 0.966 0.933 0.949 0.939 0.976 0.967 0.960

The proposed 
method

P 0.986 0.998 0.991 0.997 0.990 0.968 0.938 0.954 0.978
R 0.982 0.872 0.940 0.938 0.886 0.886 0.961 0.933 0.925
F1 0.984 0.931 0.965 0.967 0.935 0.925 0.950 0.943 0.950
Acc 0.991 0.963 0.970 0.949 0.959 0.962 0.979 0.979 0.969
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study further examines the performance of the pro
posed method across different dataset characteristics. 
Figure 10a,b present comparisons of mean F1 score and 
accuracy among the six methods for datasets collected 
during the day and at night, respectively. It is evident 
that the DBSCAN, Modified DBSCAN and Modified 
OPTICS methods exhibit satisfied performance for both 
daytime and nighttime datasets, while the DRAGANN 
method performs poorly for both types. Additionally, it 
is apparent that, in terms of both F1 score and accuracy, 
the proposed method surpasses the other five methods.

In addition to comparing accuracy indicators, this 
paper also analyzed the time efficiency of the different 
methods. The comparison results are presented in 
Table 3. It can be observed from Table 3 that DBSCAN, 
DRAGANN and Modified DBSCAN demonstrated similar 
computation times. The average computation time for 
the eight datasets is approximately 2 s. The LDS method 
exhibited a longest computation time due to the neces
sity of calculating local distance statistics, which is typi
cally time-consuming. The proposed method had the 
longer average computation time at 4.67 seconds. This 
is because it involves three steps to remove noise based 
on spatial distribution characteristics, leading to a longer 
process for achieving the final denoising result. It should 
be noted that the extended computation time may 
restrict the practical application of the proposed method 
in real-time scenarios.

4. Illustration on the performance for the 
datasets collected under different conditions

As tabulated in Table 1, the datasets under evaluation 
consist of four distinct types: ICESat-2 photons gathered 
during both daytime and nighttime, as well as ICESat-2 
photons located in gentle and steep terrains. 
Consequently, this study selected four different datasets 
(data1, data3, data5, and data8) with diverse character
istics for thorough comparison.

From the illustration in Figure 11a, it is evident that 
the dataset is situated in a flat terrain with a gentle slope. 
Referring to Table 1, it can be noted that this dataset was 
collected during daytime. Figure 11b shows the refer
enced denoising result, where red points denote signal 
photons and green points represent noise photons. 
Figure 11c showcases the denoising results obtained 
using the LDS method. A comparison with the reference 
result shown in Figure 11c reveals that the LDS method 
encounters challenges in managing noise photons near 
the terrain and tends to misclassify canopy photons as 
noise photons, as indicated by the labeled ellipses in 
Figure 11c. This difficulty arises from the fact that the 
LDS primarily identifies noise photons based on local 
distance statistical histograms. While signal photons 
with smaller local distances are effectively preserved, 
those with larger sum of values are prone to erroneous 
classification. Moving on to Figure 11d, this depicts the 
denoising outcomes achieved through the DBSCAN

Figure 9. Comparison of mean accuracy indicators among these six methods.
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method. The efficacy of this approach is heavily influ
enced by two key parameters (eps and minpts). 
Inappropriate parameter settings can yield incorrect 
photon denoising outcomes, as depicted in Figure 11d. 
When compared to the LDS and DBSCAN methods, it is 
evident that the DRAGANN method delivers superior 

denoising results, albeit some signal photons close to 
the terrain are still misclassified as noise photons, as 
shown in Figure 11e. Figure 11f,g presents the results 
obtained using the Modified DBSCAN and Modified 
OPTICS methods. It is clear that a significant limitation 
of these two methods is their tendency to mistakenly

Figure 10. Comparisons of mean F1 score and accuracy among the six methods for datasets of different characteristics. (a) and (b) 
present comparisons of mean F1 score and accuracy among the six methods for datasets collected during the day and at night, 
respectively. (c) and (d) depict comparisons of mean F1 score and accuracy among different methods for datasets in gentle and steep 
terrains, respectively.

Table 3. Comparison of time efficiency among different methods (unit: second).
data1 data2 data3 data4 data5 data6 data7 data8 mean

LDS 8.81 4.33 8.67 17.81 3.14 7.72 7.23 10.03 8.47
DBSCAN 2.87 1.1 1.06 7.31 0.88 1.96 1.82 2.31 2.41
DRAGANN 1.54 1.4 1.71 3.64 1.42 1.84 1.65 2.73 1.99
Modified DBSCAN 1.91 0.98 1.39 5.11 0.76 1.43 1.44 1.74 1.85
Modified OPTICS 1.65 1.02 1.55 20.33 0.97 1.46 1.26 1.35 3.70
The proposed method 3.00 1.78 3.38 21.95 1.69 1.96 1.74 1.89 4.67
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Figure 11. Detailed comparison of denoising results for ICESat-2 photons gathered during daytime located in gentle terrain among 
these six methods. (a) ICESat-2 photons located in gentle terrain. (b) The referenced denoising result for the selected area. (c) The 
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classify some lower noise photons as signal photons. 
Finally, Figure 11h presents the results of noise photon 
removal using the proposed method which demon
strates significantly more accurate denoising outcomes 
than the aforementioned methods.

Figure 10c,d depict comparisons of mean F1 score and 
accuracy among different methods for datasets in gentle 
and steep terrains, respectively. For datasets in gentle 
terrains, where terrain slope changes gradually, all five 
methods (DBSCAN, DRAGANN, Modified DBSCAN, 
Modified OPTICS and the proposed method) perform 
well except for the LDS method. The proposed method 
demonstrates superior performance in both F1 score and 
accuracy. For datasets in steep terrains, where terrain 
slope changes more drastically, there are variations in 
F1 score values among the six methods; however, the 
proposed method still achieves the highest F1 score. This 
trend is also observed in terms of accuracy metrics. Thus, 
it can be concluded that the proposed method consis
tently delivers optimal denoising performance regard
less of terrain type – whether gentle or steep.

In contrast to datasets collected during daytime, 
nighttime-collected photons generally exhibit lower 
levels of noise but also possess lower photon density 
(Kui et al. 2023; Pan et al. 2024). To assess the proposed 
method’s performance on nighttime photons, a dataset 
gathered in a flat terrain during nighttime was selected 
for testing purposes, as illustrated in Figure 12a. From 
Figures 12c–h, it becomes apparent that due to reduced 
noise levels among nighttime photons, fewer misclassi
fications occur compared to their daytime counterparts. 
Figure 12c illustrates the denoising results obtained 
using the LDS method, where several photons at lower 
elevations are mistakenly categorized as noise photons. 
In Figure 12d, the DBSCAN denoising outcome is pre
sented. As this method utilizes a clustering approach, 
instances where the clustered results fail to meet the 
thresholds result in incorrect classifications, as depicted 
in Figure 12d. Subsequently, Figure 12e showcases the 
denoising outcome of the DRAGANN method. Similar to 
Figure 11e, some photons from lower terrain are mis
classified as noise photons in addition to all signal 
photons labeled within the left ellipse. This misclassifica
tion is attributed to the DRAGANN method’s detection of 
noise photons based on the assumption of bimodal 
distribution of elevations for noise and signal photons. 
By identifying the intersection of two Gaussian curves, 
noise photons can be eliminated. However, accurately 

determining this intersection proves challenging. 
Incorrectly determined thresholds can lead to misclassi
fication of photons across the entire region. Regarding 
Figure 12f,g, a similar observation can be made as in 
Figure 11f,g: the Modified DBSCAN and Modified OPTICS 
methods tend to incorrectly classify lower noise 
photons. A comparison with the denoising outcomes 
displayed in Figure 12b reveals that the noise photon 
removal results by the proposed method (Figure 12h) 
are much closer to the reference outcome.

In addition to the data collected by ICESat-2 in gentle 
terrains, Figures 13 and 14 illustrate how different meth
ods perform when processing datasets from steep ter
rain. Figure 13a shows an area situated in mountainous 
terrain with varying slopes. A comparison with the refer
ence result in Figure 13b reveals that some photons with 
higher or lower elevations are incorrectly classified by 
the LDS method, as depicted in Figure 13c. This is 
because the LDS method identifies noise photons 
based on local distance statistical histograms, using 
a threshold derived from the frequency histogram 
mean plus t times the standard deviation to distinguish 
noisy points. However, determining an accurate thresh
old in rugged terrains poses a challenge, leading to 
misclassification of photons near signal points as 
shown in Figure 13c.

Figure 13d presents the result of noise photon 
removal using the DBSCAN method, where misclassified 
photons are mixed with signal photons unlike in the LDS 
method’s output. The DRAGANN method performs 
poorly on this dataset (Figure 13e), erroneously labeling 
many signal photons as noise due to challenges in dis
cerning noise from signal photons based on intersecting 
Gaussian curves in local density histograms. Both 
Figure 13f,g demonstrate that the Modified DBSCAN 
and Modified OPTICS methods tend to misclassify noise 
photons that are close to signal photons in steep 
terrains.

Compared to the other three methods, this study 
achieved superior denoising results (Figure 13h) by clas
sifying noise photons into three types and gradually 
removing them based on their characteristics, yielding 
satisfactory outcomes even in rugged terrains.

Figure 14 displays denoising outcomes of the four 
methods applied to ICESat-2 data collected during night
time in steep terrain. A comparison with the reference 
result (Figure 14b) demonstrates that the LDS, DBSCAN, 
DRAGANN, Modified DBSCAN and Modified OPTICS

denoising result obtained by the LDS method. (d) The denoising result obtained by the DBSCAN method. (e) The denoising result 
obtained by the DRAGANN method. (f) The denoising result obtained by the modified DBSCAN method. (g) The denoising result 
obtained by the modified OPTICS method. (h) The denoising result obtained by the proposed method.
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Figure 12. Detailed comparison of denoising results for ICESat-2 photons gathered during nighttime located in gentle terrain among 
these six methods. (a) ICESat-2 photons located in gentle terrain. (b) The referenced denoising result for the selected area. (c) The 
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methods perform notably worse than the proposed 
method in rugged terrains, with numerous misclassified 
photons shown in Figures 14c–g due to parameter- 
dependent performance leading to improper classifica
tion thresholds.

Conversely, the proposed method adaptively detects 
and removes noise photons without manual threshold 
adjustments, enhancing robustness across different ter
rain types and yielding satisfactory denoising results as 
depicted in Figure 14h.

5. Discussion

5.1. Necessity analysis towards different steps 
combination

In this paper, noise photons are categorized into iso
lated, low-density clustered, and outer clustered types 
based on their unique spatial distribution characteristics. 
Each type is then targeted with specific denoising tech
niques using a multi-step strategy. The denoising pro
cess involves three steps: Step 2.1 focuses on removing 
isolated noise photons through a multi-thresholding 
strategy, Step 2.2 involves adaptive calculation of terrain 
slopes to eliminate low-density clustered noise photons, 
and Step 2.3 deals with removing outer clustered noise 
photons using the box plot analysis technique.

Results from Section 2.2 show that a significant num
ber of noise photons are removed after the second step 
of denoising. This prompts the need to evaluate perfor
mance without implementing Step 2.1 and consider the 
impact of swapping the order of Step 2.1 and Step 2.2. 
To address these questions, various combinations of 
steps were tested on datasets listed in Table 1, and the 
outcomes are presented in Table 4.

Analysis of Table 4 reveals that omitting Step 2.1 
results in lower accuracy across all four indicators com
pared to the proposed method, highlighting the impor
tance of this step in the denoising process. While 
a considerable reduction in noise photons is achieved 
after Step 2.2, performance significantly deteriorates 
without the preceding Step 2.1. Swapping the order of 
Steps 2.1 and 2.2 leads to notably inferior results, parti
cularly in F1-score and accuracy indicators.

The observed decline in performance can be attribu
ted to the structured approach of the proposed method, 
which systematically addresses each type of noise 
photon based on its distribution characteristics. By 

following this sequential removal process tailored to 
distinct noise types, superior outcomes are achieved 
compared to directly combining multiple steps without 
such differentiation.

5.2. Impact of elevation frequency histogram 
resolution

In Section 2.2, the core photons are identified based on 
the elevation frequency histogram, which is crucial for 
calculating terrain slope. Therefore, it is essential to ana
lyze the effect of varying the resolution of the elevation 
frequency histogram. Generally, a smaller resolution is 
suitable for flat areas like gentle terrain. This ensures that 
high-frequency photons are accurately identified as ter
rain points. Conversely, in steep terrain, a larger resolu
tion is needed to ensure proper selection of high- 
frequency photons as terrain points. In this study, 
a resolution of 1 m is used for gentle terrain and 15 m 
for steep terrain.

To assess the impact of different resolutions of elevation 
frequency histograms on slope estimation, this study cal
culates the mean slope deviation (MSD) and root mean 
square error (RMSE) of slope estimation under various 
resolutions. The reference terrain slope is calculated using 
a DTM generated from NEON’s airborne LiDAR data, while 
the estimated terrain slope is calculated using two succes
sive core photons. The results are presented in Table 5.

Table 5 shows that smaller resolutions lead to lower 
slope deviations for gentle terrains (data1, data2, data3, 
and data4), but higher deviations for steep terrains (data5, 
data6, data7, and data8). Conversely, larger resolutions 
yield opposite results. By using smaller resolutions for gen
tle terrain and larger resolutions for steep terrain, more 
accurate slope estimations can be achieved. However, it 
should be noted that regardless of the resolution used, the 
mean slope deviation across all eight datasets remains 
relatively consistent. This suggests that terrain slope esti
mation using core photons is effective in this study.

5.3. Influence of parameter settings

In this paper, several parameters are involved in the 
proposed method, namely the filtering window size (S) 
and the number of neighboring points (N) mentioned in 
Section 2.1, as well as the minor axis of the ellipse (b) 
mentioned in Section 2.2. To analyze the impact of these 
parameter settings on performance, this study tested

denoising result obtained by the LDS method. (d) The denoising result obtained by the DBSCAN method. (e) The denoising result 
obtained by the DRAGANN method. (f) The denoising result obtained by the modified DBSCAN method. (g) The denoising result 
obtained by the modified OPTICS method. (h) The denoising result obtained by the proposed method.

GISCIENCE & REMOTE SENSING 19



Figure 13. Detailed comparison of denoising results for ICESat-2 photons gathered during daytime located in steep terrain among 
these six methods. (a) ICESat-2 photons located in steep terrain. (b) The referenced denoising result for the selected area. (c) The 
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eight datasets listed in Table 1. The accuracy metrics 
obtained with different parameter settings are presented 
in Table 6. It is observed that while varying parameter 
settings may influence the denoising outcome, the calcu
lated accuracy metrics remain relatively stable. In essence, 
although multiple parameters are involved in this study, 
their adjustment does not significantly alter denoising 
performance. This is attributed to the categorization of 
noise photons into three distinct groups and their gradual 
removal using a specific denoising technique outlined in 
this paper. Adopting a multi-step approach allows for 
incremental removal of noise photons, thereby improving 
the robustness and efficacy of the proposed method.

5.4. Performance towards the weak beam data

As mentioned in Section 3.2, ICESat-2/ATLAS emits 
six beams of laser pulses along its orbital path, each 
containing three pairs. These pairs consist of 
a strong signal and a weak signal, with an energy 
ratio of 4:1 between them. The datasets tested in 
Table 1 correspond to the strong beam data. To 
evaluate the performance of the proposed method 
on weak data, this study conducted additional tests 
using the weak beam data from ICESat-2, as detailed 
in Table 7.

Given that the energy of the weak beam (40μJ) is only 
one-quarter that of the strong beam (160μJ), it is evident 
that the number of signal photons in the strong beam 
surpasses that in the weak beam, as depicted in 
Figure 15. Consequently, the signal-to-noise ratio (SNR) 
of weak beam data is significantly lower compared to 
that of strong beam data.

The paper also calculated four accuracy indicators for 
five other methods – LDS, DBSCAN, DRAGANN, Modified 
DBSCAN, and Modified OPTICS – for comparison pur
poses. The comparison results are displayed in 
Figure 16. When analyzing precision (P) for weak beam 
data, the proposed method achieved the higher average 
precision value of 0.938, outperforming all other meth
ods. Particularly noteworthy is that the DRAGANN 
method demonstrated the lowest average precision at 
0.700, notably inferior to our approach. Precision repre
sents the proportion of true positive predictions among 
all positive predictions, indicating that our method 
excels in accurately identifying signal photons within 
weak beam data.

In terms of recall (R), LDS, DBSCAN and Modified 
DBSCAN showcased similar average recall rates ranging 
from 0.738 to 0.797. While both DRAGANN and our 
proposed method achieved average recall rates above 
0.850, DBSCAN performed least effectively with an aver
age recall rate of 0.738. This highlights our method’s 
ability to detect a higher number of signal photons 
within weak beam data.

The F1 score – a statistical metric evaluating binary 
classification model performance by considering the 
harmonic mean of precision and recall – signifies overall 
model effectiveness. Our method exhibited the highest 
average F1 score of 0.900, further validating its superior 
performance on weak beam data.

Accuracy (Acc) directly measures overall model per
formance, with higher values indicating fewer prediction 
errors. Our method demonstrated an average accuracy 
of 0.961, surpassing all other tested methods. This 
underscores our approach’s efficacy in detecting and 
eliminating noise photons, leading to exceptional signal- 
noise photon classification outcomes.

5.5. Performance towards different land covers

To evaluate the performance on various land covers, this 
study selected other eight datasets covering three dis
tinct types: forest, vegetation, and mixture. The forest 
land cover includes evergreen, deciduous, and mixed 
forests. Vegetation cover comprises shrubs, crops, 
woody wetlands, and herbaceous wetlands. Mixture 
cover includes bare land and building materials. The 
ICESat-2 data were matched with the National Land 
Cover Database (NLCD) in ArcGIS to determine the cor
responding land cover types. The three land covers used 
for testing are shown in Figure 17.

The evaluation metrics of the proposed method and 
five comparative approaches across different land cover 
types are presented in Figure 18. Subfigures (a)-(c) dis
play the precision, recall, and F1-scores for six methodol
ogies under forest, vegetation, and mixture conditions. 
Our method maintains a balance between precision and 
recall across all categories, consistently achieving the 
highest F1-scores.

For forest land cover, DRAGANN shows poor pre
cision suitability for forested areas. Modified OPTICS 
has the highest precision (0.975) but insufficient recall 
(0.888). LDS has higher recall (0.916) but suboptimal 
F1-score (0.928). DRAGANN has high recall (0.913) but

denoising result obtained by the LDS method. (d) The denoising result obtained by the DBSCAN method. (e) The denoising result 
obtained by the DRAGANN method. (f) The denoising result obtained by the modified DBSCAN method. (g) The denoising result 
obtained by the modified OPTICS method. (h) The denoising result obtained by the proposed method.
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Figure 14. Detailed comparison of denoising results for ICESat-2 photons gathered during nighttime located in steep terrain among 
these six methods. (a) ICESat-2 photons located in steep terrain. (b) The referenced denoising result for the selected area. (c) The 
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Table 4. Necessity analysis toward different steps combination.
P R F1 Acc

Without Step 2.1 0.966 0.910 0.937 0.962
Swapping Step 2.1 and Step 2.2 0.710 0.862 0.762 0.866
Step 2.1 +Step 2.2 +Step 2.3 0.978 0.925 0.950 0.969

Table 5. Slope estimation accuracy across varying resolutions of elevation frequency histograms (in degrees).
Resolution Indicator data1 data2 data3 data4 data5 data6 data7 data8 mean

1 m MSD 0.762 0.224 0.246 0.246 7.041 15.612 9.116 10.742 5.499
RMSE 0.600 0.310 0.403 0.358 10.385 11.656 12.398 15.244 6.419

15 m MSD 4.768 7.469 8.738 4.568 4.733 7.193 3.304 3.287 5.508
RMSE 7.841 14.128 13.820 6.585 5.878 9.324 4.489 3.749 8.227

1 m & MSD 0.762 0.224 0.246 0.246 4.733 7.193 3.304 3.287 2.499
15 m RMSE 0.600 0.310 0.403 0.358 5.878 9.324 4.489 3.749 3.139

Table 6. Accuracy metrics using different parameter settings.
Parameter value P R F1 Acc

S 45 97.796 92.462 94.993 96.884
55 97.781 92.517 95.016 96.899
65 97.726 92.473 94.967 96.874

N 40 97.533 92.717 94.998 96.890
50 97.675 92.601 95.007 96.896
60 97.811 92.420 94.978 96.879

b 4 89.928 93.624 91.148 95.467
5 96.069 92.395 94.029 96.374
6 98.287 91.265 94.550 96.452

Table 7. Detailed information of ICESat-2 weak beam data for the study sites.
Study sites Datasets Time Data type Terrain slope

YELL data1 Daytime gt3l/weak gentle
data2 Daytime gt1r/weak gentle
data3 Nighttime gt1l/weak gentle
data4 Nighttime gt1l/weak gentle

GRSM data5 Daytime gt1r/weak steep
data6 Daytime gt3r/weak steep
data7 Nighttime gt1r/weak steep
data8 Nighttime gt1l/weak steep

denoising result obtained by the LDS method. (d) The denoising result obtained by the DBSCAN method. (e) The denoising result 
obtained by the DRAGANN method. (f) The denoising result obtained by the modified DBSCAN method. (g) The denoising result 
obtained by the modified OPTICS method. (h) The denoising result obtained by the proposed method.

Figure 15. Strong and weak beam data comparison. (a) Strong beam data. (b) Weak beam data.
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Figure 16. Comparison of mean accuracy indicators among these six methods toward the weak beam data.

Figure 17. Icesat-2 photons corresponding to different land covers. (a) Forest land cover. (b) Vegetation land cover. (c) Mixture land 
cover.

24 Z. HUI ET AL.



low precision (0.765). For vegetation land cover, 
DRAGANN has the highest recall (0.942) but inade
quate precision (0.836). Both Modified DBSCAN and 
Modified OPTICS show improved denoising compared 
to conventional methods. For mixture land cover, 
DBSCAN and LDS have balanced precision and recall. 
Modified DBSCAN has high precision (0.954) but 
lower recall (0.796).

Overall, our proposed methodology provides robust 
denoising performance across all three land cover types, 
with strengths in vegetation and mixture covers.

6. Conclusion

ICESat-2 data has been utilized in various fields. 
However, ICESat-2 data are affected by a significant 
amount of noise photons. Therefore, the removal of 
noise is a critical step in processing ICESat-2 photons. 
As noise photons exhibit a sparse and random spatial 
distribution while signal photons tend to cluster clo
sely, this study presents a progressive noise removal 

approach based on different noise characteristics. The 
classification of noise photons into isolated noise 
photons, low-density clustered noise photons, and 
outer clustered noise photons is done based on 
their distinct spatial distribution features. Isolated 
noise photons are identified using a multi- 
thresholding strategy employing the maximum 
between-clustering variance algorithm. For the low- 
density clustered noise photons, an ellipse-based 
photon counting method is proposed considering 
that signal photons are generally densely clustered 
with higher photon densities. The major axis of the 
ellipse aligns with the local terrain slope, which is 
dynamically calculated using the Douglas-Peucker 
algorithm. To address the third type of noise 
photons, a box plots analysis technique based on 
local elevation distributions is introduced. 
Evaluations conducted on datasets with diverse char
acteristics, including both daytime and nighttime 
acquisitions, as well as varying land covers, consis
tently highlight the effectiveness of our method.

Figure 18. Accuracy indicators comparison toward different land covers. (a) Comparison result for the forest land cover. (b) 
Comparison result for the vegetation land cover. (c) Comparison result for the mixture land cover.
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The innovative aspects of our method lie in its progres
sive and type-specific denoising strategy, which effec
tively overcomes the limitations of uniform denoising 
methods. This study introduces a novel classification of 
noise photons into three distinct types based on their 
unique spatial distribution characteristics, providing dee
per insights into the nature of noise. Furthermore, tailored 
denoising techniques were proposed for each type of 
noise. For instance, isolated noise photons can be elimi
nated without parameter tuning through the application 
of the maximum between-clustering variance algorithm. 
Additionally, to align the ellipse-based photon counting 
method with changing terrain slopes, we introduced 
a novel automatic calculation method based on the 
Douglas-Peucker algorithm. The automatic denoising of 
outer clustered noise photons was achieved through the 
introduction of a box plots analysis technique.

The high efficiency in denoising and preservation of 
signal photons achieved by our method suggest its poten
tial for broad implementation in ICESat-2 data processing 
workflows. Future research could investigate combining 
our approach with machine learning (such as XGBoost, 
LightGBM) for noise photon classification by integrating 
the spatial structural features created in this study (such as 
density, local elevation distribution, and principal axis 
orientation). To improve geographic interpretability, we 
will also attempt to use spatial autocorrelation metrics 
(such as Moran’s I) to assess the anomalous character of 
local photon distributions and create multivariate discrimi
native models that combine terrain features and spatial 
structural attributes.
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