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Abstract: Individual tree extraction is an important process for forest resource surveying and monitor-
ing. To obtain more accurate individual tree extraction results, this paper proposed an individual tree
extraction method based on transfer learning and Gaussian mixture model separation. In this study,
transfer learning is first adopted in classifying trunk points, which can be used as clustering centers
for tree initial segmentation. Subsequently, principal component analysis (PCA) transformation and
kernel density estimation are proposed to determine the number of mixed components in the initial
segmentation. Based on the number of mixed components, the Gaussian mixture model separation is
proposed to separate canopies for each individual tree. Finally, the trunk stems corresponding to each
canopy are extracted based on the vertical continuity principle. Six tree plots with different forest
environments were used to test the performance of the proposed method. Experimental results show
that the proposed method can achieve 87.68% average correctness, which is much higher than that of
other two classical methods. In terms of completeness and mean accuracy, the proposed method also
outperforms the other two methods.

Keywords: individual tree extraction; LiDAR point clouds; transfer learning; kernel density estima-
tion; Gaussian mixture model

1. Introduction

As a new active remote sensing technology, Light Detection and Ranging (LiDAR)
technology has been developing very rapidly in recent years. Compared with the traditional
passive optical remote sensing measurements, LiDAR technology can obtain data quickly
and accurately [1]. Moreover, it is less affected by the external light conditions and can
obtain laser pulses from the earth around 24 h [2–4]. The laser pulses emitted from the
LiDAR system can partially penetrate the vegetation canopy to the ground [5,6]. Thus,
the three-dimensional (3D) structure of the canopy and the terrain under the forest can
be measured [7–9]. Therefore, LiDAR technology has more advantages in detecting the
structure and function of the forest ecosystem. Nowadays, terrestrial LiDAR has become
an important technique for forest resource surveying and monitoring [10–13].

In forest resources, individual trees constitute the basic units of the forest. Their
spatial structure and corresponding vegetation parameters are the main factors of forest
resource surveying and ecological environmental modeling [14]. Individual tree extraction
is the process of realizing the recognition and extraction of single trees from LiDAR point
clouds [15,16], which is the premise and basis for estimating vegetation parameters, such
as spatial position [17], tree height [18], diameter at breast height (DBH) [19], and crown
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diameter [20,21], etc. Traditional measurements usually adopt tape, caliper or altimeter to
measure the tree parameters manually. Obviously, the process is labor-intensive and time-
consuming [22]. As a contrast, terrestrial LiDAR technology can measure the 3D spatial
structure of trees by obtaining backscattered signals from laser pulses. Then, individual
trees can be segmented from the LiDAR point clouds and vegetation parameters can be
estimated subsequently [23–25]. However, the individual tree segmentation is still prone
to over-segmentation or under-segmentation, especially in densely distributed vegetation
areas. Inaccurate individual tree extraction results will seriously affect the subsequent
vegetation parameters to be estimated. Therefore, it is of great practical significance
and production application value to explore an accurate, efficient and robust method of
individual tree extraction.

Generally, the individual tree extraction methods can be divided into two classes,
namely raster-based and point-based methods [26,27]. The raster-based methods need to
first calculate the canopy height model (CHM). The CHM can be obtained by calculating
the difference between digital surface model (DSM) and digital terrain model (DTM). The
DSM is generated by interpolation of 3D point clouds data, while the DTM is acquired
by applying point clouds filtering methods [28]. Then the classical two-dimensional (2D)
image processing methods, such as local maximum methods, region growing methods and
watershed segmentation methods, can be adopted to detect treetops and extract individual
trees [29,30]. Hyppa et al. [31] presented a region growing method to extract individual
trees. CHM is first filtered by low pass convolution to remove noise points. Then the
local highest points are selected as the seeds for growing individual trees. Chen et al. [32]
proposed a marker-based watershed segmentation method. In their method, treetops were
first detected from CHM using the windows with varying sizes. The treetops were then
used as markers to prevent over-segmentation when the traditional watershed segmenta-
tion method was employed. Mongus and Žalik [33] also used the marker-based watershed
segmentation method for the individual tree extraction. However, in the implementation,
the treetop acquisition was realized by applying the local surface fitting to CHM and
detecting the concave neighborhood. Yang et al. [34] pointed out that the interpolated
CHM often losses the 3D information of vegetation. To improve the accuracy of individual
tree extraction, the authors combined the marker-based watershed segmentation method
with the 3D spatial distribution information of point clouds. Generally speaking, the raster-
based individual tree extraction method has high implementation efficiency. However,
it is prone to over-segmentation or under-segmentation when using traditional image
segmentation methods. In addition, it is not easy to detect undergrowth in forest areas
covered by multiple layers [35].

The point-based methods do not need to transform the 3D point clouds into the 2D
raster images. This kind of method can directly cluster the LiDAR points to realize the indi-
vidual tree extraction. Many experts apply the Mean shift methods for extracting individual
tree [8,29,35,36]. The Mean shift is a kernel density estimation algorithm, which clusters
point clouds by iterative searching for modal points [37]. Compared with raster-based
methods, the Mean shift methods extraction performance is greatly influenced by fine-
tuning several parameters, such as kernel shape, bandwidth and weight. Ferraz et al. [38]
have investigated the influence of kernel function parameters on the results of individual
tree extraction. In their study, a cylindrical kernel function was applied to segment individ-
ual tree. To make the points within an identical crown converge to the vertex position of
the crown by mean shift vector, the kernel function is divided into horizontal domain and
vertical domain. By setting different bandwidth functions, the horizontal kernel function
can detect the local maximum of density and the vertical kernel function can detect the
local maximum of height. For multi-level covered tropical forest areas, Ferraz et al. [39]
proposed an adaptive Mean shift individual tree segmentation method. Here, the effect
of the bandwidth parameter on the results of individual tree segmentation in the Mean
shift method was investigated. In their work, the bandwidth of the kernel function can be
adaptively adjusted according to the allometric growth function. Dai et al. [36] also applied
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the Mean Shift method for extracting individual trees. Both spatial and multispectral
domains are adopted for solving the under-segmentation phenomenon. Generally, the
bandwidth parameter has a great influence on the results of individual tree segmentation
in the Mean shift method. Chen et al. [40] first extracted the trunk and then estimated the
bandwidth with the spatial location information of the trunk to obtain accurate bandwidth
parameters.

In addition to the Mean Shift-based methods, some other researchers realize the
individual tree extraction based on the geometric characteristics. For instance, Li et al. [41]
separated individual tree according to the horizontal spacing between trees. The points
belonging to a tree can be added gradually if its relative spacing is smaller than that of
other trees. Zhong et al. [42] first conducted spatial clustering to point clouds based on
octree node connectivity. Then, tree stems were detected by finding the local maxima.
According to the extracted tree stems, initial segmentation can be achieved, which will
be further revised based on Ncut segmentation. Xu et al. [14] proposed a supervoxel
approach for extracting individual tree. In their method, point clouds are first voxelized to
be supervoxles. Then, the individual trees are extracted based on the minimum distance
rule. Although the point-based methods do not need to convert 3D point clouds into
2D raster images, these methods require iterative calculation and thus computationally
expensive. Besides, when encountering large amounts of point clouds, the clustering
process becomes time-consuming. In addition, many parameter settings and adjustments
make implementation of the methods not conducive.

It has generally been recognized that the performance of the existing individual
tree extraction methods are still not good especially when encountering complex forest
environments. In continuance of that, many methods involve complex parameter settings
which reduce the degree of automation of the methods. To tackle these problems, this paper
proposed an individual tree extraction method based on the transfer learning and Gaussian
mixture model separation. In this method, transfer learning and Gaussian mixture model
separation were combined for extracting accurate individual tree, which will provide a
good foundation for forest parameters estimation.

The main contributions of this paper are as follows:

i. Transductive transfer learning was applied to extract the initial trunk points based
on linear features, which shows that trunk points can be extracted effectively
using the constructed model even if no training samples are selected from the
target domain.

ii. Accurate number of clustered components was achieved by first conducting PCA
transformation on the canopy points followed by kernel density function estimation.
In doing so, the parameter setting to determine the number of clusters is eliminated.

iii. The mixed canopy points were assumed to be Gaussian mixture model. By sep-
arating Gaussian mixture model using Expectation-Maximization algorithm, the
canopy points for each individual tree can be extracted automatically.

iv. Point density barycenter is proposed and used to help optimize over-segmentation
canopy points. Hereafter, trunk points are optimized based on the vertical continu-
ity in a top-down manner.

The remainder of this paper is organized as follows. Section 2 describes the main
principle of the proposed method. Section 3 shows the experimental results and compar-
ison analysis. Section 4 makes a discussion. Finally, the main findings of this paper are
summarized in Section 5.

2. Methodology

The flowchart of the proposed method is shown in Figure 1. In this method, only
coordinates information of LiDAR point clouds are required. Prior to trunk detection, the
LiDAR points are filtered to remove the influence of ground points. This paper adopted an
improved morphological filtering method proposed by Hui et al. [43] to remove ground
points. The filtering method is a hybrid filtering model which combines the strength of the
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morphological filtering and surface interpolation filtering methods. After removing the
ground points, the trunk points were extracted using the transductive transfer learning,
which was followed by trunk centers acquisition based on vertical continuity principle.
According to the trunk centers, the initial point clouds segmentation results can be ob-
tained using nearest neighbor clustering. Obviously, the initial segmentation is generally
under-segmentation especially for canopy points. To separate the canopy points correctly,
projection transformation was first conducted on the canopy points based on the PCA
principle. The number of clustered components within each initial segmentation part was
then determined by kernel density function estimation. Hereafter, Gaussian mixture model
separation was applied to isolate canopies for each tree. To avoid over-segmentation of
the canopies, point density barycenter was proposed and used to optimize the canopy
extraction results. Meanwhile, the final trunk points for each tree were extracted in a
top-down manner according to the extracted canopies. Detail explanation of the main steps
of the proposed method is provided in the subsequent sections.
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2.1. Trunk Points Detection Using Transductive Transfer Learning

Transfer learning is a machine learning method that has developed rapidly in recent
years. Compared with traditional supervised learning methods, transfer learning can use
established learning models to solve problems in different but related fields. There are
many examples of transfer learning in nature. For example, if a person learns to ride a
bicycle, it is relatively easy for him to learn to ride an electric bicycle. According to whether
there are sample markers in the source and target domains, transfer learning can be divided
into three categories, including inductive transfer learning, transductive transfer learning
and unsupervised transfer learning. In this paper, transductive transfer learning is applied
since we want to use the established training model to classify trunk points from new
datasets without sample markers. The advantage of using transfer learning to classify
trunk points is that it can make full use of the existing point clouds marking information,
which can avoid training sample marking in the target domain. Obviously, sample marking
is usually the most time-consuming and laborious.

Although the forest types in the datasets of the source and the target domains may be
different, trunks and leaves will still present significantly different geometric features in
their natural state. For instance, trunk points generally present linear geometric features,
while leaf points are usually scattered distribution. Therefore, this paper mainly uses the
geometric feature vectors to establish the training model to avoid the phenomenon of
“negative transfer”. In this paper, five geometric vectors namely linearity, planarity, scatter,
surface variation and eigen entropy were obtained by calculating the covariance tensor
of the local points. Since the random forest (RF) is simple, easy to implement and low
computational cost, this paper adopts RF to build a training model for transfer learning.
The detailed way for calculating the mentioned five geometric vectors are as follows:
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All the points are traversed one by one. For each point p̂ all the points within its r
distance are selected as the neighboring point sets S = {p1, p2 . . . pk}. The point set is used
for calculating the covariance tensor C, which can be calculated using Equation (1):

C =
1
k

k

∑
i=1

(pi − p̂)(pi − p̂)T . (1)

According to Equation (1), three eigenvalues λ1 > λ2 > λ3 > 0 and corresponding
eigenvectors e1, e2, e3 were calculated. The three eigenvalues need to be normalized that is,
λ1 + λ2 + λ3= 1. According to these three eigenvalues the above-mentioned five geometric
features were calculated, which are tabulated in Table 1. Using these five geometric features
the training model can be built using the datasets with marker information.

Table 1. Calculation formulas of eigenvectors.

Eigenvector Formulas

linearity V1 = (λ1 − λ2)/λ1
planarity V2 = (λ2 − λ3)/λ1

scatter V3 = λ3/λ1
surface variation V4 = λ3

eigen entropy V5 = −∑3
i=1 λi × ln(λi)

2.2. Components Number Estimation Based on Kernel Density Function
2.2.1. Trunk Centers Optimization and Nearest Neighbors Clustering

As shown in Figure 2a, after trunk points extraction by transductive transfer learning,
there are still some leaf points were misjudged as trunks. Compared with the trunk points,
there is no continuity in the vertical direction for the misjudged leaf points. Moreover,
the misjudged leaves tend to be scattered and isolated points. According to these two
characteristics, this paper removed the misjudged points gradually. The detailed steps
are described in Appendix A. Figure 2b is the optimized trunk points after eliminating
misjudged points of Figure 2a. As shown in Figure 2b, although most of the misjudged
points were effectively removed after the trunk points optimized processing, some burr
points still existed on the trunk points. These burr points are mainly formed by branches
around the trunk and need to be removed to achieve accurate calculated trunk centers. The
detailed steps for trunk centers optimization are described in Appendix B. After the trunk
centers were calculated, the initial segmentation can be obtained using the trunk centers as
the clustering centers. The points with the closest horizontal distance to the centers were
clustered in the same class as that of the trunk center. The initial segmentation result by
clustering is denoted by Equation (2),

clusteri =

{
pi ∈ ptcs

∣∣∣∣disxy

(
pi, Loci

)
< disxy

(
pi, Locj

)
,

j 6= i,
i, j ∈ [1, K]

}
, (2)

where clusteri is the initial segmentation for each cluster. Loci is the i-th turnk centers, ptcs
are the point clouds, disxy(·) is the horizontal distance between two points and K is the
number of the trunk centers.

2.2.2. Canopy Points Projection Transformation Based on PCA Principle

The initial tree segmentation results were obtained using the extracted trunk centers.
However, the initial segments are prone to under segmentation since the extracted trunk
centers generally contain some omission errors. That is, some points belonging to two
different trees may be clustered as one segment. Therefore, the initial tree segmentation
results need further optimization for achieving better single tree extraction performance.
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In this study, the canopy and trunk were extracted separately. To avoid the influence
of trunks or low brushes, this study first removes the points below the highest trunk points
within each initial segment clusteri for optimizing canopy points. This process can be
written as Equation (3),

canopyi =
{

pk ∈ clusteri
∣∣∣zpk −max(ztrunki ) > 0, k ∈

[
1, nci

]}
, (3)

where canopyi represents the canopy points, pk is the point in the initial segment clusteri,
nci is the number of points within clusteri, zpk is the z coordinate of pk and max(ztrunki )
represents the maximum elevation of the trunk points.

As shown in Figure 3a, the canopy points of two adjacent trees are prone to be divided
together. To achieve better individual tree extraction results, the undersegmented canopy
points should be further separated. Generally speaking, the horizontal projection of canopy
points of one single tree should be approximately circular. However, if more than one
canopy is merged together, the corresponding canopy points’ horizontal projection tends
to be elliptic as shown in Figure 3b.
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As can be seen from Figure 4a, compared with the points distribution in the x and y
directions, the points are more distinct in the direction of the long axis of the ellipse (F1).
Figure 4b is the projection of the points in the direction of the long axis of the ellipse. It is
easy to find that the points after projection in F1 direction are more distinct for separation.
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The direction of the long axis of an ellipse can usually be defined as the direction of
the first principal component of the PCA method. Therefore, this paper first applied PCA
principle to transform the canopy points. To avoid the interference of some isolated points
on the calculation of principal component analysis, this paper calculates the number of
neighboring points of each point. The points with a smaller number of neighboring points
were determined as isolated points and removed. Then, the covariance tensor of each
initial segment is calculated according to Equation (1). The eigenvalues and eigenvectors of
the covariance tensor were also calculated. The direction of the eigenvector corresponding
to the maximum eigenvalue is defined as the direction of the long axis of the ellipse, and
the points are projected in this direction. The transformation process can be described by
Equation (4),

score = X ∗ coe f f , (4)

where score is the principal component after the transformation, X is the n× 2 matrix, and
X(i, 1) = xpk , X(i, 2) = ypk ,

(
xpk , ypk

)
is the coordinates of pk in the canopyi (Equation (3)),

n is the total number of points that in the cluster. coe f f is the eigenvector matrix of the
cluster’s covariance matrix.

2.2.3. The Number of Components Determination Based on Kernel Density Estimation

As mentioned above, the initial segmentation results based on the trunk centers are
prone to be under segmentation. In other words, there may be more than one tree in one
segment. As shown in Figure 4b, there are two mixed trees that need to be separated.
It can also be found that to achieve optimal segmentation of canopies, it is necessary to first
determine the number of mixed components within each initial cluster.

From Figure 4b, it can be found that the point density of the centers of each tree
is usually large. Figure 5a,b are histograms of point density distribution of tree points
in Figure 4b. The difference between Figure 5a,b is the different statistical interval of
point density statistics in the F1 direction, which is calculated based on PCA principle as
described in Section 2.2.2. It is easy to find from these two figures that the point density
from the centers to the two sides shows a downward trend. Therefore, the number of
components can be determined by detecting the number of local maxima of point density.
To accurately detect the local maximum of point density, the kernel density estimation
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method was used to calculate the probability density function distribution of each initial
segment. The kernel density estimation is defined as Equation (5),

f̂h(x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
, (5)

where n is the number of points within each initial segmentation, h is the bandwidth and
K is the kernel function. In this study, Gaussian kernel function was used for probability
density estimation, which is defined in Equation (6) as:

K(x) =
1√
2π

exp
(
−1

2
x2
)

. (6)
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In Equation (5), bandwidth h has a great influence on the result of Gaussian kernel
density estimation.

Figure 6a,b shows the Gaussian kernel density estimation curves calculated by the
points in Figure 4b with different bandwidth parameters. To achieve accurate Gaussian
probability density estimation, this paper applies Silverman’s rule of thumb to perform
adaptive bandwidth calculation, which has been defined in Equations (7) and (8),

hi = σi

{
4

(d + 2)n

} 1
d+4

, i = 1, 2, · · · , d, (7)

σi = MAD/0.6745, (8)

where hi is the bandwidth of the i-th dimension, d is the dimension, which is equal to 1
in this study and n is the total number of points. σi is the estimated value of the standard
deviation of the i-th dimension variable, and MAD is the median of the absolute value
of the residual difference between each variable and the mean value. The constant 0.6745
ensures that the estimation is unbiased under the normal distribution.
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2.3. Canopy Points Extraction Through Gaussian Mixture Model Separation

From Figure 6 it can be found that the kernel density distribution curves of different
trees that clustered together can be regarded as a mixture of different Gaussian distributions.
Therefore, the optimal segmentation of different trees can be achieved by separating the
mixed Gaussian models with different parameters. By detecting the number of local
maxima of the kernel density distribution curve, it can be determined that Figure 4b has
two components, as shown in Figure 7a. Then, the Gaussian mixture model separation
method can be applied to divide the mixed canopy points into two clusters.
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In general, if the point clouds contain N different clusters of points, the density
function of the Gaussian mixture distribution can be written as Equation (9),

P(V|S ) =
N

∑
k=1

λkGk(V|uk, δk ), (9)
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where V represents vectors, which are the results of PCA transformation, that is V = score.
S is the mixed components and λk is the coefficient of proportion, which represents the
prior probability of each mixed components. (uk, δk) are the parameters of the Gaussian
distribution, and represent mean value, and variance, respectively. While, Gk(·) represents
the Gaussian density function, which is defined in Equation (10) as:

Gk(V|µk, δk ) =
1√

2πδk
× e
− (V−µk)

2

2δk
2 . (10)

The expected-maximum (EM) algorithm is used to estimate the parameters of the
Gaussian mixture model, which mainly includes the ‘E’ step and ‘M’ step. The ‘E’ step tries
to calculate the probability of each component, while the ‘M’ step updates the Gaussian
mixture model parameters, including λk, µk and δk, where k = 1, 2, · · · , N. N is the number
of mixed components.

The EM algorithm needs to be implemented repeatedly. The convergence condition of
the iteration is that the variation of mixed distribution parameters calculated in the last
iteration and calculated in the next iteration must be less than the threshold value, or the
number of iterations reaches the maximum. When the EM algorithm stops iterating, the
points are divided into categories according to the maximum probability that the points
belongs to. The points in Figure 3a can be optimized as two separated tree canopies as
shown in Figure 7b.

2.4. Over-Segmentation Canopies Optimization Based on Point Density Barycenter

The canopy points extracted by Gaussian mixture model separation may be over-
segmentation. In other words, the canopy points of one tree may be segmented as two
or more clusters. Moreover, in Section 2.1, the initial segmentation results were obtained
based on the initial trunk centers. Since the initial trunk centers are not correct enough, one
individual tree may also be divided into several trees mistakenly. This over-segmentation
will not only make the extracted individual trees incomplete, but also lead to larger
commission errors.

It is important to note that the horizontal positions of over-segmented trees are usually
closer. Many researchers merge the over-segmented trees by calculating the horizontal
distance of the highest points within each cluster, while some other researchers calculate
the mean value of horizontal coordinates of each cluster to determine whether to combine
the clusters. The above-mentioned two methods can obtain effective merging results under
ideal conditions, such as the highest point of the tree is the vertex position of the tree, and
the tree grows uniformly and symmetrically. However, in nature, due to the influence of
light and water environments, the distribution of vegetation may be diverse. The highest
point’s position or the mean coordinate of all points cannot represent the center of each
cluster well. To make the forest optimization and combination method more robust, the
barycenter of each cluster was proposed to combine the extracted trees close to each other.

As shown in Figure 8, the points’ distribution along the vertical direction of the center
position of one individual tree is generally dense. Therefore, the planar position with the
highest point density is more representative of the central location of the individual tree
when comparing with the location of the vertex or mean coordinates of the tree points.
In this study, this location is defined as the weighted average of point density distribution
after horizontal projection of point clouds, which are represented in Equations (11)–(13),

(x̂, ŷ) =

(
m

∑
i=1

n

∑
j=1

xi,j·P(i, j),
m

∑
i=1

n

∑
j=1

yi,j·P(i, j)

)
, (11)

{
xi,j = mean

(
∑ xq

)
yi,j = mean

(
∑ yq

) , (12)
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P(i, j) =


0, i f num(i, j) = 0

num(i, j)/
m
∑

i=1

n
∑

j=1
num(i, j), otherwise , (13)

where m and n are the number of grids after point clouds horizontal projection, as shown
in Figure 8.

(
xi,j, yi,j

)
is the horizontal coordinate of grid (i, j),

(
xq, yq

)
is the coordinate of

one point in grid (i, j). mean(·) represents calculating the mean value. P(i, j) is the weight
of grid (i, j). num(i, j) is the number of points with grid (i, j).
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2.5. Trunk Points Optimization in a Top-Down Manner

Although trunk points have been extracted by transductive transfer learning in
Section 2.1, the number of extracted trunks is generally less than the reference number of
trunks, which always lead to large omission error. To obtain better trunk extraction results,
this paper tries to acquire trunk points based on the optimized canopy points for each
individual tree that have been extracted in Section 2.4. Thus, the trunk points extraction
method in this paper can also be called a top-down method.

According to the method mentioned in Sections 2.3 and 2.4, the optimized canopy
points can be extracted by separating Gaussian mixture model and merging strategy, as
shown in Figure 9a. In this paper, the optimized trunk points are obtained in a top to
down manner. Firstly, the horizontal projection range of the canopy points are obtained as[
canopyi.xmin, canopyi.xmax

]
and

[
canopyi.ymin, canopyi.ymax

]
. Then, the points under the

canopy can be acquired by subtracting the canopy points calculated in Equation (3), which
is written as the point set {le f t_pts}. Finally, the points within the horizontal projection
can be obtained according to Equation (14),

within_ptsi =

{
pk ∈ le f t_pts

∣∣∣∣ canopyi.xmin ≤ xpk ≤ canopyi.xmax
canopyi.ymin ≤ ypk ≤ canopyi.ymax

}
, (14)

where canopyi represents the canopy points of i-th individual tree as shown in Figure 9a.
within_ptsi is the points under the canopy of each individual tree. Figure 9b is the com-
bination of canopyi and within_ptsi. Obviously, the individual tree has been extracted
successfully. However, there are still some low points in the extraction points, which are
generally bushes. There points can be removed by voxelizing the point sets {le f t_pts} as
shown in Figure 9c. The cubes with points falling in are labeled as 1. The number of cubes
in each vertical direction is calculated. The points with poor continuity are filtered.
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3. Experimental Results and Analysis
3.1. Dataset

This paper adopts an international standard TLS dataset for evaluating the perfor-
mance of the proposed method. The dataset is provided by the Finish Geospatial Research
Institute (FGI), which can be used for non-profit research purpose [44]. The TLS point
clouds were collected using Leica HDS1600 terrestrial laser scanner, which are located
in southern boreal forests in Evo, Finland. The dataset contains many different vegeta-
tion types with different point densities. Thus, it will be representative for testing the
effectiveness and robustness of the proposed method. The dataset contains six different
plots, which has a fixed size (32× 32 square meter). In each plot, two scanning modes,
namely single-scan and multi-scan are adopted to acquire the point clouds. According to
the complexity of the forests in the plot, these six plots are classified as three categories,
namely easy, medium and difficult types. The characteristics of these six plots are tabulated
in Table 2. Figure 10 shows the six plots with the above-mentioned three types. In each
plot, both single-scan and multi-scan acquired point clouds are contained.
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Table 2. Characteristics of the dataset [22,44].

Plot Type
The Number of Points Forest Density

(Trees/ha)
DBH
(cm)

Tree Height
(m)Single-Scan Multi-Scan

1 easy 2.36 × 107 1.11 × 108 498 22.8 ± 6.6 18.7 ± 3.9
2 2.36 × 107 1.14 × 108 820 16.0 ± 6.9 13.7 ± 4.0

3
medium

2.37 × 107 1.20 × 108 1445 14.8 ± 7.4 15.5 ± 6.8
4 2.74 × 107 1.29 × 108 762 19.6 ± 14.1 16.1 ± 10.2

5
difficult

2.37 × 107 1.25 × 108 1279 14.3 ± 13.2 13.0 ± 7.0
6 2.27 × 107 1.11 × 108 2304 12.3 ± 5.5 13.0 ± 6.3
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Figure 10. Point clouds of six plots. (a,b) are point clouds of Plot 1; (c,d) are point clouds of Plot 2; (e,f) are point clouds
of Plot 3; (g,h) are point clouds of Plot 4; (i,j) are point clouds of Plot 5; (k,l) are point clouds of Plot 6. The first column
represents point clouds scanned in the single-scan mode, while the second column represents point clouds scanned in the
multi-scan mode.

3.2. Accuracy Metrics Calculation

To evaluate the performance of the proposed method, this paper adopted the following
steps to access the performance of the proposed method. The steps of the accuracy metrics
calculation are shown in Table 3.
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Table 3. Accuracy metrics calculation steps.

Input: Reference Tree Sets Refer_tree(x,y,DBH), extracted tree sets Extr_tree(x,y,DBH)

Step 1: For each tree (Extr_treei) in the extracted tree sets, find its neighboring trees within the range of 0.5 m in the reference
tree sets Re f er_tree;

Step 2: If there are more than one reference trees corresponding to Extr_treei, the reference tree with the closest DBH to
Extr_treei is selected, and Extr_treei is labeled as the same label as the reference tree;

Step 3: For each tree (Re f er_treei) in the reference tree sets, find the trees in the extracted tree sets (Extr_tree) with the same
label as Re f er_treei;

Step 4: If there are more than one extracted trees corresponding to Re f er_treei, the label of the extracted tree with the closest
DBH to Re f er_treei is kept. Meanwhile, the other extracted trees’ labels are removed.

Output:
n_match: the number of trees with the same labels in Extr_tree and Re f er_tree;

n_re f er: the number of the reference tree;
n_extr: the number of the extracted tree.

Three indicators, including completeness (Com), correctness (Corr) and mean accu-
racy (Mean_acc) are calculated for evaluating the performance of the proposed method
according to Equations (15)–(17). The completeness reflects the detecting ability of the
proposed method, while the correctness shows how many trees are correctly extracted. The
average precision measures the joint probability that the randomly selected extraction tree
is correct and that the randomly selected reference tree is detected by the method:

Com =
n_match
n_re f er

× 100%, (15)

Corr =
n_match
n_extr

× 100%, (16)

Mean_acc =
2 ∗ n_match

n_re f + n_extr
× 100%. (17)

3.3. Experimental Results

In this paper, two individual tree point clouds with label information are used as the
transfer learning source domain. The datasets are provided by Moorthy et al. [45], which
are classified as wood and leaf points manually using an open source software named
CloudCompare. The two individual tree point clouds were collected by Riegl VZ-400 and
Riegl VZ-1000 terrestrial laser scanner, respectively. Figure 11a,b shows the two individual
trees with label information. Although in transfer learning tree species in source and
target domains may be different, wood points and leaf points have obviously different
geometric features. In general, wood points present linear geometric features, while leaf
points are usually scattered distribution. By calculating five geometric feature vectors of
each point, the transfer learning model from source domain can be built. Then, the built
model can be applied to the target domain of the above-mentioned six plots to classify the
tree point clouds as wood and leaf points. After the trunk points optimization using the
technique mentioned in Section 2.2.1, the trunk points of each plot with both single-scan
and multi-scan modes can be extracted as shown in Figure 12. From Figure 12, it can be
found that more trunk stems can be extracted from easy plots (Figure 12a–d) than the ones
extracted from difficult plots (Figure 12i–l). It is because that the trees in the difficult plots
are more dense and complicated as shown in Figure 10e,f. The linear geometric features of
trunk points in the difficult plots are not significantly different from the ones of leaf points.
Thus, many trunk stems cannot be detected effectively. Moreover, it can also be found that
more tree stems can be extracted from the point clouds scanned in multi-scan mode than
tree stems extracted from the point clouds scanned in single-scan mode. That makes sense
because tree points acquired by multi-scan mode are more complete. Thus, linear geometric
features of trunk stems are more obvious. However, it must be admitted that the tree stems
extraction results are not very good, especially in difficult plots. The tree stems extraction
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results generally contain some omission errors. In this paper, the extracted tree stems only
serves as the clustering centers for initial segmentation. Thus, the under-segmentation
results can be optimized by the following Gaussian mixture model separation.

When the trunk stems are extracted, the initial clustering centers can be obtained
by projecting the trunk points onto the horizontal plane. According to the clustering
centers, the initial segmentation results can be obtained. As mentioned above, since the
extracted trunk results generally contain omission errors, the initial tree segmentation
results are always under-segmentation. After using the proposed techniques mentioned
in Sections 2.2.2, 2.2.3, 2.3 and 2.4, the under-segmentation canopies can be separated cor-
rectly. Then, the trunks points corresponding to each individual canopy can be extracted
in a top-down manner based on the vertical continuity principle. Figure 13 shows some
instances of the extracted individual trees by the proposed method.

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 30 

 

plots are more dense and complicated as shown in Figure 10 e,f. The linear geometric 
features of trunk points in the difficult plots are not significantly different from the ones 
of leaf points. Thus, many trunk stems cannot be detected effectively. Moreover, it can 
also be found that more tree stems can be extracted from the point clouds scanned in 
multi-scan mode than tree stems extracted from the point clouds scanned in single-scan 
mode. That makes sense because tree points acquired by multi-scan mode are more com-
plete. Thus, linear geometric features of trunk stems are more obvious. However, it must 
be admitted that the tree stems extraction results are not very good, especially in difficult 
plots. The tree stems extraction results generally contain some omission errors. In this pa-
per, the extracted tree stems only serves as the clustering centers for initial segmentation. 
Thus, the under-segmentation results can be optimized by the following Gaussian mixture 
model separation. 

  
(a) (b) 

Figure 11. Two individual trees point clouds with label information used for building transfer learning model. (a) An 
individual tree collected by Riegl VZ-400 terrestrial laser scanner; (b) An individual tree collected by Riegl VZ-1000 ter-
restrial laser scanner. Both of these two trees are classified as leaf and wood points manually. Blue points represent leaf 
points, while yellow points represent wood points. 

  
(a) (b) 

Figure 11. Two individual trees point clouds with label information used for building transfer learning model. (a) An
individual tree collected by Riegl VZ-400 terrestrial laser scanner; (b) An individual tree collected by Riegl VZ-1000 terrestrial
laser scanner. Both of these two trees are classified as leaf and wood points manually. Blue points represent leaf points,
while yellow points represent wood points.

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 30 

 

plots are more dense and complicated as shown in Figure 10 e,f. The linear geometric 
features of trunk points in the difficult plots are not significantly different from the ones 
of leaf points. Thus, many trunk stems cannot be detected effectively. Moreover, it can 
also be found that more tree stems can be extracted from the point clouds scanned in 
multi-scan mode than tree stems extracted from the point clouds scanned in single-scan 
mode. That makes sense because tree points acquired by multi-scan mode are more com-
plete. Thus, linear geometric features of trunk stems are more obvious. However, it must 
be admitted that the tree stems extraction results are not very good, especially in difficult 
plots. The tree stems extraction results generally contain some omission errors. In this pa-
per, the extracted tree stems only serves as the clustering centers for initial segmentation. 
Thus, the under-segmentation results can be optimized by the following Gaussian mixture 
model separation. 

  
(a) (b) 

Figure 11. Two individual trees point clouds with label information used for building transfer learning model. (a) An 
individual tree collected by Riegl VZ-400 terrestrial laser scanner; (b) An individual tree collected by Riegl VZ-1000 ter-
restrial laser scanner. Both of these two trees are classified as leaf and wood points manually. Blue points represent leaf 
points, while yellow points represent wood points. 

  
(a) (b) 

Figure 12. Cont.



Remote Sens. 2021, 13, 223 17 of 30

Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 30 

 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  

(i) (j) 

Figure 12. Cont.



Remote Sens. 2021, 13, 223 18 of 30

Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 30 

 

  

(k) (l) 

Figure 12. Extracted trunk stems for the six plots scanned in both single-scan and multi-scan modes. (a,b) are the extracted 
stems for Plot 1; (c,d) are the extracted stems for Plot 2; (e,f) are the extracted stems for Plot 3; (g,h) are the extracted stems 
for Plot 4; (i,j) are the extracted stems for Plot 5; (k,l) are the extracted stems for Plot 6; the first column represents the 
single-scan mode, while the second column represents the multi-scan mode. 

When the trunk stems are extracted, the initial clustering centers can be obtained by 
projecting the trunk points onto the horizontal plane. According to the clustering centers, 
the initial segmentation results can be obtained. As mentioned above, since the extracted 
trunk results generally contain omission errors, the initial tree segmentation results are 
always under-segmentation. After using the proposed techniques mentioned in Sections 
2.2.2 and 2.2.3 and Sections 2.3 and 2.4, the under-segmentation canopies can be separated 
correctly. Then, the trunks points corresponding to each individual canopy can be ex-
tracted in a top-down manner based on the vertical continuity principle. Figure 13 shows 
some instances of the extracted individual trees by the proposed method.  

   

(a) (b) (c) 

   
(d) (e) (f) 
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Figure 13. Nine instances of extracted individual tree. (a–i) are the extracted individual trees.

From Figure 13, it can be found that the individual trees can be extracted correctly.
In this paper, canopy extraction for each individual tree can be seen as a bottom-up process.
It is because the trunk points are first classified from point clouds by transfer learning.
Then Canopy points for each individual tree are extracted based on the initial segmentation
using the extracted trunk centers. When the canopies are separated correctly, the trunk
stem corresponding to each canopy is extracted in a top-down manner. Therefore, the
proposed method in this paper can be seen as a combination of bottom-up and top-down
approaches. As shown in Figure 13, both canopies and trunk stems for each individual tree
can be extracted correctly.

Liang et al. [44] also provided the reference tree locations for the six plots. Thus, it is
will be easy to access the performance of the proposed method towards different forest
environments and scanning modes. Figure 14 shows the locations of the extracted trees
and reference trees. From these figures, it can be found that although some reference trees
cannot be detected, most of the extracted trees are correct. Only a few extracted trees are
wrongly detected. Moreover, more trees can be extracted correctly in the point clouds
scanned in multi-scan mode than in the point clouds scanned in single-scan mode. That
makes sense because multi-scan mode can provide more complete tree points. Another
point to be noted is that as the forest scenes become more complex, fewer trees can be
extracted effectively. As shown in Figure 14, more trees can be extracted in easy plots
(Figure 14a–d) than in medium and difficult plots (Figure 14e–l). It is because the forest
density of medium and difficult plot is much larger than that of easy plot as tabulated in
Table 2. Obviously, dense trees are not easy to be extracted. Besides, trees in the easy plots
are intuitively easier to be separate as shown in Figure 10.
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represents the single-scan mode, while the second column represents the multi-scan mode.

3.4. Comparison and Analysis

To quantitatively evaluate the performance of the proposed method, this paper calcu-
lated the three indicators, namely completeness, correctness and mean accuracy for the six
plots according to the Equations (15)–(17). Meanwhile, two other individual tree extraction
methods are also tested to compare the accuracy metrics with the ones of the proposed
method. The first method is the marker-controlled watershed segmentation, which was
implemented in a Digital Forestry Toolbox. The Digital Forestry Toolbox is realized using
the Matlab programming language, which is developed for analyzing LiDAR data related
to forests. In this method, the treetops are detected using variable window sizes, which
can be estimated based on the regression curve between crown size and tree height. The
treetops are then selected as the markers for watershed segmentation to prevent over
segmentation. The second classical individual tree extraction method was implemented
in a LiDAR processing software named LiDAR360. In this method, individual trees are
separated based on the horizontal spacing between trees. Generally speaking, the hori-
zontal spacing between trees at the top is larger than the horizontal spacing at the bottom.
Therefore, the individual tree points can be grown from the tree tops based on the relative
spacing between trees. In other words, the points of a same tree can be added gradually
since its relative spacing is smaller, while the points of other trees will be excluded since its
relative spacing is larger.

Table 4 shows the accuracy metrics calculation results of the proposed method towards
the six plots. In each plot, both single-scan (SS) and multi-scan (MS) modes are included.
From Table 4, it can be found that the proposed method can achieve high correctness of
the extracted trees. Almost the correctness of all the plots is higher than 80%. As a result,
the average of the correctness of the six plots containing both single-scan and multi-scan
modes is 87.68%. Another finding is the same as the conclusion drawn by Liang et al.
(2018) that the higher correctness is generally at the cost of lower completeness. The
average of completeness of the proposed method is 37.33%. Compared with correctness
and completeness, mean accuracy is a relatively balanced precision index. In terms of mean
accuracy, the proposed method can achieve 69.85% average of mean accuracy for easy
plots, 57.36% average of mean accuracy for medium plots and 18.57% average of mean
accuracy for difficult plots. Therefore, a same conclusion here can be drawn as from Figure
14 that the performance of the proposed method will turn down as the forest environments
changed to be complicated.
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Table 4. Three accuracy indicators calculation results of the proposed method towards the six plots.
In each plot, both single-scan (SS) and multi-scan (MS) modes are included.

Type Sample Completeness Correctness Mean Accuracy Ave Mean Accuracy

easy

plot_1_SS 64.71% 82.50% 72.53%

69.85%
plot_1_MS 68.63% 92.11% 78.65%
plot_2_SS 47.62% 85.11% 61.07%
plot_2_MS 54.76% 86.79% 67.15%

medium

plot_3_SS 41.89% 95.38% 58.22%

57.36%
plot_3_MS 45.27% 94.37% 61.19%
plot_4_SS 38.46% 88.24% 53.57%
plot_4_MS 44.87% 76.09% 56.45%

difficult

plot_5_SS 9.16% 80.00% 16.44%

18.57%
plot_5_MS 11.45% 83.33% 20.13%
plot_6_SS 6.36% 88.24% 11.86%
plot_6_MS 14.83% 100.00% 25.83%

Figures 15–17 show the comparison of completeness, correctness and mean accuracy of
the proposed method and the other two methods developed in the Digital Forestry Toolbox
and LiDAR360. In terms of completeness (Figure 15), the proposed method outperforms the
other two methods in all the plots except plot_5_SS and plot_6_SS. As a result, the average
completeness of the proposed method is much higher than that of the other two methods.
In terms of correctness (Figure 16), the proposed method performs much better than the
other two methods. Almost all the correctness of the plots in this paper is higher than 80%,
while the maximum correctness of the other two methods is less than 40%. Combining
completeness and correctness as shown in Figures 15 and 16, it can be concluded that the
proposed method can extract more trees while ensuring a high accuracy of tree extraction.
In terms of mean accuracy (Figure 17), the proposed method performs much better than
the other two methods. Moreover, all the three methods achieve worse mean accuracy
as the forest environments change from easy to difficult. Thus, it can be concluded that
dense and complex forest environments still pose great challenges to the individual tree
extraction methods.
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Another dataset used in practice was also adopted for testing the performance of the
proposed method. The dataset was acquired using the Riegl VZ-400 scanner, which can
obtain dense point clouds accurately. After the scanned point clouds are preprocessed
by Riscan pro software and filtered, the normalized point clouds for the tree plot are
shown in Figure 18a. From Figure 18a, it can be found that the trees in this plot are
dense. Many adjacent trees are very close. Moreover, there are some small trees that are
under the canopy of some tall trees. Therefore, this plot will be representative to show the
effectiveness of the proposed method. All the trees in Figure 18a are separated manually
using the CloudCompare software. The separation results by the proposed method are
shown in Figure 18b. From Figure 18b, it can be observed that most trees are separated
correctly. Among the 25 reference trees, 23 trees are extracted correctly by the proposed
method. The completeness is 92%. Although most trees are detected successfully, there are
still some trees that are over-segmented. 28 trees are extracted by the proposed method.
Obviously, there are some trees are wrongly detected. The over-segmented trees are mainly
caused by the trees with irregular canopies. In terms of this plot, the correctness is 82.14%.
As a result, the mean accuracy of the proposed method is 86.79%.
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Figure 18. Tree point cloud and its segmentation results. (a) Tree point clouds scanned by the Riegl VZ-400 terrestrial laser
scanner; (b) segmented individual trees by the proposed method. Each segmented tree is random colored.

4. Discussion

In this paper, trunk stems are first detected by the transductive transfer learning, which
are the key to the initial segmentation. It is because the initial segmentation is obtained
by nearest neighbor clustering based on the acquired trunk stem centers. Table 5 shows
the trunk stems detection rate by the transductive transfer learning for different plots. It is
easy to find that the trunk stem detection rate turns worse as the forest environments
become complicated, which is similar to the regularity of individual tree extraction results.
Thus, it can be concluded that the trunk stems detection results have an influence of
the final individual tree extraction results. Although the initial segmentation results can
be optimized by the following Gaussian mixture model separation, the individual tree
extraction results cannot be good if the initial segmentation results are too poor. Figure 19a
shows an initial segmentation for an easy plot (Plot 1). It is easy to find that although
some adjacent trees are clustered together in the initial segmentation, the segmentation
results still show clear difference among separated trees. The under-segmentation for
some adjacent trees can be easy to be further separated by the following steps in this
paper. As a contrast, Figure 19a shows an initial segmentation for a difficult plot (Plot
6). From this figure, it is difficult to find separated trees. Although both Figure 19a,b are
under-segmentation, Figure 19b cannot be further revised well since its initial segmentation
is too poor.

Table 5. Trunk stems detection rate by the transductive transfer learning for different plots.

Type Sample Single-Scan Ave Multi-Scan Ave

easy plot_1 50.98%
48.71%

50.98%
54.66%plot_2 46.43% 58.33%

medium
plot_3 41.22%

28.95%
41.89%

31.20%plot_4 16.67% 20.51%

difficult
plot_5 6.11%

4.75%
6.11%

6.66%plot_6 3.39% 7.20%

Ave 27.47% 30.84%

As mentioned above, some adjacent trees may be clustered together in the initial
segmentation results. These under-segmented trees need to be further separated. Thus,
the Gaussian mixture model separation plays an important role in the separation to under-
segmented canopies. In the Gaussian mixture model separation, the separation number
has a direct influence on the separation results. Figure 20 shows the different separation
results towards different separation number by applying the Gaussian mixture model
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separation. Clearly, if the separation number is larger than the number of reference trees,
the separation results are over-segmentation. If the separation number is smaller than the
number of reference trees, the separation results are under-segmentation. Therefore, the
accurate separation number should be determined. In this paper, the separation number
can be calculated based on kernel density estimation. By detecting the number of local
maxima of the kernel density distribution curve, the number of mixed components can be
acquired automatically.

Remote Sens. 2020, 12, x FOR PEER REVIEW 25 of 30 

 

  
(a) (b) 

Figure 19. Initial segmentation results for easy and difficult plots. (a) Plot 1 scanned in single 
mode; (b) plot 6 scanned in single mode. 

As mentioned above, some adjacent trees may be clustered together in the initial seg-
mentation results. These under-segmented trees need to be further separated. Thus, the 
Gaussian mixture model separation plays an important role in the separation to under-
segmented canopies. In the Gaussian mixture model separation, the separation number 
has a direct influence on the separation results. Figure 20 shows the different separation 
results towards different separation number by applying the Gaussian mixture model 
separation. Clearly, if the separation number is larger than the number of reference trees, 
the separation results are over-segmentation. If the separation number is smaller than the 
number of reference trees, the separation results are under-segmentation. Therefore, the 
accurate separation number should be determined. In this paper, the separation number 
can be calculated based on kernel density estimation. By detecting the number of local 
maxima of the kernel density distribution curve, the number of mixed components can be 
acquired automatically. 

  

(a) (b) 

Figure 19. Initial segmentation results for easy and difficult plots. (a) Plot 1 scanned in single mode; (b) plot 6 scanned in
single mode.

Remote Sens. 2020, 12, x FOR PEER REVIEW 25 of 30 

 

  
(a) (b) 

Figure 19. Initial segmentation results for easy and difficult plots. (a) Plot 1 scanned in single 
mode; (b) plot 6 scanned in single mode. 

As mentioned above, some adjacent trees may be clustered together in the initial seg-
mentation results. These under-segmented trees need to be further separated. Thus, the 
Gaussian mixture model separation plays an important role in the separation to under-
segmented canopies. In the Gaussian mixture model separation, the separation number 
has a direct influence on the separation results. Figure 20 shows the different separation 
results towards different separation number by applying the Gaussian mixture model 
separation. Clearly, if the separation number is larger than the number of reference trees, 
the separation results are over-segmentation. If the separation number is smaller than the 
number of reference trees, the separation results are under-segmentation. Therefore, the 
accurate separation number should be determined. In this paper, the separation number 
can be calculated based on kernel density estimation. By detecting the number of local 
maxima of the kernel density distribution curve, the number of mixed components can be 
acquired automatically. 

  

(a) (b) 

Figure 20. Cont.



Remote Sens. 2021, 13, 223 26 of 30

Remote Sens. 2020, 12, x FOR PEER REVIEW 26 of 30 

 

 
(c) 

Figure 20. Separation results towards different separation number by applying the Gaussian mixture model separation. 
(a) The separation number is 2; (b) the separation number is 3; (c) the separation number is 4. 

Although the under-segmented trees can be revised by the Gaussian mixture model 
separation, the trees that grow under another tree’s canopy are still difficult to be sepa-
rated by the EM algorithm. Figure 21a,b are two instances of the individual tree extraction 
results. Clearly, the extraction results contain omission errors. The smaller trees were not 
detected effectively. The reasons for this are twofold. On the one hand, the separation 
number cannot be calculated accurately based on kernel density estimation since the local 
maxima of the kernel density distribution curve formed by the smaller trees cannot be 
detected effectively. On the other hand, the Gaussian mixture model separation method 
is easy to misclassify trees that grow too much closer to be one tree. How to detect the 
trees that grow under canopies need to be focused in our future research. In terms of the 
trees with complex canopy architectures, such as the broadleaf forests, the proposed 
method will encounter difficulties. It is because the trees separation in this research mainly 
depends on the kernel density distribution of the canopy points. If the canopy architec-
tures are complicated, the number of the local maxima of the kernel density distribution 
will not correspond to the number of trees that need to be segmented. Thus, the following 
individual trees segmentation using the EM algorithm will not be correct. 

  
(a) (b) 

Figure 21. The wrongly separated individual trees and (a,b) are two examples of the smaller trees 
that cannot be detected accurately. 

Figure 20. Separation results towards different separation number by applying the Gaussian mixture model separation.
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Although the under-segmented trees can be revised by the Gaussian mixture model
separation, the trees that grow under another tree’s canopy are still difficult to be separated
by the EM algorithm. Figure 21a,b are two instances of the individual tree extraction
results. Clearly, the extraction results contain omission errors. The smaller trees were not
detected effectively. The reasons for this are twofold. On the one hand, the separation
number cannot be calculated accurately based on kernel density estimation since the local
maxima of the kernel density distribution curve formed by the smaller trees cannot be
detected effectively. On the other hand, the Gaussian mixture model separation method
is easy to misclassify trees that grow too much closer to be one tree. How to detect the
trees that grow under canopies need to be focused in our future research. In terms of
the trees with complex canopy architectures, such as the broadleaf forests, the proposed
method will encounter difficulties. It is because the trees separation in this research mainly
depends on the kernel density distribution of the canopy points. If the canopy architectures
are complicated, the number of the local maxima of the kernel density distribution will
not correspond to the number of trees that need to be segmented. Thus, the following
individual trees segmentation using the EM algorithm will not be correct.
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5. Conclusions

To improve the accuracy of individual tree extraction, this paper proposed a novel
method based on transfer learning and Gaussian mixture model separation. As a whole, the
proposed method can be seen as a process of the combination of bottom-up and top-down
manners. In the bottom-up manner, the trunk points are first classified from point clouds
using the transfer learning. The extracted trunk points can then be served as clustering
centers for initial segmentation. Based on PCA transformation, kernel density estimation
and Gaussian mixture model separation, the canopy for each individual tree can be ex-
tracted correctly. In the top-down manner, the extracted canopies are served as guidance for
trunk stems extraction. The trunk stems are extracted according to the vertical continuity.
Six plots with different forest environments are used for testing the performance of the
proposed method. The experimental results show that the transfer learning can be used for
trunk points classification. Although the classification results may contain omission errors,
the trunk points can still be used for initial tree segmentation. The under segmentation
canopies in the initial tree segmentation can be optimized successfully using Gaussian
mixture model separation. As a result, the proposed method can achieve 87.68% average
correctness towards the six plots with single-scan and multi-scan modes, which is much
higher than that of the other two classical methods. In terms of completeness and mean
accuracy, the proposed method also outperforms the other two methods. Therefore, the
proposed method can extract more trees while ensuring a high accuracy of tree extraction.
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Appendix A

Detailed steps for misjudged leaf points removal:
Firstly, the points were voxelized. Figure A1a,b are the voxelized results for trunk

points and misjudged points, respectively. It is easy to find that the trunk points have a
strong continuity in the vertical direction. Thus, there are fewer empty cubes in the vertical
direction as shown in Figure A1a. For the misjudged points, there are more empty cubes in
the vertical direction (Figure A1b). On the basis of this, most misjudged points with poor
vertical continuity can be eliminated. In addition, according to the characteristic feature that
the misjudged points are usually scattered, the misjudged points can be further eliminated
by clustering with neighboring points. The points with small number of neighboring points
were removed as misjudged points.

http://laserscanning.fi/tls-benchmarking-results/
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Appendix B

Detailed steps for Trunk centers optimization:
In this paper, the points of each trunk were first projected horizontally with the

projected points divided into grids afterwards (Figure A2a). As can be seen in Figure A2a,
after the horizontal projection the distribution of trunk points was relatively concentrated,
while the distribution of burr points was relatively sparse. Therefore, the burr points mixed
with the trunk points were eliminated based on the point density constraint. In this paper,
the threshold of point density constraint was set as the average number of points in each
grid, which can be calculated as Equation (A1):

th = mean
(

m=M
∑

m=1

n=N
∑

n=1
num(IM(m, n))

)
m = f loor(trunk.xi −min(trunk.x)) + 1
n = f loor(trunk.yi −min(trunk.y)) + 1

, (A1)

where th is the point density constraint threshold, IM is the two-dimensional grid, which
is formed by the horizontal projection of the trunk points, num(·) is the number of points
that in each two-dimensional grid. M and N are the maximum values in the horizontal
and vertical direction of the two-dimensional grid, and mean(·) represents mean value.
trunk.xi and trunk.yi are the x and y coordinates of each trunk point pi, m and n are the
grid coordinates of point pi in the two-dimensional grid. f loor(·) represents downward
rounding. The trunk points after removing burr points can be represented as Equation (A2).

{trunk} = {pi ∈ IM(m, n)|num(IM(m, n)) > th}. (A2)

The points of each trunk after removing burr points are shown in Figure 4b. It can be
found that the burr points on the trunks were effectively removed.

After removing the burr points, the trunk center horizontal position was calculated as
Equation (A3).

Loci(x, y) = mean

(
Ki

∑
j=1

trunki.xj,
Ki

∑
j=1

trunki.yj

)
, (A3)

where Loci(x, y) is the horizontal position of the i-th trunk center,
(
trunki.xj, trunki.yj

)
are

the x and y coordinates of the i-th trunk after removing burr points and Ki are the number
of points of the i-th trunk.
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