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Abstract: Diameter at breast height (DBH) is a crucial parameter for forest inventory. However,
accurately estimating DBH remains challenging due to the noisy and incomplete cross-sectional
points. To address this, this paper proposed a reliable DBH estimation method using terrestrial
LiDAR points through polar coordinate transformation and progressive outlier removal. In this
paper, the initial center was initially detected by rasterizing the convex hull, and then the Cartesian
coordinates were transformed into polar coordinates. In the polar coordinate system, the outliers were
classified as low and high outliers according to the distribution of polar radius difference. Both types
of outliers were then removed using adaptive thresholds and the moving least squares algorithm.
Finally, DBH was estimated by calculating the definite integral of arc length in the polar coordinate
system. Twenty publicly available individual trees were adopted for the test. Experimental results
indicated that the proposed method performs better than the other four classical DBH estimation
methods. Furthermore, several extreme cases scanned using terrestrial LiDAR in practice, such as
cross-sectional points with lots of outliers or larger data gaps, were also tested. Experimental results
demonstrate that the proposed method accurately calculates DBH even in these challenging cases.

Keywords: diameter at breast height; terrestrial LiDAR; polar transformation; outlier; cross-sectional
points

1. Introduction

Recent advancements in laser scanning technologies have made it possible to obtain
accurate and detailed three-dimensional information about the structure of forests [1–3].
Terrestrial LiDAR (light detection and ranging), in particular, has emerged as a crucial
method for monitoring forest resources due to its efficiency and precision [4,5]. The dense
point clouds generated by this technology provide access to a wide range of forest attributes,
including tree height [6], diameter at breast height (DBH, which is a measurement used
in forestry to determine the diameter of a tree trunk at a standard height of 1.30 m above
the ground) [7], crown width [8], tree volume [9], and above-ground biomass (AGB, which
is an important metric used in forestry, ecology, and environmental studies to assess the
carbon sequestration capacity of forests and vegetation) [10–12]. DBH, in particular, plays
a vital role in forest inventory as it can be used to estimate various other tree metrics, such
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as tree height [13,14], wood volume [15], and foliage area [16]. Furthermore, DBH is also a
key parameter in many allometric models used for AGB estimation [17,18].

Traditional methods for measuring DBH typically rely on calipers or tapes, which are
inefficient and labor-intensive [19]. Moreover, manual visual measurements are prone to
errors [4]. In contrast, terrestrial LiDAR offers an accurate and non-destructive solution
for estimating DBH [20]. The methods using terrestrial LiDAR can be classified into three
categories: DBH estimation based on regular geometry, DBH estimation by simulating
manual measurement, and DBH estimation based on the quantitative structure model
(QSM). The first two categories generally calculate DBH directly from point clouds, while
the last category relies on the built individual tree models to achieve DBH values [4].

In terms of the DBH estimation methods based on regular geometry, circle fitting [21–25]
and cylinder fitting [26–28] are two typical forms for calculating the DBH. Circle fitting
methods involve selecting a slice of points and estimating the corresponding circle center
and radius using techniques such as least squares fitting [21], random sample consensus
(RANSAC) [29–32], and Hough transform [4,33]. For example, Reddy et al. [32] used
the RANSAC algorithm for circle fitting, while Liu et al. [30] used RANSAC to calculate
DBHs at different tree heights and removed wrongly calculated values based on the PauTa
criterion to obtain accurate estimates. Panagiotidis et al. [34] applied a least squares
circle fit algorithm in combination with hierarchical cluster analysis for DBH extraction.
Koren et al. [35] compared five different circle fitting methods for DBH estimation and
found that all four methods, except for the Monte Carlo method, tended to underestimate
the DBH. Koren et al. [24] found that varying the thickness from 10 cm to 100 cm resulted
in significant changes in calculated DBHs. Other factors such as range and angular errors
of terrestrial LiDAR also have a significant impact on circle fitting results, as demonstrated
by Wang et al. [6] in their experiments.

Cylinder fitting is similar to circle fitting but avoids selecting a specific layer of
points [36]. Most circle fitting techniques can be applied to cylinder fitting as well. For
example, Panagiotidis and Abdollahnejad [37] employed the RANSAC algorithm with a
cylinder fitting strategy using points from cross-sectional areas and used the estimated the
DBH for stem volume calculation. Srinivasan et al. [28] applied cylinder fitting to different
height bins and calculated the average diameter of different directions to retrieve the DBH.

In summary, DBH estimation based on regular geometry assumes that the cross-section
points of the stem are distributed in a circular or cylindrical shape. These methods have
simple principles and are easy to implement. However, both circle fitting and cylinder
fitting methods are sensitive to outliers, which can lead to incorrect DBH estimation results
when dealing with noisy points or cross-section points with data gaps.

The second type of DBH estimation method relies on simulating manual measurement.
Instead of assuming a regular geometry for the stem profile, these methods simulate the
process of manual measurement using a tape [38]. As a result, these methods can be applied
to different shapes of stem profiles and are more applicable in real-world scenarios. In
this kind of method, convex hull points are generally detected initially [39]. You et al. [40]
applied B-spline curves to interpolate the convex hull points and simulate the path of
the tape. Subsequently, the DBH could be calculated using the calculated path length
along the interpolated smooth curve. However, the extraction of convex hull points is
easily influenced by outliers at the outermost points. In order to obtain more accurate
DBH estimation results, Stovall et al. [39] proposed a convex hull peeling method to
gradually remove outlying points. You et al. [38] proposed a caliper simulation method,
where two parallel tangent lines were simulated as the caliper arms towards the convex
hull points. By calculating the average distance between these lines, the DBH can be
estimated. However, experimental results showed that this method tends to overestimate
the DBH. In summary, the main advantage of these methods lies in their ability to handle
irregular shapes of cross-section points of the stem. However, implementing these methods
generally requires dense point clouds of high quality. Additionally, the simulation process is
typically time-consuming [38].



Forests 2024, 15, 1031 3 of 17

The last category is QSM-based DBH estimation methods. In these methods, the QSM
must be constructed for each individual tree as the first step. Several well-known individual
tree modeling methods exist, including SimpleTree [41], TreeQSM [42] and AdTree [43].
It is important to note that all three of these methods are open-source, which facilitates
the tree modeling process. DBH can be obtained as a byproduct of the modeling result.
Ravaglia et al. [4] successfully applied SimpleTree for modeling and achieved satisfactory
results in terms of DBH estimation. The mean errors in their study ranged from 1.03 cm to
3.34 cm. However, Ravaglia et al. [4] also mentioned that filtering is generally necessary
to remove outliers and improve accuracy. Ye et al. [44] calculated DBH by building a
quantitative structure model (QSM) for trees. However, their findings show that there are
obvious deviations between QSM-based DBHs and referenced DBHs. The main limitation
of this kind of method is that the accuracy of DBH estimation heavily relies on the quality
of the QSM construction result. If the modeling result is poor due to occluded tree points,
obtaining accurate DBH estimates becomes challenging. As a result, QSM-based DBH
estimation methods are generally not suitable for single-scanned tree points, which are
highly influenced by occlusion.

To sum up, data gaps caused by occlusion and outliers are the two main factors
affecting the accuracy of DBH estimation regardless of the chosen DBH estimation method.
Although some researchers have attempted to address these issues, occlusion and noisy
points still affect most methods. Therefore, there is an urgent need to develop more
accurate and robust DBH estimation methods. In this study, the Cartesian coordinates of
cross-section points are first transformed into polar coordinates. This transformation is
performed because points in polar coordinates are distributed in a wave-like pattern, which
facilitates outlier detection through curve fitting. The noisy points are then classified as
high or low outliers and removed separately using adaptive threshold filtering and the
moving least squares algorithm. Finally, DBH is estimated based on the definite integral of
arc length in the polar coordinate system.

2. Materials and Methods
2.1. Datasets

This study selected 20 individual trees from the terrestrial LiDAR datasets provided
by Liang et al. [45]. These datasets were obtained in Evo, Finland (61.19◦ N, 25.11◦ E), using
a Leica HDS6100 terrestrial laser scanner (Leica Geosystems AG, Heerbrugg, Switzerland).
The scanner has a scanning view of 360◦ × 310◦ and a distance measurement accuracy
of ±2 mm. Each individual tree was manually segmented from sample plots using an open-
source visualization software called CloudCompare V2.13, and point clouds were scanned
under different forest environments. Specifically, these 20 tree samples were chosen from
three different forest plots measuring 32 by 32 m each. These plots contain a variety of
tree species, including Scots pine, Norway spruce, silver birch, and downy birch. In each
plot, both single-scan and multi-scan modes were used to capture the individual tree points.
In the multi-scan mode, five scans were carried out within each plot: one at the center and
four in the four quadrant directions.

The DBH values were measured manually using steel calipers at two perpendicular
directions on-site. The mean value of these two measurements was considered the refer-
enced DBH. In ideal conditions, the segmented points at breast height should be complete
for each individual tree, as shown in Figure 1a,b. However, there are often outliers caused
by the instrument itself or adjacent shrubs, which can introduce errors in DBH calculation,
as shown in Figure 1c,d. Additionally, due to limitations in scanning view or occlusion, the
segmented points at breast height may have data gaps, resulting in an incomplete circle-like
shape, as shown in Figure 1e,f.
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Figure 1. Different conditions of individual tree points: (a,b) complete cross-sectional points at breast
height; (c,d) noisy cross-sectional points at breast height; (e,f) incomplete cross-sectional points at
breast height.

Among the selected 20 individual trees, all three cases mentioned above (complete
points, noisy points, and incomplete points) were present. Therefore, the proposed
method’s robustness against different scenarios can be tested.
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2.2. Methodology

The flowchart in Figure 2 illustrates the proposed method. DBH is commonly defined
as the stem diameter at a distance of 1.30 m from the tree root. Therefore, a segment of
point clouds between 1.25 m and 1.35 m from the tree root is initially segmented. These
points are then projected onto a horizontal plane. To convert the points from Cartesian
coordinates into polar coordinates, an initial center is estimated by rasterizing the convex
hull formed by x–y coordinates. After transforming them into polar coordinates, it becomes
apparent that there are outliers caused by the instrument itself or adjacent shrubs. These
outliers significantly affect the accuracy of DBH estimation and are defined in this paper
as high and low outliers. High outliers are removed using an adaptive threshold, while
low outliers are identified through iterative use of the moving least squares algorithm.
Once the outliers are removed, the polar coordinates are transformed back to Cartesian
coordinates. Subsequently, a rough estimate of the circle center can be obtained using the
least squares algorithm. Based on this newly calculated center, the Cartesian coordinates are
further transformed into polar coordinates. Finally, DBH can be estimated by calculating
the definite integral of arc length in the polar coordinate system. In summary, this paper
includes three main steps: (i) fast initial center estimation by rasterizing convex hull,
(ii) polar coordinate transformation and high/low outlier identification, and (iii) DBH
estimation based on the definite integral of arc length.
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Figure 2. Flowchart of the proposed method. The asterisk is the initial estimated center.

2.2.1. Fast Initial Center Estimation by Rasterizing Convex Hull

The cross-section of the stem usually resembles a circle shape, which allows the DBH
to be estimated as the diameter of a fitting circle. Ideally, if the projected horizontal points
used for DBH calculation were perfectly distributed along the circle (Figure 3a), their
distances from the center would be equal. In other words, their polar radii should be
equal when transforming Cartesian coordinates into polar coordinates with the circle center
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selected as the pole (Figure 3b). However, in practice, the sliced points of the stem do
not strictly form a circle shape, as shown in Figure 3c. As a result, the corresponding
transformed polar coordinates exhibit a wave-like curve, as shown in Figure 3d.
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To transform Cartesian coordinates into polar coordinates, it is crucial to first locate the
circle center as the pole. In general, the center should lie within the sliced points. To exclude
incorrectly detected centers outside the sliced points, this paper restricts the location of the
center within the minimum convex polygon (red line in Figure 4a) formed by applying the
convex hull algorithm. Additionally, this area is further divided into rasterized grids for
quick center identification. Typically, the center should be located at the farthest point from
all projected horizontal points within the convex hull. Therefore, by traversing each grid
point individually, the grid point with the farthest distance from the projected points is
selected as the initial center (shown as a black asterisk in Figure 4a). It is important to note
that if no restrictions are imposed on locating the center point within the convex hull, then
the farthest grid point may fall outside of the sliced points. As illustrated in Figure 4b, this
farthest grid point may be located in areas I, II, III, or IV. This is why building a convex hull
is necessary to confine the center point within the minimum convex polygon.
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Figure 4. Initial circle center detection. (a) Convex hull building and rasterization; (b) the circle center
that may appear at the outside areas (I, II, III, or IV) without convex hull building.

2.2.2. Polar Coordinate Transformation and High/Low Outlier Identification

Once the initial center is obtained, the horizontal points can be centralized. Using
Equation (1), the Cartesian coordinates can then be transformed into polar coordinates.{

r =
√

x2 + y2

θ = arctan(y/x)
(1)

where r is the polar radius, while θ is the polar angular. Ideally, all circle points should have
equal r values. However, due to the influence of the instrument itself or adjacent shrubs, as
shown in Figure 5a, the transformed polar coordinates generally take on a wave-like shape
with several outliers, as depicted in Figure 5b.
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high outlier identification.

This paper categorizes these outliers into two groups: high and low outliers. High
outliers are those points that deviate significantly from the wave-like curve, represented
by the red points in Figure 5b. Conversely, low outliers are points that are mixed in with
the wave-like curve, illustrated by the blue points in Figure 5b. The classification rule is
defined by Equation (2).{

i f ∆ri ≥ δ, pi ∈ high outlier
i f ∆ri < δ & abs

(
rpi − r̂pi

)
≥ η, pi ∈ low outlier

(2)

where ∆ri is the difference between the point and minimum polar radius in each section, as
shown in Figure 6. Here, each section is divided by 0.05 radians. Due to the existence of
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outliers, the values of ∆ri will be fluctuant. δ is a self-adaptive threshold, which will help
remove the point with a higher ∆ri. rpi is the polar radius of pi, while r̂pi is the polar radius
correspondingly fitted by the moving least squares algorithm. η is a self-adaptive threshold
that is used for identifying the low outliers. Both δ and η can be calculated self-adaptively
in this paper.
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Figure 6. Polar radius difference calculation in each section.

As mentioned above, ∆ri will be varied due to the existence of outliers. Some points with
a larger ∆ri will be detected as high outliers. Thus, it is important to calculate the threshold δ.
This paper first calculates the maximum polar radius difference, ∆rmax

i , in each section, that is,
S =

{
∆rmax

1 · · · , ∆rmax
i · · · , ∆rmax

n
}

, which is distributed as shown in Figure 7.
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Figure 7. Distribution of the maximum polar radius difference. In this figure, the two black dotted
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represents the median value.

From Figure 7, it can be found that there are several extremely larger ∆rmax
i values.

Here, this paper excludes these larger ∆rmax
i values based on the threshold calculated as

q1 + 1.5∆q. q1 represents the upper quartile, while ∆q is the interquartile range. After exclud-
ing the larger ∆rmax

i , a new set can be achieved, that is, S′ =
{

∆rmax
1 · · · , ∆rmax

i · · · , ∆rmax
m

}
,

m ≤ n. Then, the data set, S′, is sorted from smallest to largest. Subsequently, the difference
between the two successive data (eg., ∆rmax

i and ∆rmax
i+1 ) is calculated as σri. Hereafter, a

new set, S′′ = {σr1 · · · , σri · · · , σrm−1}, can be achieved. This paper further calculates the
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mean value (σr) and standard deviation (σ̃r) of S′′ and detects the first σri that is larger than
σr + 3σ̃r. Finally, the corresponding ∆rmax

i is set as the high outlier detection threshold, that is,
δ = ∆rmax

i . For instance, if σr5 is the first value larger than σr + 3σ̃r, δ is equal to ∆rmax
5 .

As shown in Figure 5b, there are several low outliers mixed with the wave-like curve.
This paper adopted the moving least squares algorithm to delete these low outliers. As
shown in Figure 8a, the moving window in this paper is set to four neighboring sections.
The fitted polar radius for pi can be calculated as r̂pi using the points fallen within the
moving window. In terms of r̂pi , all the differences between the polar radiuses and r̂pi

can be calculated as shown in Figure 8b. From Figure 8b, the upper quartile, Q1, and
interquartile range, ∆Q, can be calculated. In this paper, η is set to Q1 + 1.5∆Q, that is, if
the difference between the polar radius and r̂pi is larger than η, the corresponding point
will be identified as a low outlier.
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Figure 8. Process of low outlier identification. (a) Fitted polar radius calculation using moving least
squares algorithm; (b) threshold calculation for low outlier detection. In (b), the two black dotted
lines represent the upper quartile (Q1) and lower quartile. ∆Q is the interquartile range. The white
line represents the median value.

2.2.3. DBH Calculation Based on the Definite Integral of Arc Length

After removing all high and low outliers, “clean” polar coordinates can be obtained,
as shown in Figure 9a. These polar coordinates can also be converted back into Cartesian
coordinates, as demonstrated in Figure 9b. It can be observed from Figure 9b that the
point distribution is closer to a circle. By employing the least squares fitting algorithm,
a rough center can be estimated and represented by the red fork in Figure 9b. It should
be noted that this paper refers to this estimated center as a “rough center” because it is
based on an initial center (the black asterisk point shown in Figure 4a). This initial center is
generally not accurate. To achieve precise DBH estimation results, the newly calculated
center depicted in Figure 9b is used to transform the Cartesian coordinates presented in
Figure 9b into polar coordinates, as illustrated in Figure 9c. Consequently, DBH can be
estimated according to Equation (3). DBH = 2 L

α

L =
n
∑

i=1
Li, α =

n
∑

i=1
αi

(3)

Li =
∫ θi+1

θi

√
r2 +

(
dr
dθ

)2
dθ (4)

where L is the arc length, while α is the corresponding radian. In complex forest envi-
ronments, it is generally hard to obtain complete stem points due to the scanning angle
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especially when adopting single-scanning mode. As a result, the wave-like curve is gen-
erally fragmentized as shown in Figure 9d. Then, the arc length, L, can be calculated by
summing each fragmentized arc length, Li, while Li can be calculated based on the definite
integral of arc length from θi to θi+1 according to Equation (4).
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3. Experimental Results

To visually demonstrate the effectiveness of this method, six out of the twenty DBH
estimation results were tabulated in Figure 10. These six cross-sectional points correspond
to the six trees depicted in Figure 1. From Figure 10, it can be found that in terms of
complete cross-sectional points, the proposed method can fit a circle-like shape well (red
circles in Figure 10a,b). In terms of noisy cross-sectional points, although there are many
outliers in Figure 10c,d, the proposed method can estimate the DBH well. This is because
the proposed method can exclude outliers effectively in the polar coordinate system. In
terms of incomplete cross-sectional points, as depicted in Figure 10e,f, although only small
part of cross-sectional points remained, the proposed method achieved satisfactory DBH
estimation results.
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Figure 10. DBH estimation results in different cases. (a,b) DBH estimation results of complete
cross-sectional points; (c,d) DBH estimated results of noisy cross-sectional points at breast height;
(e,f) DBH estimation results of incomplete cross-sectional points at breast height. The red point and
red circle represent the circle center and the fitted circle, respectively.

This paper estimated all the DBHs for these 20 trees. The estimated results were
shown in Figure 11. Meanwhile, this paper also calculated the DBH estimation results
using four other methods proposed by Olofsson et al. [31], Liu et al. [33], Liu et al. [30], and
Mokroš et al. [46]. Olofsson et al. [31] introduced a modified RANSAC DBH estimation
method. They made several adjustments to the traditional RANSAC approach. Firstly,
they deemed a circle invalid if it had more than 1% of the points inside. Secondly, they
restricted the range of circle radii to be between 2 cm and 30 cm, considering circles with
smaller or larger radii invalid. Liu et al. [33] proposed a random Hough transform DBH
estimation method. In their approach, they randomly selected three non-collinear points
with a minimum spacing of 0.02 m between them. Each set of three points was then
used to fit a circle, and only circles that satisfied the radius constraints were considered
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in the Hough parameter space. Liu et al. [30] calculated DBH values at different heights.
They applied the RANSAC algorithm for DBH estimation on each set of sliced points. By
detecting incorrectly calculated DBH values based on the PauTa criterion, they obtained
the final DBH estimation. Mokroš et al. [46] obtained the DBH estimation results using
a cylinder fitting technique. In their method, the cylinder element was obtained at 1.3 m
above the ground. From Figure 11, it can be found that compared with other methods, there
are more points of the proposed method that closely surround the 1:1 line. This means that
the estimated DBH values are close to the referenced DBH values. This paper calculated
the coefficients of determination (R2) between estimated DBH values and reference values
of different methods. It is easy to find that the method in this paper performed much
better than the other four methods. Thus, it can be concluded that this paper’s method can
achieve better performance in DBH estimation.
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ues and referenced DBH values. The red crosses represent the estimation results obtained by
Olofsson et al. [31]. The blue stars represent the estimation results obtained by Liu et al. [33]. The
orange boxes represent the estimation results obtained by Liu et al. [30]. The green forks represent the
estimation results obtained by Mokroš et al. [46]. The pink points represent the proposed method’s
estimation results.

To quantitatively evaluate the performance of this method, five accuracy indicators
were used for assessing the performance of the proposed method, including bias, relative
bias, root mean squared error, relative root mean squared error, and the concordance
correlation coefficient. They are defined in Equations (5)–(9):

Bias =

N
∑

i=1
(DBHi

est − DBHi
re f )

N
(5)

rBias =
Bias

DBHre f
× 100% (6)

RMSE =

√√√√√ N
∑

i=1
(DBHi

est − DBHi
re f )

2

N
(7)

rRMSE =
RMSE
DBHre f

× 100% (8)
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

CCC =

2
N

N
∑

i=1
(DBHi

est − DBHest)(DBHi
re f − DBHre f )

σ2
est + σ2

re f + (DBHest − DBHre f )
2

σ2
est =

1
N

N
∑

i=1
(DBHi

est − DBHest)
2

σ2
re f =

1
N

N
∑

i=1
(DBHi

re f − DBHre f )
2

(9)

where Bias, rBias, RMSE, rRMSE, and CCC represent bias, relative bias, root mean squared
error, relative root mean squared error, and the concordance correlation coefficient, respec-
tively. DBHi

est and DBHi
re f represent the i-th estimated and reference DBH values. DBHest

and DBHre f represent the mean estimated and reference DBH values. N is the number of
trees for DBH estimation.

The mean accuracy metric calculation results are tabulated in Table 1. It is easy to
find that the proposed method performs much better than the other methods in terms of
RMSE, rRMSE, and CCC. The Bias of the proposed method is −0.75 mm, which is only a
little larger than the results by Mokroš et al. [46]. However, the RMSE and rRMSE values of
Mokroš et al. [46] are more than three times those of the proposed method. This means that
the method by Mokroš et al. [46] cannot achieve satisfactory performance in different DBH
estimation cases. Comparatively, the proposed method achieved the smallest RMSE and
rRMSE values. This indicates that the proposed method has stronger robustness. When
it comes to CCC, the CCC of the proposed method is 0.98, which is much closer to 1 than
that of the other four methods. This means that the DBH values estimated in this paper are
much closer to the referenced DBH values.

Table 1. Accuracy metrics of different methods.

DBH Estimation Methods Bias
(mm)

rBias
(%)

RMSE
(mm)

rRMSE
(%) CCC

Olofsson et al. [31] −5.67 −2.70 17.54 8.36 0.91
Liu et al. [33] −7.21 −3.44 14.00 6.67 0.94
Liu et al. [30] 14.10 6.72 65.19 31.06 0.12

Mokroš et al. [46] −0.41 −0.20 30.91 14.73 0.76
The proposed method −0.75 −0.36 8.68 4.13 0.98

4. Discussion

To visually compare the performance of the proposed method in some extreme cases,
such as when there are cross-sectional points with a huge amount of outliers and cross-
sectional points with larger data gaps, several trees scanned in practice were used for
testing. Different scenarios of cross-sectional points were chosen, including noisy, incom-
plete, and irregular ones, as displayed in Figure 12. The DBH estimation was carried
out using five methods (that of Olofsson et al. [31], Liu et al. [33], Liu et al. [30], and
Mokroš et al. [46], and the proposed method), with DBH values obtained from tape or
caliper measurements serving as references. The results of the five methods and the refer-
enced values are presented in Figure 12. When dealing with noisy cross-sectional points, it
was observed that Liu et al. [33] incorrectly identified the circle, leading to an overestimated
DBH value (Figure 12b). Olofsson et al. [31] and Mokroš et al. [46] provided underestima-
tions (Figure 12a,d), while the proposed method yielded the closest estimate to the true
value (Figure 12e). For incomplete points (Figure 12g–l), all methods except the proposed
one tended to underestimate the DBH. Regarding irregular cross-sectional points, where
points are not strictly distributed in circular shapes, the proposed method demonstrated
superior accuracy compared with the other four methods (Figure 12q). Overall, based on
the extreme cases illustrated in Figure 12, it can be concluded that the proposed method
delivers satisfactory DBH estimation performance with strong robustness.
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the irregular cross-sectional points. The results of each case are in accordance with those of Ol-
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those measured manually. The black points in the figure represent the projected horizontal points, 
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Figure 12. (a–f) The noisy cross-sectional points; (g–l) the incomplete cross-sectional points;
(m–r) the irregular cross-sectional points. The results of each case are in accordance with those of
Olofsson et al. [31], Liu et al. [33], Liu et al. [30], Mokroš et al. [46], and the proposed method, and those
measured manually. The black points in the figure represent the projected horizontal points, while
the red circle and the red point represent the fitted circle and estimated circle center, respectively.
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As can be seen from the discussion above, the proposed approach can produce satis-
factory DBH estimation results for a variety of forest stand situations, including locations
that are noisy, incomplete, or irregular. It must be acknowledged, nonetheless, that each of
the aforementioned forest stands is made up of manually divided individual trees. Correct
individual tree segmentation results are necessary for accurate DBH estimation.

Figure 13a depicts individual trees surrounded by dense low bushes or small trees. In this
instance, obtaining correct individual tree segmentation results is tough, making reliable DBH
estimation results much more difficult. To attain a satisfactory DBH estimation result, some
‘boosting’ processes should be added. As illustrated in Figure 13b, the normal vector constraint
is first used to remove some of the leaves. Next, the DBSCAN clustering technique is used
to retrieve various clustering object primitives, as shown in Figure 13c. The final stems were
then extracted by analyzing the linear and height features of each object primitive, as shown in
Figure 13d. After extracting the stems, DBH can be calculated using our proposed approach.
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(a) Original tree points; (b) result after normal vector constraint; (c) DBSCAN clustering result;
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5. Conclusions

DBH plays a vital role in forest inventory, enabling accurate tree height estimation, AGB
calculation, and more. However, estimating DBH remains challenging due to issues like low
accuracy, particularly in the presence of noisy cross-sectional points and incomplete data. To
enhance the effectiveness and robustness of DBH estimation, this paper introduces a reliable
method using terrestrial LiDAR points through polar coordinate transformation and progres-
sive outlier removal. In the proposed method, the initial center is first estimated by rasterizing
the convex hull, and then the Cartesian coordinates are transformed into polar coordinates.
Subsequently, outliers are identified as low or high outliers and gradually removed. Follow-
ing outlier removal, the DBH is calculated based on the definite integral of arc length. In
total, 20 publicly available individual trees were used for testing. The experimental results
demonstrate that our proposed method consistently outperforms other methods across various
accuracy indicators. The CCC value of the proposed method is 0.98, indicating that estimated
DBH values closely align with the referenced DBH values. To further test the robustness of
the proposed method, several extreme cases are adopted for testing. The proposed method
successfully achieves accurate DBH estimations by progressively removing outliers and effec-
tively resisting their impact. Compared with the other four methods, the proposed method
achieved better performance in different DBH estimation cases. These results confirm that the
proposed method demonstrates exceptional effectiveness and robustness in DBH estimation.

Author Contributions: Conceptualization, Z.H.; data curation, L.L. and Y.Y.Z.; formal analysis, L.L.
and Y.Y.Z.; funding acquisition, Z.H.; investigation, L.L. and Y.Y.Z.; methodology, L.L. and Z.H.;
project administration, Z.H.; resources, Z.H.; software, L.L. and Y.Y.Z.; supervision, Z.H.; validation,
L.L. and Y.Y.Z.; visualization, L.L. and Y.Y.Z.; writing—original draft, Z.H.; writing—review and
editing, S.J. and Y.X. All authors have read and agreed to the published version of the manuscript.



Forests 2024, 15, 1031 16 of 17

Funding: The authors thank the National Natural Science Foundation of China (NSF) (42161060,
41801325, and 42174055), Outstanding Young Talents Funding of Jiangxi Province (20232ACB213017),
Double Thousand Plan of Jiangxi Province (DHSQT42023002), the China Post-Doctoral Science Foun-
dation (2019M661858), and the Natural Science Foundation of Jiangxi Province (20192BAB217010) for
their financial support.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Weiser, H.; Schaefer, J.; Winiwarter, L.; Krasovec, N.; Fassnacht, F.E.; Hoefle, B. Individual tree point clouds and tree measurements

from multi-platform laser scanning in German forests. Earth Syst. Sci. Data 2022, 14, 2989–3012. [CrossRef]
2. Li, J.; Wu, H.; Xiao, Z.; Lu, H. 3D modeling of laser-scanned trees based on skeleton refined extraction. Int. J. Appl. Earth Obs.

Geoinform. 2022, 112, 102943. [CrossRef]
3. Hui, Z.; Cheng, P.; Yang, B.; Zhou, G. Multi-level self-adaptive individual tree detection for coniferous forest using airborne

LiDAR. Int. J. Appl. Earth Obs. Geoinform. 2022, 114, 103028. [CrossRef]
4. Ravaglia, J.; Fournier, R.A.; Bac, A.; Vega, C.; Cote, J.; Piboule, A.; Remillard, U. Comparison of three algorithms to estimate

tree stem diameter from terrestrial laser scanner data. Forests 2019, 10, 5997. [CrossRef]
5. Zhu, X.; Skidmore, A.K.; Darvishzadeh, R.; Niemann, K.O.; Liu, J.; Shi, Y.; Wang, T. Foliar and woody materials discriminated

using terrestrial LiDAR in a mixed natural forest. Int. J. Appl. Earth Obs. Geoinform. 2018, 64, 43–50. [CrossRef]
6. Wang, Y.; Lehtomaki, M.; Liang, X.; Pyorala, J.; Kukko, A.; Jaakkola, A.; Liu, J.; Feng, Z.; Chen, R.; Hyyppa, J. Is field-measured

tree height as reliable as believed a comparison study of tree height estimates from field measurement airborne laser scanning
and terrestrial laser scanning in a boreal forest. ISPRS J. Photogramm. 2019, 147, 132–145. [CrossRef]

7. Bruggisser, M.; Hollaus, M.; Otepka, J.; Pfeifer, N. Influence of ULS acquisition characteristics on tree stem parameter estimation.
ISPRS J. Photogramm. 2020, 168, 28–40. [CrossRef]

8. Arumae, T.; Lang, M. Estimation of canopy cover in dense mixed-species forests using airborne lidar data. Eur. J. Remote Sens.
2018, 51, 132–141. [CrossRef]

9. Disney, M.I.; Vicari, M.B.; Burt, A.; Calders, K.; Lewis, S.L.; Raumonen, P.; Wilkes, P. Weighing trees with lasers: Advances
challenges and opportunities. Interface Focus 2018, 8, 201700482. [CrossRef] [PubMed]

10. Brede, B.; Calders, K.; Lau, A.; Raumonen, P.; Bartholomeus, H.M.; Herold, M.; Kooistra, L. Non-destructive tree volume
estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LiDAR. Remote Sens.
Environ. 2019, 233, 111355. [CrossRef]

11. Brede, B.; Terryn, L.; Barbier, N.; Bartholomeus, H.M.; Bartolo, R.; Calders, K.; Derroire, G.; Moorthy, S.M.K.; Lau, A.; Levick, S.R.;
et al. Non-destructive estimation of individual tree biomass: Allometric models terrestrial and UAV laser scanning. Remote Sens.
Environ. 2022, 280, 113180. [CrossRef]

12. Kukenbrink, D.; Gardi, O.; Morsdorf, F.; Thurig, E.; Schellenberger, A.; Mathys, L. Above-ground biomass references for urban
trees from terrestrial laser scanning data. Ann. Bot. 2021, 128, 709–724. [CrossRef] [PubMed]

13. Cysneiros, V.C.; Pelissari, A.L.; Gaui, T.D.; Fiorentin, L.D.; Carvalho, D.C.D.; Silveira Filho, T.B.; Machado, S.A. Modeling of
tree height-diameter relationships in the Atlantic Forest: Effect of forest type on tree allometry. Can. J. For. Res. 2020, 50, 1289–1298.
[CrossRef]

14. Kafuti, C.; Van den Bulcke, J.; Beeckman, H.; Van Acker, J.; Hubau, W.; De Mil, T.; Hatakiwe, H.; Djiofack, B.; Fayolle, A.;
Panzou, G.J.L.; et al. Height-diameter allometric Eqss of an emergent tree species from the Congo Basin. For. Ecol. Manag. 2022,
504, 119822. [CrossRef]

15. Calders, K.; Verbeeck, H.; Burt, A.; Origo, N.; Nightingale, J.; Malhi, Y.; Wilkes, P.; Raumonen, P.; Bunce, R.G.H.; Disney, M. Laser
scanning reveals potential underestimation of biomass carbon in temperate forest. Ecol. Solut. Evid. 2022, 3, e12197. [CrossRef]

16. Tziaferidis, S.R.; Spyroglou, G.; Fotelli, M.N.; Radoglou, K. Allometric models for the estimation of foliage area and biomass from
stem metrics in black locust. Iforest 2022, 15, 281–288. [CrossRef]

17. Demol, M.; Calders, K.; Verbeeck, H.; Gielen, B. Forest above-ground volume assessments with terrestrial laser scanning:
A ground-truth validation experiment in temperate, managed forests. Ann. Bot. 2021, 128, 805–819. [CrossRef] [PubMed]

18. Luo, Y.; Wang, X.; Ouyang, Z.; Lu, F.; Feng, L.; Tao, J. A review of biomass Eqss for China’s tree species. Earth Syst. Sci. Data 2020,
12, 21–40. [CrossRef]

19. Wang, D.; Kankare, V.; Puttonen, E.; Hollaus, M.; Pfeifer, N. Reconstructing stem cross section shapes from terrestrial laser
scanning. IEEE Geosci. Remote Sens. Lett. 2017, 14, 272–276. [CrossRef]

20. Brede, B.; Lau, A.; Bartholomeus, H.M.; Kooistra, L. Comparing RIEGL RiCOPTER UAV LiDAR derived canopy height and DBH
with terrestrial LiDAR. Sensors 2017, 1, 2371. [CrossRef] [PubMed]

21. Brunner, A.; Gizachew, B. Rapid detection of stand density tree positions and tree diameter with a 2D terrestrial laser scanner.
Eur. J. For. Res. 2014, 133, 819–831. [CrossRef]

22. Henning, J.G.; Radtke, P.J. Detailed stem measurements of standing trees from ground-based scanning lidar. For. Sci. 2006, 52,
67–80. [CrossRef]

https://doi.org/10.5194/essd-14-2989-2022
https://doi.org/10.1016/j.jag.2022.102943
https://doi.org/10.1016/j.jag.2022.103028
https://doi.org/10.3390/f10070599
https://doi.org/10.1016/j.jag.2017.09.004
https://doi.org/10.1016/j.isprsjprs.2018.11.008
https://doi.org/10.1016/j.isprsjprs.2020.08.002
https://doi.org/10.1080/22797254.2017.1411169
https://doi.org/10.1098/rsfs.2017.0048
https://www.ncbi.nlm.nih.gov/pubmed/29503726
https://doi.org/10.1016/j.rse.2019.111355
https://doi.org/10.1016/j.rse.2022.113180
https://doi.org/10.1093/aob/mcab002
https://www.ncbi.nlm.nih.gov/pubmed/33693550
https://doi.org/10.1139/cjfr-2020-0060
https://doi.org/10.1016/j.foreco.2021.119822
https://doi.org/10.1002/2688-8319.12197
https://doi.org/10.3832/ifor3939-015
https://doi.org/10.1093/aob/mcab110
https://www.ncbi.nlm.nih.gov/pubmed/34472592
https://doi.org/10.5194/essd-12-21-2020
https://doi.org/10.1109/LGRS.2016.2638738
https://doi.org/10.3390/s17102371
https://www.ncbi.nlm.nih.gov/pubmed/29039755
https://doi.org/10.1007/s10342-014-0799-1
https://doi.org/10.1093/forestscience/52.1.67


Forests 2024, 15, 1031 17 of 17

23. Hu, C.; Pan, S.; Zhang, H.; Li, P. Trunk model establishment and parameter estimation for a single tree using multistation
terrestrial laser scanning. IEEE Access 2020, 8, 102263–102277. [CrossRef]

24. Koren, M.; Huncaga, M.; Chuda, J.; Mokrog, M.; Surovy, P. The influence of cross-section thickness on diameter at breast height
estimation from point cloud. ISPRS Int. J. Geo-Inf. 2020, 9, 4959. [CrossRef]

25. Kalwar, O.P.P.; Hussin, Y.A.; Weir, M.J.C.; de Bie, C.A.J.M.; Karna, Y. Deriving forest plot inventory parameters using terrestrial
laser scanning in the tropical rainforest of Malaysia. Int. J. Remote Sens. 2021, 42, 884–901. [CrossRef]

26. Liang, X.; Litkey, P.; Hyyppa, J.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Automatic stem mapping using single-scan
terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 2011, 50, 661–670. [CrossRef]

27. Liang, X.; Kankare, V.; Yu, X.; Hyyppa, J.; Holopainen, M. Automated stem curve measurement using terrestrial laser scanning.
IEEE Trans. Geosci. Remote Sens. 2014, 52, 1739–1748. [CrossRef]

28. Srinivasan, S.; Popescu, S.C.; Eriksson, M.; Sheridan, R.D.; Ku, N. Terrestrial laser scanning as an effective tool to retrieve
tree level height crown width and stem diameter. Remote Sens. 2015, 7, 1877–1896. [CrossRef]

29. Kuzelka, K.; Marusak, R.; Surovy, P. Inventory of close-to-nature forest stands using terrestrial mobile laser scanning. Int. J. Appl.
Earth Obs. Geoinform. 2022, 115, 103104. [CrossRef]

30. Liu, L.; Zhang, A.; Xiao, S.; Hu, S.; He, N.; Pang, H.; Zhang, X.; Yang, S. Single tree segmentation and diameter at breast height
estimation with mobile LiDAR. IEEE Access 2021, 9, 24314–24325. [CrossRef]

31. Olofsson, K.; Holmgren, J.; Olsson, H. Tree stem and height measurements using terrestrial laser scanning and the RANSAC
algorithm. Remote Sens. 2014, 6, 4323–4344. [CrossRef]

32. Reddy, R.S.; Jha, C.S.; Rajan, K.S. Automatic tree identification and diameter estimation using single scan terrestrial laser scanner
data in central Indian forests. Indian Soc. Remote 2018, 46, 937–943. [CrossRef]

33. Liu, G.; Wang, J.; Dong, P.; Chen, Y.; Liu, Z. Estimating individual tree height and diameter at breast height (DBH) from terrestrial
laser scanning (TLS) data at plot level. Forests 2018, 9, 398. [CrossRef]

34. Panagiotidis, D.; Abdollahnejad, A.; Slavík, M. Assessment of stem volume on plots using terrestrial laser scanner: A precision
forestry application. Sensors 2021, 21, 301. [CrossRef] [PubMed]

35. Koren, M.; Mokros, M.; Bucha, T. Accuracy of tree diameter estimation from terrestrial laser scanning by circle-fitting methods.
Int. J. Appl. Earth Obs. Geoinform. 2017, 63, 122–128.

36. Monika, M.L.; Guang, Z. Retrieving forest inventory variables with terrestrial laser scanning (TLS) in urban heterogeneous forest.
Remote Sens. 2012, 4, 1–20.

37. Panagiotidis, D.; Abdollahnejad, A. Accuracy assessment of total stem volume using close-range sensing: Advances in precision
forestry. Forests 2021, 12, 7176. [CrossRef]

38. You, L.; Wei, J.; Liang, X.; Lou, M.; Pang, Y.; Song, X. Comparison of numerical calculation methods for stem diameter retrieval
using terrestrial laser data. Remote Sens. 2021, 13, 17809. [CrossRef]

39. Stovall, A.E.L.; Vorster, A.G.; Anderson, R.S.; Evangelista, P.H.; Shugart, H.H. Non-destructive aboveground biomass estimation
of coniferous trees using terrestrial LiDAR. Remote Sens. Environ. 2017, 200, 31–42. [CrossRef]

40. You, L.; Tang, S.; Song, X.; Lei, Y.; Zang, H.; Lou, M.; Zhuang, C. Precise measurement of stem diameter by simulating the path of
diameter tape from terrestrial laser scanning data. Remote Sens. 2016, 8, 717. [CrossRef]

41. Hackenberg, J.; Spiecker, H.; Calders, K.; Disney, M.; Raumonen, P. SimpleTree-an efficient open source tool to build tree models
from TLS clouds. Forests 2015, 6, 4245–4294. [CrossRef]

42. Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.;
Lewis, P. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens. 2013, 5, 491–520. [CrossRef]

43. Du, S.; Lindenbergh, R.; Ledoux, H.; Stoter, J.; Nan, L. AdTree: Accurate detailed and automatic modelling of laser-scanned trees.
Remote Sens. 2019, 11, 2074. [CrossRef]

44. Ye, N.; van Leeuwen, L.; Nyktas, P. Analysing the potential of UAV point cloud as input in quantitative structure modelling for
assessment of woody biomass of single trees. Int. J. Appl. Earth Obs. Geoinform. 2019, 81, 47–57. [CrossRef]

45. Liang, X.; Hyyppä, J.; Kaartinen, H.; Lehtomäki, M.; Pyörälä, J.; Pfeifer, N.; Holopainen, M.; Brolly, G.; Francesco, P.; Hackenberg, J.;
et al. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS J. Photogramm. 2018, 144,
137–179. [CrossRef]

46. Mokroš, M.; Mikita, T.; Singh, A.; Tomaštík, J.; Chudá, J.; Wężyk, P.; Kuželka, K.; Surový, P.; Klimánek, M.; Zięba-Kulawik, K.;
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